Locality from Circuit Lower Bounds

Nicole Schweikardt

Goethe-Universität Frankfurt am Main

Newton Institute Workshop
Logical Approaches to Barriers in Complexity II
30 March 2012
In this talk

- consider finite directed graphs $G = (V^G, E^G)$

- p is a graph property, if the following is true:

 if $G \cong H$, then G has property $p \iff H$ has property p

- q is a k-ary graph query, if the following is true:

 if $\pi : G \cong H$, then for all $a_1, \ldots, a_k \in V^G$,

 $(a_1, \ldots, a_k) \in q(G) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(H)$

- i.e., graph properties and queries are closed under isomorphisms.
In this talk

- consider finite directed graphs $G = (V^G, E^G)$

- p is a graph property, if the following is true:

 if $G \cong H$, then G has property $p \iff H$ has property p

- q is a k-ary graph query, if the following is true:

 if $\pi : G \cong H$, then for all $a_1, \ldots, a_k \in V^G$,

 $(a_1, \ldots, a_k) \in q(G) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(H)$

- i.e., graph properties and queries are closed under isomorphisms.
In this talk

- consider finite directed graphs $G = (V^G, E^G)$

- p is a graph property, if the following is true:
 if $G \cong H$, then G has property $p \iff H$ has property p

- q is a k-ary graph query, if the following is true:
 if $\pi : G \cong H$, then for all $a_1, \ldots, a_k \in V^G$,
 $(a_1, \ldots, a_k) \in q(G) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(H)$

- i.e., graph properties and queries are closed under isomorphisms.
In this talk

- consider finite directed graphs \(G = (V^G, E^G) \)

- \(p \) is a graph property, if the following is true:

 if \(G \cong H \), then \(G \) has property \(p \) \(\iff \) \(H \) has property \(p \)

- \(q \) is a \(k \)-ary graph query, if the following is true:

 if \(\pi : G \cong H \), then for all \(a_1, \ldots, a_k \in V^G \),

 \[
 (a_1, \ldots, a_k) \in q(G) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(H)
 \]

- I.e., graph properties and queries are closed under isomorphisms.
Logics expressing graph properties and queries

Classical logics like, e.g.

- FO (first-order logic: Boolean combinations + quantification over nodes)
- LFP (least fixed point logic: FO + inductive definitions of relations)

express graph properties and queries in a straightforward way.

Example:

\[q(G) = \{ x \in V^G : x \text{ lies on a triangle} \} \]

is expressed in FO via

\[\varphi(x) := \exists y \exists z \ (E(x, y) \land E(y, z) \land E(z, x)) \]

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g., properties concerning the size of \(V^G \) or \(E^G \).
Logics expressing graph properties and queries

Classical logics like, e.g.

- FO (first-order logic: Boolean combinations + quantification over nodes)
- LFP (least fixed point logic: FO + inductive definitions of relations)

express graph properties and queries in a straightforward way.

Example:

\[q(G) = \{ x \in V^G : x \text{ lies on a triangle} \} \]

is expressed in FO via

\[\varphi(x) := \exists y \exists z \left(E(x, y) \land E(y, z) \land E(z, x) \right) \]

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g., properties concerning the size of \(V^G \) or \(E^G \).
Overview

Introduction

Invariant logics

Non-expressibility results for Arb-invariant FO

Final Remarks
Overview

Introduction

Invariant logics

Non-expressibility results for Arb-invariant FO

Final Remarks
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ... on V^G.

- For this, identify V^G with the set $[n] := \{0, 1, \ldots, n-1\}$ for $n = |V^G|$ and interpret <, +, ×, ... in the natural way.

- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with $[n]$. These formulas are called Arb-invariant.

Definition:

A -formula $\varphi(\vec{x})$ is -invariant on $G = (V^G, E^G)$ \iff for all nodes \bar{a} in V^G and all linear orders \prec_1 and \prec_2 on V^G, ...
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like $<$, $+$, \times, \ldots on V^G.

- For this, identify V^G with the set $[n] := \{0, 1, \ldots, n-1\}$ for $n = |V^G|$ and interpret $<$, $+$, \times, \ldots in the natural way.

- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with $[n]$. These formulas are called Arb-invariant.

Definition:

A $\phi(\vec{x})$ is \invariant on $G = (V^G, E^G)$ if for all nodes \vec{a} in V^G and all linear orders \prec_1 and \prec_2 on V^G, $\phi(\vec{a})$ holds for both linear orders.
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like $<$, $+$, \times, ... on V^G.
- For this, identify V^G with the set $[n] := \{0, 1, \ldots, n-1\}$ for $n = |V^G|$ and interpret $<$, $+$, \times, ... in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with $[n]$. These formulas are called Arb-invariant.

Definition:

A FO(E, \prec)-formula $\varphi(\bar{x})$ is order-invariant on $G = (V^G, E^G)$ if for all nodes \bar{a} in V^G and all linear orders \prec_1 and \prec_2 on V^G,

$$(G, \prec_1) \models \varphi(\bar{a}) \iff (G, \prec_2) \models \varphi(\bar{a}).$$
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like \(<, +, \times, \ldots\) on \(V^G\).

- For this, identify \(V^G\) with the set \([n] := \{0, 1, \ldots, n-1\}\) for \(n = |V^G|\) and interpret \(<, +, \times, \ldots\) in the natural way.

- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying \(V^G\) with \([n]\). These formulas are called Arb-invariant.

Definition:

A FO\((E, <, +)\)-formula \(\varphi(\vec{x})\) is addition-invariant on \(G = (V^G, E^G)\) if and only if for all nodes \(\vec{a}\) in \(V^G\) and all linear orders \(<_1\) and \(<_2\) on \(V^G\), and the matching addition relations \(+_1, +_2\),

\[
(G, <_1, +_1) \models \varphi(\vec{a}) \iff (G, <_2, +_2) \models \varphi(\vec{a}).
\]
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like $<, +, \times, \ldots$ on V^G.
- For this, identify V^G with the set $[n] := \{0, 1, \ldots, n-1\}$ for $n = |V^G|$ and interpret $<, +, \times, \ldots$ in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with $[n]$. These formulas are called Arb-invariant.

Definition:

A FO$(E, \prec, +, \times)$-formula $\varphi(\vec{x})$ is $(+, \times)$-invariant on $G = (V^G, E^G)$ if for all nodes \vec{a} in V^G and all linear orders \prec_1 and \prec_2 on V^G, and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2,

\[
(G, \prec_1, +_1, \times_1) \models \varphi(\vec{a}) \iff (G, \prec_2, +_2, \times_2) \models \varphi(\vec{a}).
\]
Invariant logics

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like $<, +, \times, \ldots$ on V^G.

