Cryptography

Robin Whitty

London South Bank University

Touring Turing, Rewley House, July 2012

Turing's work in encryption

- 1937 Thinks about methods of encryption while at Princeton
- 1939 Joins Government Codes and Cypher School
- 1939 Meets Polish cryptologists in Paris
- 1939-1941 Breaks and rebreaks naval Enigma at Bletchley Park (Hut 8)
- 1942 Works on (mechanised) statistical attacks on Enigma
- 1942 Develops statistical attacks on Tunny (Lorenz machine)
- 1943-1945 Works on speech encryption (Delilah)
- 1945-1952 Continues to consult with GCHQ

Secure communication

Alice, sender

Bob, recipient

Plaintext

Cryptanalysis

Eve, evesdropper

Language statistics

Attacking a substitution cipher

Suppose that Alice and Bob are communicating using a substitution cipher. You wish to decrypt the following message which you intercept:

QX FPF JZB RPB BRX BXVKRXWT QPJX TBZWX.

You know the plaintext is in English, in which letter frequencies in decreasing order are:

$$
\mathrm{E}, \mathrm{~T}, \mathrm{~A}, \mathrm{O}, \mathrm{I}, \mathrm{~N}, \mathrm{~S}, \mathrm{H}, \mathrm{R}, \ldots .
$$

and you have a crossword solver's dictionary, of the sort that tells you all words of the form 'f??t'. E.g. www.onelook.com.

Two Theorems in Probability

Bayes' Theorem

$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \times \mathbb{P}(A)}{\mathbb{P}(B)}$
the probability of A being true, given that B is true equals the probability of B begin true given that A is true \times the ratio of A 's probability to B^{\prime} s.

The Total Probability Theorem

If B_{1} and B_{2} are mutually exclusive events, one of which must occur (i.e. exhaustive) then

$$
\mathbb{P}(A)=\mathbb{P}\left(A \mid B_{1}\right) \times \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(A \mid B_{2}\right) \times \mathbb{P}\left(B_{2}\right)
$$

the probability that A is true is equal to the sum of probabilities of A being true given B_{i} is weighted by the respective B_{i} probabilities.

Statistical cryptanalysis I

The ciphertext we received:

QX FPF JZB RPB BRX BXVKRXWT QPJX TBZWX.

 number of letters $=13$, number of $X ' s=6$, number of $B^{\prime} s=5$ Is the plaintext in French?Bayes' Theorem says

$$
\begin{aligned}
\mathbb{P}(\text { French } \mid \text { find } E) & =\frac{\mathbb{P}(\text { find } E \mid \text { French }) \times \mathbb{P}(\text { French })}{\mathbb{P}(\text { find } E)} \\
& \left.=\frac{0.147 \times 1 / 6}{6 / 13}=0.053 \quad \text { (about } 5 \%\right)
\end{aligned}
$$

Statistical cryptanalysis II

The ciphertext we received:
QX FPF JZB RPB BRX BXVKRXWT QPJX TBZWX. number of letters $=13$, number of $X ' s=6$, number of $B ' s=5$

What is the probability of $X=E$, given that we know the plaintext is a major European language?

Total probability theorem:

$$
\mathbb{P}(\mathrm{X}=\mathrm{E})=\mathbb{P}(\mathrm{X}=\mathrm{E} \mid \text { Dutch }) \times \mathbb{P}(\text { Dutch })+\ldots
$$

Assumes the list of languages Dutch, English,... is exhaustive, so our probability calculation may only be accurate to a first approximation (but probably our values of $\mathbb{P}($ Dutch), $\mathbb{P}($ English), ... are estimates in any case).

