Patterns with Bounded Treewidth

Daniel Reidenbach, Markus L. Schmid,
Loughborough University, UK

LATA 2012, A Coruña, Spain
Pattern languages

\[x_1 \text{ } aa \text{ } x_2 \text{ } x_1 \text{ } x_2 \text{ } cb \text{ } x_1 \]
Pattern languages

\[x_1 \text{ aa } x_2 \text{ x}_1 \text{ x}_2 \text{ cb } x_1 \]

\[\text{acaaabcbacaacabcbacbac} \]
Pattern languages

\[
x_1 \textcolor{green}{aa} x_2 x_1 x_2 \textcolor{green}{cb} x_1
\]

\[
\textcolor{green}{aca}aabcbaacabcbacbcba\textcolor{green}{c}bc
\]
Pattern languages

\[x_1 \text{ aa } x_2 \text{ x_1 } x_2 \text{ cb } x_1 \]

\[\text{acaaabcbaacabcbacbabc} \]
Pattern languages

\[x_1 \text{ aa } x_2 \text{ } x_1 \text{ } x_2 \text{ cb } x_1 \]

\[\text{acaaabcbaacabcbacbac} \]

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK

Patterns with Bounded Treewidth
Pattern languages

\[x_1 \ aa \ x_2 \ x_1 \ x_2 \ cb \ x_1 \]

\[acaaaabcbaacabcbaacbacbac \]

\[\{ w \mid w = u \ aa \ v \ u \ v \ cb \ u, \ where \ u, \ v \in \{a, b, c\}^* \}. \]
The membership problem for pattern languages is NP-complete (Angluin, 80).
The membership problem for pattern languages

Theorem

The membership problem for pattern languages is NP-complete (Angluin, 80).

Main research task: Find classes of pattern languages with a polynomial membership problem.
Previous results

- Brute-force algorithm with runtime $O(|w|^k)$, where k is the number of variables.
- A pattern language is a regular language if
 - it is unary or
 - no variable in the pattern is repeated.
- $|w| \leq k$ for a constant k (Geilke, Zilles, ALT 2011)
- *Non-cross* patterns (e.g., $x_1x_1x_1x_2x_2x_3x_3x_3$) (Shinohara, 82).
- Patterns with bounded *variable distance* (R., S., CIAA 2010).
Definition (Relational structure)

A relational vocabulary τ is a finite set of relation symbols. Every relation symbol $R \in \tau$ has an arity $\text{ar}(R) \geq 1$. A τ-structure \mathcal{A} comprises a finite set A called the universe and, for every $R \in \tau$, an interpretation $R^\mathcal{A} \subseteq A^{\text{ar}(R)}$.

Example

Every graph can be interpreted as a relational structure \mathcal{G}, where the universe V is the set of vertices and the edges are given as an interpretation of a binary relation E.

We only consider relations with arity of at most 2.
Homomorphism problem for relational structures

Definition (Homomorphism)

Let \mathcal{A} and \mathcal{B} be τ-structures with universes A and B, respectively. A *homomorphism* from \mathcal{A} to \mathcal{B} is a mapping $h : A \rightarrow B$ such that for all $R \in \tau$ and for all $a_1, a_2, \ldots, a_{\ar(R)} \in A$, $(a_1, a_2, \ldots, a_{\ar(R)}) \in R^A$ implies $(h(a_1), h(a_2), \ldots, h(a_{\ar(R)})) \in R^B$.

Definition (Homomorphism problem)

The *homomorphism problem* HOM is the problem of deciding, for any structures \mathcal{A} and \mathcal{B}, whether there exists a homomorphism from \mathcal{A} to \mathcal{B}. For any set of structures C, by $HOM(C)$ we denote the homomorphism problem, where the left hand structure is restricted to be from C.