- For this, identify V^G with the set $[n] := \{0, 1, \ldots, n-1\}$ for $n = |V^G|$ and interpret $<, +, \times, \ldots$ in the natural way.

- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying V^G with $[n]$. These formulas are called Arb-invariant.

Definition:

A FO($E, <, +, \times, \ldots$)-formula $\varphi(\vec{x})$ is Arb-invariant on $G = (V^G, E^G)$ \iff for all nodes \vec{a} in V^G and all linear orders \prec_1 and \prec_2 on V^G, and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2, and other numerical predicates,

$$ (G, \prec_1, +_1, \times_1, \ldots) \models \varphi(\vec{a}) \iff (G, \prec_2, +_2, \times_2, \ldots) \models \varphi(\vec{a}). $$
Example

- An **addition-invariant** FO\((E, \prec, +)\)-sentence \(\varphi\) such that
 \[
 G \models \varphi \iff |V^G| \text{ is odd.}
 \]

\[
\varphi := \exists x \exists z \left(x + x = z \land \forall y \left(y \prec z \lor y = z \right) \right)
\]

- Similarly, there is an **\((+, \times)\)-invariant** FO\((E, \prec, +, \times)\)-sentence \(\psi\) such that
 \[
 G \models \psi \iff |V^G| \text{ is a prime number.}
 \]

Thus:

order-invariant FO \(\prec\) addition-invariant FO \(\prec\) Arb-invariant FO.
Example

- An addition-invariant FO($E, \prec, +$)-sentence φ such that
 \[G \models \varphi \iff |V^G| \text{ is odd.} \]

 $\varphi := \exists x \exists z \left(x + x = z \land \forall y (y \prec z \lor y = z) \right)$

- Similarly, there is an $(+, \times)$-invariant FO($E, \prec, +, \times$)-sentence ψ such that
 \[G \models \psi \iff |V^G| \text{ is a prime number.} \]

Thus:

order-invariant FO $<$ addition-invariant FO $<$ Arb-invariant FO.
\section*{Example}

- An \textit{addition-invariant} \(\text{FO}(E, \prec, +)\)-sentence \(\varphi\) such that
 \[
 G \models \varphi \iff |V^G| \text{ is odd}.
 \]
 \[
 \varphi : = \exists x \exists z \left(x + x = z \land \forall y \left(y \prec z \lor y = z \right) \right)
 \]

- Similarly, there is a \((+ \times)\)-\textit{invariant} \(\text{FO}(E, \prec, +, \times)\)-sentence \(\psi\) such that
 \[
 G \models \psi \iff |V^G| \text{ is a prime number}.
 \]

Thus:

\[
\text{order-invariant FO} \prec \text{addition-invariant FO} \prec \text{Arb-invariant FO}.
\]
Example

- An addition-invariant FO($E, \prec, +$)-sentence φ such that

 $G \models \varphi \iff |V^G|$ is odd.

 $\varphi = \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$

- Similarly, there is an ($+, \times$)-invariant FO($E, \prec, +, \times$)-sentence ψ such that

 $G \models \psi \iff |V^G|$ is a prime number.

Thus:

$FO < \text{order-invariant FO} < \text{addition-invariant FO} < \text{Arb-invariant FO}$.
Theorem:

There is a finite relational signature τ which, among other symbols, contains symbols U (unary) and E (binary), such that the following is true:

There is a FO-definable class \mathcal{C} of finite τ-structures such that connectivity of $(U, E|_U)$ is definable in order-invariant FO, but not in FO on \mathcal{C}.

Here, connectivity of $(U, E|_U)$ on \mathcal{C} means:
Decide, for a given τ-structure \mathcal{A} in \mathcal{C}, if the graph $G = (U^\mathcal{A}, E^\mathcal{A}|_U)$ is connected.
Expressive power of invariant logics

Known results:

- **Order-invariant LFP** precisely captures the polynomial time computable graph properties and queries. (Immerman, Vardi, 1982)

- **Arb-invariant LFP** precisely captures the graph properties and queries that belong to the complexity class $P_{/poly}$. (Makowsky, 1998)

 $P_{/poly}$ consists of all problems solvable by circuit families of polynomial size.

- **Arb-invariant FO** precisely captures the graph properties and queries that belong to the circuit complexity class AC^0.

 AC^0 consists of all problems solvable by circuit families of polynomial size and constant depth.

- **$(+ , \times)$-invariant FO** precisely captures the graph properties and queries that belong to uniform AC^0.
Expressive power of invariant logics

Known results:

- **Order-invariant LFP** precisely captures the **polynomial time computable graph properties and queries.** *(Immerman, Vardi, 1982)*

- **Arb-invariant LFP** precisely captures the graph properties and queries that belong to the complexity class $P_{/poly}$. *(Makowsky, 1998)*

 $P_{/poly}$ consists of all problems solvable by circuit families of polynomial size.

- **Arb-invariant FO** precisely captures the graph properties and queries that belong to the circuit complexity class AC^0.

 AC^0 consists of all problems solvable by circuit families of polynomial size and constant depth.

- **$(+,	imes)$-invariant FO** precisely captures the graph properties and queries that belong to uniform AC^0.
Expressive power of invariant logics

Known results:

- Order-invariant LFP precisely captures the polynomial time computable graph properties and queries. (Immerman, Vardi, 1982)

- Arb-invariant LFP precisely captures the graph properties and queries that belong to the complexity class $P_{/poly}$. (Makowsky, 1998)

 $P_{/poly}$ consists of all problems solvable by circuit families of polynomial size.

- Arb-invariant FO precisely captures the graph properties and queries that belong to the circuit complexity class AC^0.

 AC^0 consists of all problems solvable by circuit families of polynomial size and constant depth.

- $(+, \times)$-invariant FO precisely captures the graph properties and queries that belong to uniform AC^0.
Expressive power of invariant logics

Known results:

- **Order-invariant LFP** precisely captures the polynomial time computable graph properties and queries. \[(\text{Immerman, Vardi, 1982})\]

- **Arb-invariant LFP** precisely captures the graph properties and queries that belong to the complexity class \(P_{/\text{poly}}\). \[(\text{Makowsky, 1998})\]

 \(P_{/\text{poly}}\) consists of all problems solvable by circuit families of polynomial size.

- **Arb-invariant FO** precisely captures the graph properties and queries that belong to the circuit complexity class \(AC^0\).

 \(AC^0\) consists of all problems solvable by circuit families of polynomial size and constant depth.

- \((+, \times)\)-invariant FO precisely captures the graph properties and queries that belong to uniform \(AC^0\).
Invariant logics are not logics in the strict formal sense: They have an undecidable syntax.

