High-Level Observations in Java Debugging

Wolfgang Mayer and Markus Stumptner

Abstract. Recent years have seen considerable developments in modeling techniques for automatic fault location in programs. However, much of this research considered the models from a standalone perspective. Instead, this paper focuses on the properties of the testing and measurement process, where capabilities differ strongly from the classical hardware diagnosis paradigm. In particular, in an interactive debugging process user interaction may result in highly complex input to improve the process. This work proposes a heuristic entropy-based measurement selection algorithm, which incorporates high-level properties of the intended behavior of Java programs, specific to a set of test cases. We show how to integrate the approach into previously developed model-based debugging frameworks and to how reasoning about high-level properties of programs can improve fault localization.

INTRODUCTION. This paper extends prior research on model-based diagnosis for locating bugs in programs written in mainstream programming languages (e.g. Java). The idea behind the model-based debugging approach is (1) to automatically compile a program to its logical model or to a constraint satisfaction problem, (2) to use the model together with test cases and a model-based diagnostic engine for computing the diagnosis candidates, and (3) to map the candidates back to their corresponding locations within the original program. Formally, given a set of test cases TC on which the program is run, a (minimal) diagnosis is defined as a (minimal) set of incorrectness assumptions $AB(C)$ on a subset $C \in \Delta$ of components $COMP$ in the program (usually statements) such that $\{AB(C) | C \in \Delta\} \cup \{\neg AB(C) | C \in COMP \setminus \Delta\} \cup SD \cup TC$ is consistent [7]. Here, SD is a logical theory describing the program’s behavior under the assumption that components work correctly, TC are the values specified by a test case, and $AB(C)$ expresses that the program part modeled by C is possibly faulty ($AB-normal$) and can show arbitrary effects. Since the computation depends on observations in terms of test case output, unlike formal verification approaches, no separate formal specification is necessary – everything but the test cases is computed automatically from the source code. Conversely, where verification model checkers produce counterexamples, the outcome of the diagnosis process are code locations. Model-based debugging thus complements, rather than replaces verification techniques. Our more recent work (e.g., [5]) has added models based on the Abstract Interpretation Framework [1] and also moved to more efficient models that are based on test case specific representation of individual traces.

DEBUGGING WITH HIGH LEVEL OBSERVATIONS. While considerable improvements in the modeling and diagnostic algorithms have been achieved, the interactive aspect of (semi-) automatic debugging has so far taken second seat behind the computational aspects. In particular, previous research prototypes combined a standard debugger-like interface with a variant of the standard entropy-based selection of measurements to identify points during program execution where the debugger user would be queried about the correctness of (parts of) the program status at that point in execution (the user serving as “oracle”). The experience was that answering these oracle queries posed by the system could be difficult in many cases. To be useful for interactive debugging, an approach to queries is needed that is both more powerful and simple for the developer (debugger user) to apply. We introduce the notion of high-level observations (HLO’s) about the expected behavior of the program. Dedicated HLO predicates provide high level descriptions of program execution beyond the classical diagnosis test of whether a given part of the program state is correct or incorrect. We refer to an observation as high-level if it constrains multiple program states and/or locations. HLO’s thus allow for debugging capabilities beyond current modeling approaches while keeping the information that has to be provided by the user at a minimum.

HLO’s are produced by presenting queries to the user that have been ranked high as measurements to be selected (see below); the query specifies a high level condition and the user provides a HLO, or measurement outcome, by answering it. A query Q is a condition on the program state or actual execution that divides test cases T into sets R_F and R_T that predict Q to be true and false, respectively. Candidates in R_F are those that do not predict a value for Q.

When debugging using a model that follows the program semantics closely, three main causes of complex queries can be identified. First, unless the observed variable is at a point close to the start or the end of the program execution, the user needs to simulate much of the programs behavior to compute the desired value. Second, frequent switching between different execution states makes it much harder for the user to build a model of the correct execution of a program. This is especially true if the execution states are deep in the middle of some complex computation. Finally, the user cannot rely on values of variables provided by the debugger, as these may have been influenced by the true program fault or the diagnostic assumptions.

Using HLO’s, the ability to obtain a description of intent from the user (developer) makes observations potentially more powerful than with hardware. Types of HLO’s include:

Traversal properties. Elements of arrays and dynamic data structures are often processed such that either all of them are read or updated. If the underlying data structure is monotonic, this allows to bound the number of times the iterating loop or recursive function is executed.

Read- and write-only. Read-only assertions allow to ignore any attempted update to data structures passed to a loop or method call, and exclude diagnostic candidates implying such updates. Write-only access is used to decouple the previous from updated values of a data structure.

Subproblem (in)dependence. Loops and recursive method invocations can be modeled differently if it is known that computations
Variable (in)dependence can be utilized to infer missing state-
false
T
are instantiated into queries if there is a test case
port invariant detection even if fault assumptions are present. HLO’s
sures are used to discard invariants without sufficient support.
variants” eliminated that do not imply all properties. Statistical mea-
and built-in) are tracked while test cases are executing, and all “in-
properties are generated using an approach borrowed from the Daikon [3]
 Region reachability. Statements that should be executed always (or
never, or at least once) are marked to remove paths that would
otherwise contribute to spurious fault candidates.