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK

Patterns with Bounded Treewidth
Homomorphism problem for relational structures

Theorem

The homomorphism problem for relational structures is NP-complete.
\(\alpha \)-structures

\[
\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1
\]
α-structures

\[\alpha := x_1 \quad x_2 \quad x_1 \quad x_3 \quad x_2 \quad x_3 \quad b \quad x_1 \quad x_2 \quad x_1 \]
\(\alpha \)-structures

\[
\alpha := x_1 \; x_2 \; x_1 \; x_3 \; x_2 \; x_3 \; b \; x_1 \; x_2 \; x_1
\]
\[\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1 \]

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \]
Patterns with Bounded Treewidth

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK

α-structures

α := x₁ x₆ x₃ x₄ x₅ x₆ b x₁ x₂ x₁
\(\alpha \)-structures

\[\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1 \]
α-structures

$\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1$
\(\alpha \text{-structures} \)

\[\alpha := x_1 \ x_2 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1 \]
\(\alpha \)-structures

\[
\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1
\]
We denote α-structures by \mathcal{A}_α and the standard α-structure by \mathcal{A}_α^S.

$\alpha := x_1 \ x_2 \ x_1 \ x_3 \ x_2 \ x_3 \ b \ x_1 \ x_2 \ x_1$
w-structures

\[w := abab \]
w-structures

\[w := abab \]

1, 2, 3, 4

1, 2, 2, 3, 3, 4

2, 4, 1, 4, 1, 3
w-structures

\[w := abab \]

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK
Patterns with Bounded Treewidth
w-structures

$w := abab$

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK
Patterns with Bounded Treewidth
$w := abab$

We denote w-structures by A_w.

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK

Patterns with Bounded Treewidth
w-structures

$w := abab$

We denote w-structures by A_w.
Membership problem \(\leq\) homomorphism problem

Lemma

A word \(w\) is in the pattern language of \(\alpha\) if and only if there exists a homomorphism from \(A_\alpha\) to \(A_w\), where \(A_\alpha\) is some \(\alpha\)-structure.
A meta theorem

Theorem (Freuder, 90)

Let C be a class of relational structures with bounded treewidth. Then $HOM(C)$ can be solved in polynomial time.
Theorem (Freuder, 90)

Let C be a class of relational structures with bounded treewidth. Then $\text{HOM}(C)$ can be solved in polynomial time.

Theorem (Meta theorem)

Let P be a class of patterns and let f be a polynomial time computable function that maps every $\alpha \in P$ to an α-structure. If, for some constant k, $\max \{ \text{tw}(f(\alpha)) \mid \alpha \in P \} \leq k$, then the membership problem for P is decidable in polynomial time.
A meta theorem

Theorem (Freuder, 90)

Let C be a class of relational structures with bounded treewidth. Then $HOM(C)$ can be solved in polynomial time.

Theorem (Meta theorem)

Let P be a class of patterns and let f be a polynomial time computable function that maps every $\alpha \in P$ to an α-structure. If, for some constant k, $\max\{\text{tw}(f(\alpha)) \mid \alpha \in P\} \leq k$, then the membership problem for P is decidable in polynomial time.

Research task: Find classes of patterns with bounded treewidth.
Scope coincidence degree

Let α be a pattern.

- For every $y \in \text{var}(\alpha)$, the scope of y in α is defined by $\text{sc}_\alpha(y) := \{i, i + 1, \ldots, j\}$, where i is the leftmost and j the rightmost position of y in α.
- The scopes of $y_1, y_2, \ldots, y_k \in \text{var}(\alpha)$ coincide in α if and only if $\bigcap_{1 \leq i \leq k} \text{sc}_\alpha(y_i) \neq \emptyset$.
- The scope coincidence degree of α (scd(α)) is the maximum number of variables in α such that their scopes coincide.
Let α be a pattern.

- For every $y \in \text{var}(\alpha)$, the *scope of y in α* is defined by $\text{sc}_\alpha(y) := \{i, i+1, \ldots, j\}$, where i is the leftmost and j the rightmost position of y in α.
- The scopes of $y_1, y_2, \ldots, y_k \in \text{var}(\alpha)$ *coincide in α* if and only if $\bigcap_{1 \leq i \leq k} \text{sc}_\alpha(y_i) \neq \emptyset$.
- The *scope coincidence degree of α* ($\text{scd}(\alpha)$) is the maximum number of variables in α such that their scopes coincide.
Let α be a pattern.