Precisely:

The following problem is undecidable (by reduction from Trakhtenbrot’s theorem)

ORDER-INVARINACE ON FINITE GRAPHS:

Input: an FO(E, \prec)-sentence φ

Question: Is φ order-invariant on all finite graphs?
Overview

Introduction

Invariant logics

Non-expressibility results for Arb-invariant FO

Final Remarks
Non-expressibility results for Arb-invariant FO

Known results:

- The existence of a k-clique cannot be expressed in Arb-invariant FO sentence using only $\lfloor k/4 \rfloor$ variables. (Rossman’08)

- The query $\text{Reach}_{f(n)}(x, y)$, selecting all pairs of nodes connected by a path of length $\leq f(n)$, is not definable in Arb-invariant FO. (Ajtai’89: for any unbounded function f; already on graphs of bounded degree)

- The class of graphs having an **even number of edges** is not definable in Arb-invariant monadic existential second-order logic. (Ajtai’83)
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

![Graph with nodes and edges representing neighborhoods](image.png)
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $dist(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $N_r(a)$ of radius r at a in G.
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

![Graph with labeled vertices u and v and distances marked]
 Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $dist(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $N_r(a)$ of radius r at a in G.

![Diagram showing a graph with nodes and edges, illustrating the concepts of graph, distance, ball, and neighborhood.](image-url)
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $dist(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.
Locality of queries — Neighborhoods

Graph \(G = (V, E) \)

Distance \(\text{dist}(u, v) \) : length of a shortest path between \(u, v \) in \(G \).

Ball \(N_r(a) \) of radius \(r \) at \(a \) in \(G \).

Neighborhood \(\mathcal{N}_r(a) \) of radius \(r \) at \(a \) in \(G \).
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $N_r(a)$ of radius r at a in G.

![Graph with neighborhoods at point a and radii r = 0 and r = 1]
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

![Graph and neighborhoods diagram]

$r = 2$

$r = 1$

$r = 0$
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

![Diagram of a graph with labeled nodes and edges, illustrating the concept of neighborhoods and balls around a node.](image)
Introduction

Invariant Logics

Non-expressibility results for Arb-invariant FO

Final Remarks

Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.

![Graph with graph theory concepts]
Locality of queries — Neighborhoods

Graph $G = (V, E)$

Distance $\text{dist}(u, v)$: length of a shortest path between u, v in G.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.
Local queries

- For a list \(a = a_1, \ldots, a_k \) of nodes, \(N_r^G(a) = N_r^G(a_1) \cup \cdots \cup N_r^G(a_k) \).
- The \(r \)-neighborhood \(N_r^G(a) \) is the structure \((G_{\mid N_r^G(a)}, a)\) consisting of the induced subgraph of \(G \) on \(N_r^G(a) \), together with the distinguished nodes \(a \).

Definition: Let \(q \) be a \(k \)-ary graph query. Let \(f : \mathbb{N} \to \mathbb{N} \).

\(q \) is called \(f(n) \)-local if there is an \(n_0 \) such that for every \(n \geq n_0 \) and every graph \(G \) with \(|V^G| = n \), the following is true for all \(k \)-tuples \(a \) and \(b \) of nodes:

\[
\text{if } N_r^G(a) \cong N_r^G(b) \text{ then } a \in q(G) \iff b \in q(G).
\]
Local queries

- For a list $a = a_1, \ldots, a_k$ of nodes, $N_r^G(a) = N_r^G(a_1) \cup \cdots \cup N_r^G(a_k)$.

- The r-neighborhood $N_r^G(a)$ is the structure $(G|_{N_r^G(a)}, a)$ consisting of the induced subgraph of G on $N_r^G(a)$, together with the distinguished nodes a.

Definition: Let q be a k-ary graph query. Let $f : \mathbb{N} \to \mathbb{N}$. q is called $f(n)$-local if there is an n_0 such that for every $n \geq n_0$ and every graph G with $|V^G| = n$, the following is true for all k-tuples a and b of nodes:

$$\text{if } N_{f(n)}^G(a) \cong N_{f(n)}^G(b) \text{ then } a \in q(G) \iff b \in q(G).$$
Locality of invariant FO

Theorem: \(\text{(Grohe, Schwentick '98)}\)

For every query \(q\) expressible by order-invariant FO there is a \(c \in \mathbb{N}\) such that \(q\) is \(c\)-local.

Open Question: Is addition-invariant FO \(c\)-local?

Theorem: \(\text{(Anderson, Melkebeek, S., Segoufin, '11)}\)

(a) For every query \(q\) expressible by Arb-invariant FO there is a \(c \in \mathbb{N}\) such that \(q\) is \((\log n)^c\)-local.

(b) For every \(d \in \mathbb{N}\) there is a \((+, \times)\)-invariant FO query that is not \((\log n)^d\)-local.
Locality of invariant FO

Theorem: (Grohe, Schwentick ’98)

For every query q expressible by order-invariant FO there is a $c \in \mathbb{N}$ such that q is c-local.

Open Question: Is addition-invariant FO c-local?

Theorem: (Anderson, Melkebeek, S., Segoufin, ’11)

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$-local.

(b) For every $d \in \mathbb{N}$ there is a $(+, \times)$-invariant FO query that is not $(\log n)^d$-local.
Locality of invariant FO

Theorem: *(Grohe, Schwentick ’98)*

For every query q expressible by order-invariant FO there is a $c \in \mathbb{N}$ such that q is c-local.

Open Question: Is addition-invariant FO c-local?

Theorem: *(Anderson, Melkebeek, S., Segoufin, ’11)*

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$-local.

(b) For every $d \in \mathbb{N}$ there is a $(+, \times)$-invariant FO query that is not $(\log n)^d$-local.
Use locality for proving non-expressibility

Example: The reachability query

\[
\text{REACH}(G) := \{ (a_1, a_2) : \text{there is a directed path from } a_1 \text{ to } a_2 \text{ in } G \}
\]

is not n^5-local and thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G:

![Graph Diagram]

- Use locality for proving non-expressibility
- Example: The reachability query
 \[
 \text{REACH}(G) := \{ (a_1, a_2) : \text{there is a directed path from } a_1 \text{ to } a_2 \text{ in } G \}
 \]
 is not n^5-local and thus cannot be expressed in Arb-invariant FO.

 Proof: Consider the graph G: (Diagram of a graph with nodes a_1, b_1, a_2, b_2)

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

- Does node x lie on a cycle?
- Does node x belong to a connected component that is acyclic?
- Is node x reachable from a node that belongs to a triangle?
- Do nodes x and y have the same distance to node z?
Proof of locality theorem — upper bound (1/5)

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$-local.