Generating High Level Queries Queries about high-level prop-
erties are generated using an approach borrowed from the Daikon [3] “potential invariant” detection tool. A set of properties (user-defined and built-in) are tracked while test cases are executing, and all “in-
variants” eliminated that do not imply all properties. Statistical mea-
ures are used to discard invariants without sufficient support.

Daikon only supports forward execution, but our approach also al-
ows backward reasoning and variables with unknown values to sup-
port invariant detection even if fault assumptions are present. HLO’s
are instantiated into queries if there is a test case T and a fault can-
date that predicts false for the tracked property P given T.

UTILIZING INSTANTIATED INVARIANTS The prevailing use
for inferred invariant observations (IIO’s) is to generate addi-
tional conflicts, which eliminate diagnosis candidates. Therefore, we
infer IIO’s from the correct test cases and instantiate queries only if
a particular fault candidate D violates the invariant for a test case.
This is restricted further such that all queries are discarded where the
invariants of all fault candidates agree for a test case. The aim is to
avoid uninformative queries in case the invariant is too strong due to
an insufficient number of correct test cases. IIO’s are also represented
as queries.

SELECTING MEASUREMENTS A solution for selecting good
measurements given a test case and a set of fault candidates was
presented in [2]. The algorithm utilizes entropy to find the variable
that, when observed, on average eliminates the most candidates. Only
fault probabilities for components and the values predicted by the
fault candidates are required. For the software domain, we obtain
fault probabilities from the execution paths of correct and faulty test
cases [6]. Components that are executed for few correct test cases
and many failing test runs are assigned a higher fault probability.

To integrate the HLO’s and the IIO’s into the measurement se-
lection, we define auxiliary variables o_i for each query Q_i, with
dom(o_i) = {true, false}. The sets R_l, R_r, and R_c are used to
compute the entropy for o_i: H(o_i) = p(o_i = true) log p(o_i =
true) + p(o_i = false) log p(o_i = false) + p(R_u) log 2 (H de-
notes the entropy, p(o_i = v) = p(S_v) + \frac{1}{2^{n_v}}), where S_v is the set of selected candidates where o_i = v, and p(X) denotes the summed
probability of all fault candidates in X). Finally, the measurement
with maximal entropy is selected.

This approach (on average) optimally discriminates fault can-
didates but proves insufficient for interactive debugging, mainly due
to the queries being too complex to answer with reasonable effort.
For interactive debugging, selected queries must also conform to the

following properties: (1) Queries that are deep in the execution trace
of a program are difficult to answer. (2) Selected queries should not
“jump around” in the execution trace, as this prohibits the user from
building a model of the correct execution of the program. (3) Subse-
quent queries should use the same test case, if possible.

To elude these problems, we propose to extend the entropy-based
measurement selection with a heuristic approach.

To minimize query complexity, for each query we compute a “dis-
tance” d_l between the location tested by the query and the location
of the closest answered query (or the program start or end point) for
the same test case. d_L is derived from the execution profile of the test
cases and all the fault candidates: Each statement that is executed for
at least one fault candidate is marked. Also, the union of all the call
graphs for each fault candidate is computed.

Starting at l_c, transitions between statements are explored to find
the path to an answered query Q_l, where the difference between the
minimal nesting depth and the maximal nesting depth is minimal. To
find the closest query, we apply a simple best-first search algo-
rithm, following only transitions between marked statements. The
nesting depth of a statement in a method is computed from the source
code. For called methods, all possible call and return transitions are
followed, according to the call graph generated earlier. The nesting
depths for each method are summed.

FURTHER WORK The approach described in this paper has pro-
vided promising results on a set of small “toy” programs, but consid-
erable issues remain for further work. Currently, the measurement
selection is not fully integrated in our debugging prototype, which
makes further evaluation difficult. Further, it is not clear whether the
parameters for the heuristic query search must be preset or if there
exist good heuristics to choose and update those values. The user
interaction aspect of interactive debugging also requires more inves-
tigation, in particular, the question on what and how much context
needs to be provided to the user to allow efficient query answering.
In contrast to other debugging and verification approaches our method
has the advantage that it does not require to specify the behavior of
the program in a formal language. Rather, it is sufficient to provide
properties and invariants that are specific to a set of test cases, which
is usually much easier, especially as the behavioral description need
not be complete. Also, complexity is lower than for verification, as
we do not follow all possible executions of a program. Instead we
focus on the program behavior specific to a set of test cases, which is
usually good enough if the test set is large.

REFERENCES
[1] Patrick Cousot and Radhia Cousot, ‘Abstract interpretation based pro-
[2] Johan de Kleer and Brian C. Williams, ‘Diagnosing multiple faults’, Ar-
Mayer and Markus Stumptner, ‘Model-based debugging us-
variables: Detecting and classifying sequences using a demand-driven
ing multiple abstract models’, in Proceedings of the 5th International
Workshop on Automated and Algorithmic Debugging, AADDEBUG ’03,
p. 55–70, Ghent, (September 2003).
Intelligence, 32(1), 57–95, (1987).