Idea:

- Let q be expressible by an Arb-invariant FO formula.
- Then, q can be computed by an AC^0 circuit family C.
- Assume that q is not $(\log n)^c$-local (for any $c \in \mathbb{N}$), and modify C to obtain an AC^0 circuit family computing

$$\text{PARITY} := \{ w \in \{0, 1\}^* : |w|_1 \text{ is even} \}.$$

- This contradicts known lower bounds in circuit complexity theory (Håstad’86).
Proof of locality theorem — upper bound (2/5)

How to compute a graph query $q(x)$ by an AC^0 circuit family C?

- Represent graph $G = (V, E)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node $a \in V$ by the bitstring $\beta(a)$ of the form 0^*10^*, carrying the 1 at position i iff node a corresponds to the i-th row/column of the adjacency matrix.
- Let $\text{Rep}(G, a)$ be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all adjacency matrices of G (i.e., all ways of embedding V in $\{1, \ldots, |V|\}$). Thus, $\text{Rep}(G, a)$ is the set of all bitstrings representing (G, a).
- A unary graph query $q(x)$ is computed by a circuit family $C = (C_n)_{n \in \mathbb{N}}$ iff the following is true:
 for all $G = (V, E)$, $a \in V$, $\gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ.
- Known: A unary graph query $q(x)$ is definable in Arb-invariant FO \iff it is computed by a circuit family of constant depth and polynomial size. (implicit in Immerman’87)
Proof of locality theorem — upper bound (2/5)

How to compute a graph query \(q(x) \) by an \(\text{AC}^0 \) circuit family \(C \)?

- Represent graph \(G = (V, E) \) by a bitstring \(\beta(G) \) corresponding to an adjacency matrix for \(G \).

- Represent a node \(a \in V \) by the bitstring \(\beta(a) \) of the form \(0^*10^* \), carrying the 1 at position \(i \) iff node \(a \) corresponds to the \(i \)-th row/column of the adjacency matrix.

- Let \(\text{Rep}(G, a) \) be the set of all bitstrings \(\beta(G)\beta(a) \), corresponding to all adjacency matrices of \(G \) (i.e., all ways of embedding \(V \) in \(\{1, \ldots, |V|\} \)). Thus, \(\text{Rep}(G, a) \) is the set of all bitstrings representing \((G, a)\).

- A unary graph query \(q(x) \) is computed by a circuit family \(C = (C_n)_{n \in \mathbb{N}} \) iff the following is true: for all \(G = (V, E), a \in V, \gamma \in \text{Rep}(G, a) \): \(a \in q(G) \iff C_{|\gamma|} \) accepts \(\gamma \).

- **Known**: A unary graph query \(q(x) \) is definable in Arb-invariant FO \(\iff \) it is computed by a circuit family of constant depth and polynomial size. (implicit in Immerman’87)
Proof of locality theorem — upper bound (2/5)

How to compute a graph query \(q(x) \) by an \(AC^0 \) circuit family \(C \)?

- Represent graph \(G = (V, E) \) by a bitstring \(\beta(G) \) corresponding to an adjacency matrix for \(G \).

- Represent a node \(a \in V \) by the bitstring \(\beta(a) \) of the form \(0^*10^* \), carrying the 1 at position \(i \) iff node \(a \) corresponds to the \(i \)-th row/column of the adjacency matrix.

- Let \(Rep(G, a) \) be the set of all bitstrings \(\beta(G)\beta(a) \), corresponding to all adjacency matrices of \(G \) (i.e., all ways of embedding \(V \) in \(\{1, \ldots, |V|\} \)). Thus, \(Rep(G, a) \) is the set of all bitstrings representing \((G, a) \).

- A unary graph query \(q(x) \) is computed by a circuit family \(C = (C_n)_{n \in \mathbb{N}} \) iff the following is true:

 for all \(G = (V, E), a \in V, \gamma \in Rep(G, a) \):

 \[a \in q(G) \iff C_{|\gamma|} \text{ accepts } \gamma. \]

- Known: A unary graph query \(q(x) \) is definable in Arb-invariant FO \(\iff \) it is computed by a circuit family of constant depth and polynomial size.

 (implicit in Immerman’87)
Proof of locality theorem — upper bound (2/5)

How to compute a graph query \(q(x) \) by an \(\text{AC}^0 \) circuit family \(C \)?

- Represent graph \(G = (V, E) \) by a bitstring \(\beta(G) \) corresponding to an adjacency matrix for \(G \).

- Represent a node \(a \in V \) by the bitstring \(\beta(a) \) of the form \(0^*10^* \), carrying the 1 at position \(i \) iff node \(a \) corresponds to the \(i \)-th row/column of the adjacency matrix.

- Let \(\text{Rep}(G, a) \) be the set of all bitstrings \(\beta(G)\beta(a) \), corresponding to all adjacency matrices of \(G \) (i.e., all ways of embedding \(V \) in \(\{1, \ldots, |V|\} \)).

 Thus, \(\text{Rep}(G, a) \) is the set of all bitstrings representing \((G, a) \).

- A unary graph query \(q(x) \) is computed by a circuit family \(C = (C_n)_{n \in \mathbb{N}} \) iff the following is true:

 for all \(G = (V, E), a \in V, \gamma \in \text{Rep}(G, a) \): \(a \in q(G) \iff C_{|\gamma|} \) accepts \(\gamma \).

- Known: A unary graph query \(q(x) \) is definable in Arb-invariant FO iff it is computed by a circuit family of constant depth and polynomial size.

 (implicit in Immerman’87)
Proof of locality theorem — upper bound (2/5)

How to compute a graph query $q(x)$ by an AC^0 circuit family C?

- Represent graph $G = (V, E)$ by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node $a \in V$ by the bitstring $\beta(a)$ of the form 0^*10^*, carrying the 1 at position i iff node a corresponds to the i-th row/column of the adjacency matrix.
- Let $Rep(G, a)$ be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all adjacency matrices of G (i.e., all ways of embedding V in $\{1, \ldots, |V|\}$). Thus, $Rep(G, a)$ is the set of all bitstrings representing (G, a).
- A unary graph query $q(x)$ is computed by a circuit family $C = (C_n)_{n \in \mathbb{N}}$ iff the following is true: for all $G = (V, E)$, $a \in V$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ.
- Known: A unary graph query $q(x)$ is definable in Arb-invariant FO \iff it is computed by a circuit family of constant depth and polynomial size. (implicit in Immerman’87)
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q. I.e., for all $G = (V, E), a \in V, \gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C|_{\gamma}$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0, G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c, \mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \not\in q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}, G = (V, E), a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem:

(Håstad’86)

There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^{\ell \log n} > p(n)$. \qed
Proof of locality theorem — upper bound \((3/5)\)

Let \(q(x)\) be a unary graph query expressible in Arb-invariant FO. Let \(C = (C_n)_{n \in \mathbb{N}}\) be a circuit family of constant depth \(d\) and polynomial size \(p(n)\) computing \(q\).

I.e., for all \(G = (V, E), a \in V, \gamma \in \text{Rep}(G, a)\):
\[a \in q(G) \iff C|_{\gamma} \text{ accepts } \gamma. \]

For contradiction, assume \(q(x)\) is not \((\log n)^c\)-local, for any \(c \in \mathbb{N}\).

Thus: For all \(c, n_0\) there exist \(n > n_0\), \(G = (V, E)\) with \(n\) nodes, \(a, b \in V\) such that for \(m := (\log n)^c\), \(N^G_m(a) \equiv N^G_m(b)\), but \(a \in q(G)\) and \(b \notin q(G)\).

For simplicity, consider the special case that \(\text{dist}(a, b) > 2m\).

Key Lemma:

Let \(m \in \mathbb{N}, G = (V, E), a, b \in V\) such that \(N^G_m(a) \equiv N^G_m(b)\) and \(\text{dist}(a, b) > 2m\).

Let circuit \(C\) accept all strings in \(\text{Rep}(G, a)\) and reject all strings in \(\text{Rep}(G, b)\).

Then there is a circuit \(\tilde{C}\) of the same size & depth as \(C\) computing parity on \(m\) bits.

Theorem:

\((\text{Håstad’86})\)

There exist \(\ell, m_0 > 0\) such that for all \(m \geq m_0\), no circuit of depth \(d\) and size \(2^{\ell \cdot m^{1/(d-1)}}\) computes parity on \(m\) bits.

Contradiction for \(c = 2d\), since \(2^{\ell \cdot m^{1/(d-1)}} > n^\ell \log n > p(n)\).
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q. I.e., for all $G = (V, E), a \in V, \gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C|_{\gamma}$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0, G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \equiv \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \not\in q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}, G = (V, E), a, b \in V$ such that $\mathcal{N}_m^G(a) \equiv \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem:

(Håstad’86) There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^\ell \log n > p(n)$.

Nicole Schweikardt

Locality from Circuit Lower Bounds

20/29
Proof of locality theorem — upper bound (3/5)

Let \(q(x) \) be a unary graph query expressible in Arb-invariant FO. Let \(C = (C_n)_{n \in \mathbb{N}} \) be a circuit family of constant depth \(d \) and polynomial size \(p(n) \) computing \(q \).

I.e., for all \(G = (V, E), a \in V, \gamma \in \text{Rep}(G, a) \):
\[
 a \in q(G) \iff C|\gamma| \text{ accepts } \gamma.
\]

For contradiction, assume \(q(x) \) is not \((\log n)^c\)-local, for any \(c \in \mathbb{N} \).

Thus: For all \(c, n_0 \) there exist \(n > n_0 \), \(G = (V, E) \) with \(n \) nodes, \(a, b \in V \) such that for \(m := (\log n)^c \), \(N_m^G(a) \cong N_m^G(b) \), but \(a \in q(G) \) and \(b \notin q(G) \).

For simplicity, consider the special case that \(\text{dist}(a, b) > 2m \).

Key Lemma:

Let \(m \in \mathbb{N}, G = (V, E), a, b \in V \) such that \(N_m^G(a) \cong N_m^G(b) \) and \(\text{dist}(a, b) > 2m \).

Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).

Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Theorem: (Håstad’86)

There exist \(\ell, m_0 > 0 \) such that for all \(m \geq m_0 \), no circuit of depth \(d \) and size \(2^{\ell \cdot m^{1/(d-1)}} \) computes parity on \(m \) bits.

Contradiction for \(c = 2d \), since \(2^{\ell \cdot m^{1/(d-1)}} > n^{\ell \log n} > p(n) \).
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q.

I.e., for all $G = (V, E)$, $a \in V$, $\gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff |C|_{\gamma}$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, $G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $N_m^G(a) \equiv N_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $N_m^G(a) \equiv N_m^G(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem:

(Håstad’86)

There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^\ell \log n > p(n)$.

Nicole Schweikardt

Locality from Circuit Lower Bounds
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q.

I.e., for all $G = (V, E)$, $a \in V$, $\gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C|_\gamma$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, $G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem: (Håstad’86)

There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^{\ell \log n} > p(n)$.
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q.

I.e., for all $G = (V, E), a \in V, \gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C|_{\gamma}$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0, G = (V, E)$ with n nodes, $a, b \in V$ such that for $m : = (\log n)^c, \ N^G_m(a) \cong N^G_m(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}, G = (V, E), a, b \in V$ such that $N^G_m(a) \cong N^G_m(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem: (Håstad’86)

There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^{\ell \log n} > p(n)$.

NICOLE SCHWEIKARDT

LOCALITY FROM CIRCUIT LOWER BOUNDS
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q.

I.e., for all $G = (V, E)$, $a \in V$, $\gamma \in \text{Rep}(G, a)$: $a \in q(G) \iff C|_{\gamma}$ accepts γ.

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, $G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem: (Håstad’86)

There exist $\ell, m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^{\ell \log n} > p(n)$.
Proof of locality theorem — upper bound (3/5)

Let $q(x)$ be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size $p(n)$ computing q.

I.e., for all $G = (V, E), \ a \in V, \ \gamma \in \text{Rep}(G, a)$:

$$a \in q(G) \iff C|_\gamma \text{ accepts } \gamma.$$

For contradiction, assume $q(x)$ is not $(\log n)^c$-local, for any $c \in \mathbb{N}$.

Thus: For all $c, \ n_0$ there exist $n > n_0, \ G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c, \ \mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \not\in q(G)$.

For simplicity, consider the special case that $\text{dist}(a, b) > 2m$.

Key Lemma:

Let $m \in \mathbb{N}, \ G = (V, E), \ a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Theorem: (Håstad’86)

There exist $\ell, \ m_0 > 0$ such that for all $m \geq m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for $c = 2d$, since $2^{\ell \cdot m^{1/(d-1)}} > n^\ell \log n > p(n)$.
Proof of locality theorem — upper bound (4/5)

Key Lemma:
Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $N^G_m(a) \cong N^G_m(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), \text{ if } |w|_1 \text{ even} \\ (G, b), \text{ if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:
Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $N^G_m(a) \cong N^G_m(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:
Consider $w \in \{0, 1\}^m$.
For $i \in \{0, 1, \ldots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:
Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $N_m^G(a) \cong N_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:
Consider $w \in \{0, 1\}^m$.
For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$.

Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$.

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

- Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:

Let \(m \in \mathbb{N} \), \(G = (V, E) \), \(a, b \in V \) such that \(N^G_m(a) \cong N^G_m(b) \) and \(\text{dist}(a, b) > 2m \).

Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).

Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Proof:

Consider \(w \in \{0, 1\}^m \).

For \(i \in \{0, 1, \ldots, m-1\} \) with \(w_i = 1 \):

- Swap the endpoints of the edges leaving \(N_i(a) \) with the corresponding endpoints of the edges leaving \(N_i(b) \).

The resulting graph \(G_w \cong G \).

\[
(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w_1| \text{ even} \\ (G, b), & \text{if } |w_1| \text{ odd} \end{cases}
\]

Circuit \(C \) distinguishes these cases.
Key Lemma:
Let \(m \in \mathbb{N} \), \(G = (V, E) \), \(a, b \in V \) such that \(N^G_m(a) \cong N^G_m(b) \) and \(\text{dist}(a, b) > 2m \).
Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).
Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Proof:
Consider \(w \in \{0, 1\}^m \).
For \(i \in \{0, 1, \ldots, m - 1\} \) with \(w_i = 1 \):
Swapping the endpoints of the edges leaving \(N_i(a) \) with the corresponding endpoints of the edges leaving \(N_i(b) \).
The resulting graph \(G_w \cong G \).

\[
(G_w, a) \cong \begin{cases}
(G, a), & \text{if } |w|_1 \text{ even} \\
(G, b), & \text{if } |w|_1 \text{ odd}
\end{cases}
\]
Circuit \(C \) distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:
Let \(m \in \mathbb{N}, \ G = (V, E), \ a, b \in V \) such that \(N^G_m(a) \cong N^G_m(b) \) and \(\text{dist}(a, b) > 2m \). Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \). Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Proof:
Consider \(w \in \{0, 1\}^m \).
For \(i \in \{0, 1, \ldots, m-1\} \) with \(w_i = 1 \):

- **Swap the endpoints of the edges** leaving \(N_i(a) \) with the corresponding endpoints of the edges leaving \(N_i(b) \).

The resulting graph \(G_w \cong G \).

\[
(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}
\]

Circuit \(C \) distinguishes these cases.
Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Key Lemma:

Let \(m \in \mathbb{N} \), \(G = (V, E) \), \(a, b \in V \) such that \(N_m^G(a) \cong N_m^G(b) \) and \(\text{dist}(a, b) > 2m \). Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \). Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Proof:

Consider \(w \in \{0, 1\}^m \).

For \(i \in \{0, 1, \ldots, m-1\} \) with \(w_i = 1 \):

Swap the endpoints of the edges leaving \(N_i(a) \) with the corresponding endpoints of the edges leaving \(N_i(b) \).

The resulting graph \(G_w \cong G \).

\[
(G_w, a) \cong \begin{cases}
(G, a), & \text{if } |w|_1 \text{ even} \\
(G, b), & \text{if } |w|_1 \text{ odd}
\end{cases}
\]

Circuit \(C \) distinguishes these cases.
Proof of locality theorem — upper bound (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \equiv \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \equiv G$.

$$(G_w, a) \equiv \begin{cases}
(G, a), & \text{if } |w|_1 \text{ even} \\
(G, b), & \text{if } |w|_1 \text{ odd}
\end{cases}$$

Circuit C distinguishes these cases.
Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Key Lemma:

Let \(m \in \mathbb{N} \), \(G = (V, E) \), \(a, b \in V \) such that \(N_m^G(a) \cong N_m^G(b) \) and \(\text{dist}(a, b) > 2m \).

Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).

Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

Proof:

Consider \(w \in \{0, 1\}^m \).

For \(i \in \{0, 1, \ldots, m-1\} \) with \(w_i = 1 \):

\[
\text{Swap the endpoints of the edges leaving } N_i(a) \text{ with the corresponding endpoints of the edges leaving } N_i(b).
\]

The resulting graph \(G_w \cong G \).

\[
(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}
\]

Circuit \(C \) distinguishes these cases.
Key Lemma:
Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:
Consider $w \in \{0, 1\}^m$.
For $i \in \{0, 1, \ldots, m-1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$ (G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases} $$

Circuit C distinguishes these cases.
Key Lemma:

Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For $i \in \{0, 1, \ldots, m - 1\}$ with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Circuit C distinguishes these cases.
Proof of locality theorem — upper bound (5/5)

Key Lemma:

Let \(m \in \mathbb{N}, \ G = (V, E), \ a, b \in V \) such that \(\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b) \) and \(\text{dist}(a, b) > 2m \).

Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).

Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

How to obtain \(\tilde{C} \) from \(C \)?

- Consider \(C \) for a fixed input string \(\gamma \in \text{Rep}(G, a) \).
- Fix all input bits (as in \(\gamma \)) that do not correspond to potential edges between the spheres \(S_i \) and \(S_{i+1} \), for \(i < m \).
- For all \(i < m \) and all \(u \in S_i(a), v \in S_{i+1}(a) \) consider the potential edges \(e = \{u, v\}, e' = \{\pi(u), \pi(v)\}, \tilde{e} = \{u, \pi(v)\}, \tilde{e}' = \{\pi(u), v\} \).
- Replace input gates of \(C \) as follows:
 - \(e \) by \((e \land \neg w_i) \)
 - \(e' \) by \((e' \land \neg w_i) \)
 - \(\tilde{e} \) by \((e \land w_i) \)
 - \(\tilde{e}' \) by \((e' \land w_i) \)

- This yields a circuit \(\tilde{C} \) of the same size and depth as \(C \) which, on input \(w \in \{0, 1\}^m \) does the same as \(C \) on input \((G_w, a) \). Thus, \(\tilde{C} \) accepts iff \(|w|_1 \) is even.
Proof of locality theorem — upper bound (5/5)

Key Lemma:
Let \(m \in \mathbb{N}, G = (V, E), a, b \in V \) such that \(\mathcal{N}_m^G(a) \approx \mathcal{N}_m^G(b) \) and \(\text{dist}(a, b) > 2m \).
Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \).
Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

How to obtain \(\tilde{C} \) from \(C \)?

- Consider \(C \) for a fixed input string \(\gamma \in \text{Rep}(G, a) \).
- Fix all input bits (as in \(\gamma \)) that do not correspond to potential edges between the spheres \(S_i \) and \(S_{i+1} \), for \(i < m \).
- For all \(i < m \) and all \(u \in S_i(a), v \in S_{i+1}(a) \) consider the potential edges
 \(e = \{u, v\}, e' = \{\pi(u), \pi(v)\}, \tilde{e} = \{u, \pi(v)\}, \tilde{e}' = \{\pi(u), v\} \).
- Replace input gates of \(C \) as follows:
 \[
 e \text{ by } (e \land \neg w_i), \quad e' \text{ by } (e' \land \neg w_i), \\
 \tilde{e} \text{ by } (e \land w_i), \quad \tilde{e}' \text{ by } (e' \land w_i).
 \]
- This yields a circuit \(\tilde{C} \) of the same size and depth as \(C \) which, on input \(w \in \{0, 1\}^m \) does the same as \(C \) on input \((G_w, a) \).
 Thus, \(\tilde{C} \) accepts iff \(|w|_1\) is even.
Proof of locality theorem — upper bound (5/5)

Key Lemma:
Let \(m \in \mathbb{N} \), \(G = (V, E) \), \(a, b \in V \) such that \(\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b) \) and \(\text{dist}(a, b) > 2m \). Let circuit \(C \) accept all strings in \(\text{Rep}(G, a) \) and reject all strings in \(\text{Rep}(G, b) \). Then there is a circuit \(\tilde{C} \) of the same size & depth as \(C \) computing parity on \(m \) bits.

How to obtain \(\tilde{C} \) from \(C \)?

- Consider \(C \) for a fixed input string \(\gamma \in \text{Rep}(G, a) \).
- Fix all input bits (as in \(\gamma \)) that do *not* correspond to potential edges between the spheres \(S_i \) and \(S_{i+1} \), for \(i < m \).
- For all \(i < m \) and all \(u \in S_i(a) \), \(v \in S_{i+1}(a) \) consider the potential edges \(e = \{u, v\} \), \(e' = \{\pi(u), \pi(v)\} \), \(\tilde{e} = \{u, \pi(v)\} \), \(\tilde{e}' = \{\pi(u), v\} \).
- Replace input gates of \(C \) as follows:
 - \(e \) by \((e \wedge \neg w_i) \)
 - \(e' \) by \((e' \wedge \neg w_i) \)
 - \(\tilde{e} \) by \((e \wedge w_i) \)
 - \(\tilde{e}' \) by \((e' \wedge w_i) \)

 This yields a circuit \(\tilde{C} \) of the same size and depth as \(C \) which, on input \(w \in \{0, 1\}^m \) does the same as \(C \) on input \((G_w, a) \). Thus, \(\tilde{C} \) accepts iff \(|w|_1 \) is even.
Proof of locality theorem — upper bound (5/5)

Key Lemma:
Let $m \in \mathbb{N}$, $G = (V, E)$, $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and $\text{dist}(a, b) > 2m$. Let circuit C accept all strings in $\text{Rep}(G, a)$ and reject all strings in $\text{Rep}(G, b)$. Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain \tilde{C} from C?

- Consider C for a fixed input string $\gamma \in \text{Rep}(G, a)$.
- Fix all input bits (as in γ) that do not correspond to potential edges between the spheres S_i and S_{i+1}, for $i < m$.
- For all $i < m$ and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- Replace input gates of C as follows:

 e by $(e \land \neg w_i)$
 e' by $(e' \land \neg w_i)$
 \tilde{e} by $(e \land w_i)$
 \tilde{e}' by $(e' \land w_i)$

- This yields a circuit \tilde{C} of the same size and depth as C which, on input $w \in \{0, 1\}^m$ does the same as C on input (G_w, a).

Thus, \tilde{C} accepts iff $|w|_1$ is even.
Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query \(q\) expressible by \(Arb\)-invariant \(FO\) there is a \(c \in \mathbb{N}\) such that \(q\) is \((\log n)^c\)-local.

(b) For every \(d \in \mathbb{N}\) there is a \((+, \times)\)-invariant \(FO\) query that is not \((\log n)^d\)-local.

The query \(q_d(x)\) states:

1. The graph has at most \((\log n)^{d+1}\) non-isolated vertices.

 (Use the polylog-counting capability of \(FO(+, \times)\))

2. Node \(x\) is reachable from a node that belongs to a triangle.

 (Show that in graphs satisfying (1), reachability by paths of length \((\log n)^{d+1}\) can be expressed in \((+, \times)\)-invariant \(FO\))

Note: This query is not \((\log n)^d\)-local.
Proof of locality theorem — lower bound (1/2)

Theorem: *(Anderson, Melkebeek, S., Segoufin ’11)*

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$-local.

(b) For every $d \in \mathbb{N}$ there is a $(+, \times)$-invariant FO query that is not $(\log n)^d$-local.

The query $q_d(x)$ states:

1. The graph has at most $(\log n)^{d+1}$ non-isolated vertices.
 (Use the polylog-counting capability of FO$(+, \times)$)

2. Node x is reachable from a node that belongs to a triangle.
 (Show that in graphs satisfying (1), reachability by paths of length $(\log n)^{d+1}$ can be expressed in $(+, \times)$-invariant FO)

Note: This query is not $(\log n)^d$-local.
Proof of locality theorem — lower bound (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$-local.

(b) For every $d \in \mathbb{N}$ there is a $(+, \times)$-invariant FO query that is not $(\log n)^d$-local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $\text{FO}(+, \times)$)

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length $(\log n)^{d+1}$ can be expressed in $(+, \times)$-invariant FO)

Note: This query is not $(\log n)^d$-local.
Theorem: \((\text{Anderson, Melkebeek, S., Segoufin '11}) \)

(a) For every query \(q \) expressible by Arb-invariant FO there is a \(c \in \mathbb{N} \) such that \(q \) is \((\log n)^c\)-local.

(b) For every \(d \in \mathbb{N} \) there is a \((+, \times)\)-invariant FO query that is not \((\log n)^d\)-local.

The query \(q_d(x) \) states:

(1) The graph has at most \((\log n)^{d+1}\) non-isolated vertices.

(2) Node \(x \) is reachable from a node that belongs to a triangle.

Note: This query is not \((\log n)^d\)-local.
Proof of locality theorem — lower bound (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query \(q \) expressible by Arb-invariant FO there is a \(c \in \mathbb{N} \) such that \(q \) is \((\log n)^c\)-local.

(b) For every \(d \in \mathbb{N} \) there is a \((+ , \times)\)-invariant FO query that is not \((\log n)^d\)-local.

The query \(q_d(x) \) states:

1. The graph has at most \((\log n)^{d+1}\) non-isolated vertices.

 (Use the polylog-counting capability of \(\text{FO}(+ , \times) \))

2. Node \(x \) is reachable from a node that belongs to a triangle.

 (Show that in graphs satisfying (1), reachability by paths of length \((\log n)^{d+1}\) can be expressed in \((+ , \times)\)-invariant FO)

Note: This query is not \((\log n)^d\)-local.
Proof of locality theorem — lower bound (2/2)

Goal: Show that in graphs with \(\leq (\log n)^c \) non-isolated vertices, reachability by paths of length \((\log n)^c \) can be expressed in \((+\times)\)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)

For every \(c \in \mathbb{N} \) there is a \(\text{FO}(<, +, \times, S) \)-formula \(\text{bij}_c(x, y) \) such that for all \(n \in \mathbb{N} \), all \(S \subseteq [n] := \{0, \ldots, n-1\} \), all \(a, i < n \) we have

\[
([n], <, +, \times, S) \models \text{bij}_c(a, i) \iff |S| < (\log n)^c \quad \text{and} \quad a \text{ is the } i\text{-th smallest element of } S.
\]

- Using this, identify the non-isolated vertices with numbers \(\leq (\log n)^c \) and represent them by bitstrings of length \(c \log \log n \).
- Identify an arbitrary vertex of \(G \) with a number \(< n \), whose binary representation encodes a sequence of \(\ell(n) := \frac{\log n}{c \log \log n} \) non-isolated vertices.
- Use this to express that there is a path of length \(\ell(n) \) from node \(x \) to node \(y \).
- Iterate this for \(c+1 \) times to express that there is a path of length \(\ell(n)^{c+1} \geq (\log n)^c \) from \(x \) to \(y \).
Proof of locality theorem — lower bound (2/2)

Goal: Show that in graphs with \(\leq (\log n)^c \) non-isolated vertices, reachability by paths of length \((\log n)^c \) can be expressed in \((+, \times)\)-invariant FO.

Lemma: *(Durand, Lautemann, More ’07)*

For every \(c \in \mathbb{N} \) there is a FO\((<, +, \times, S)\)-formula \(\text{bij}_c(x, y) \) such that for all \(n \in \mathbb{N}, all \ S \subseteq [n] := \{0, \ldots, n-1\} \), all \(a, i < n \) we have

\[
([n], <, +, \times, S) \models \text{bij}_c(a, i) \iff |S| < (\log n)^c \quad \text{and} \quad a \text{ is the } i\text{-th smallest element of } S.
\]

- Using this, identify the non-isolated vertices with numbers \(< (\log n)^c \) and represent them by bitstrings of length \(c \log \log \log n \).
- Identify an arbitrary vertex of \(G \) with a number \(< n \), whose binary representation encodes a sequence of \(\ell(n) := \frac{\log n}{c \log \log n} \) non-isolated vertices.
- Use this to express that there is a path of length \(\ell(n) \) from node \(x \) to node \(y \).
- Iterate this for \(c+1 \) times to express that there is a path of length \(\ell(n)^{c+1} \geq (\log n)^c \) from \(x \) to \(y \).
Introduction

Invariant Logics

Non-expressibility Results for Arb-invariant FO

Final Remarks

Proof of locality theorem — lower bound (2/2)

Goal: Show that in graphs with \(\leq (\log n)^c \) non-isolated vertices, reachability by paths of length \((\log n)^c \) can be expressed in \((+, \times)\)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)

For every \(c \in \mathbb{N} \) there is a FO\((<, +, \times, S)\)-formula \(bij_c(x, y) \) such that for all \(n \in \mathbb{N}, all S \subseteq [n] := \{0, \ldots, n-1\}, all a, i < n \) we have

\[
([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c \text{ and } a \text{ is the } i\text{-th smallest element of } S.
\]

- Using this, identify the non-isolated vertices with numbers \(< (\log n)^c \) and represent them by bitstrings of length \(c \log \log n \).
- Identify an arbitrary vertex of \(G \) with a number \(< n \), whose binary representation encodes a sequence of \(\ell(n) := \frac{\log n}{c \log \log n} \) non-isolated vertices.
- Use this to express that there is a path of length \(\ell(n) \) from node \(x \) to node \(y \).
- Iterate this for \(c+1 \) times to express that there is a path of length \((\log n)^{c+1} \geq (\log n)^c \) from \(x \) to \(y \).
Proof of locality theorem — lower bound (2/2)

Goal: Show that in graphs with \(\leq (\log n)^c \) non-isolated vertices, reachability by paths of length \((\log n)^c \) can be expressed in \((+, \times)\)-invariant FO.

Lemma:
(Durand, Lautemann, More ’07)

For every \(c \in \mathbb{N} \) there is a FO\((<, +, \times, S)\)-formula \(bij_c(x, y) \) such that for all \(n \in \mathbb{N} \), all \(S \subseteq [n] := \{0, \ldots, n-1\} \), all \(a, i < n \) we have

\[
([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c \quad \text{and} \quad a \text{ is the } i\text{-th smallest element of } S.
\]

- Using this, identify the non-isolated vertices with numbers \(< (\log n)^c \) and represent them by bitstrings of length \(c \log \log n \).
- Identify an arbitrary vertex of \(G \) with a number \(< n \), whose binary representation encodes a sequence of \(\ell(n) := \frac{\log n}{c \log \log n} \) non-isolated vertices.
- Use this to express that there is a path of length \(\ell(n) \) from node \(x \) to node \(y \).
- Iterate this for \(c+1 \) times to express that there is a path of length \(\ell(n)^{c+1} \geq (\log n)^c \) from \(x \) to \(y \).
Overview

Introduction

Invariant logics

Non-expressibility results for Arb-invariant FO

Final Remarks
Gaifman locality

If $\mathcal{N}_r^G(a) \cong \mathcal{N}_r^G(b)$ then $(a \in q(G) \iff b \in q(G))$.

Known:

- Queries definable in order-invariant FO are Gaifman-local with respect to a constant locality radius. (Grohe, Schwentick ’98)
- Queries definable in Arb-invariant FO are Gaifman-local with respect to a poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

- How about addition-invariant FO — is it Gaifman-local with respect to a constant locality radius?
Hanf locality

A graph property \mathcal{P} is Hanf-local w.r.t. locality radius r, if any two graphs having the same r-neighbourhood types with the same multiplicities, are not distinguished by \mathcal{P}.

Known:

- Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t. a constant locality radius. (Benedikt, Segoufin '09)
- Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin '11)

Open Question:

- Do these results generalise from strings to arbitrary finite graphs?
Decidable Characterisations

Open Question:
Are there decidable characterisations of

- order-invariant FO?
- addition-invariant FO?
- \((+,\times)\)-invariant FO?

Known:

- On finite strings and trees: order-invariant FO \(\equiv\) FO. (Benedikt, Segoufin '10)
- On finite coloured sets: addition-invariant FO \(\equiv\) FO enriched by “cardinality modulo” quantifiers. (S., Segoufin '10)
Thank You!