- For every $y \in \text{var}(\alpha)$, the *scope of y in α* is defined by $\text{sc}_\alpha(y) := \{i, i+1, \ldots, j\}$, where i is the leftmost and j the rightmost position of y in α.
- The scopes of $y_1, y_2, \ldots, y_k \in \text{var}(\alpha)$ *coincide in α* if and only if $\bigcap_{1 \leq i \leq k} \text{sc}_\alpha(y_i) \neq \emptyset$.
- The *scope coincidence degree* of α ($\text{scd}(\alpha)$) is the maximum number of variables in α such that their scopes coincide.

\[\alpha_1 := \begin{array}{cccccc}
 x_1 & x_2 & x_1 & x_3 & x_2 & x_3 & x_1 & x_2 & x_3 \\
\end{array} \quad \text{scd}(\alpha_1) = 3 \]

\[\alpha_2 := \begin{array}{cccccc}
 x_1 & x_2 & x_1 & x_1 & x_2 & x_3 & x_2 & x_3 & x_3 \\
\end{array} \quad \text{scd}(\alpha_2) = 2 \]
Scope coincidence degree

Lemma

Let α be a pattern. Then $\text{tw}(A^s_\alpha) \leq \text{scd}(\alpha) + 1$.

Theorem

Let $k \in \mathbb{N}$ and $P := \{\alpha \mid \text{scd}(\alpha) \leq k\}$. The membership problem for the class P is decidable in polynomial time.
Mildly entwined patterns

Let α be a pattern.

- Two variables $x, y \in \text{var}(\alpha)$ are entwined iff
 \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta. \]
- If no two variables are entwined, then α is nested.
- α is closely entwined iff $\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta$ with $|\gamma_2|_x = |\gamma_2|_y = 0$ implies $\gamma_2 = \varepsilon$.
- α is mildly entwined iff it is closely entwined and, for every $x \in \text{var}(\alpha)$, if $\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta$ with $|\gamma|_x = 0$, then γ is nested.
Mildly entwined patterns

\[\alpha = \ x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]
Mildly entwined patterns

\[\alpha = x_1 x_3 x_4 x_4 x_3 x_3 x_1 x_2 x_3 x_5 x_5 x_2 x_5 x_6 x_6 x_2 \]

\[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \text{ with } |\gamma_2|_x = |\gamma_2|_y = 0 \text{ implies } \gamma_2 = \varepsilon, \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

- \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \text{ with } |\gamma_2|_x = |\gamma_2|_y = 0 \text{ implies } \gamma_2 = \epsilon, \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

- \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \] with \[|\gamma_2|_x = |\gamma_2|_y = 0 \] implies \[\gamma_2 = \varepsilon, \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

\[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \quad \text{with} \quad |\gamma_2|_x = |\gamma_2|_y = 0 \implies \gamma_2 = \varepsilon, \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

\[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \text{ with } |\gamma_2|_x = |\gamma_2|_y = 0 \text{ implies } \gamma_2 = \varepsilon, \]
Mildly entwined patterns

\[\alpha = x_1 x_3 x_4 x_4 x_3 x_3 x_1 x_2 x_3 x_5 x_5 x_2 x_5 x_6 x_6 x_2 \]

- \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \] with \(|\gamma_2|_x = |\gamma_2|_y = 0 \) implies \(\gamma_2 = \varepsilon \),

- for every \(x \in \text{var}(\alpha) \), if \(\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta \) with \(|\gamma|_x = 0 \), then \(\gamma \) is nested.
Mildly entwined patterns

\[\alpha = x_1 x_3 x_4 x_4 x_3 x_3 x_1 x_2 x_3 x_5 x_5 x_2 x_5 x_6 x_6 x_2 \]

- \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \] with \(|\gamma_2|_x = |\gamma_2|_y = 0 \) implies \(\gamma_2 = \varepsilon \),
- for every \(x \in \text{var}(\alpha) \), if \(\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta \) with \(|\gamma|_x = 0 \), then \(\gamma \) is nested.
Mildly entwined patterns

\[\alpha = x_1 x_3 x_4 x_4 x_3 x_1 x_2 x_3 x_5 x_5 x_2 x_5 x_6 x_6 x_2 \]

- \(\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \) with \(|\gamma_2|_x = |\gamma_2|_y = 0 \) implies \(\gamma_2 = \varepsilon \),

- for every \(x \in \text{var}(\alpha) \), if \(\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta \) with \(|\gamma|_x = 0 \), then \(\gamma \) is nested.
Mildly entwined patterns

\[\alpha = \ x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

- \(\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \) with \(|\gamma_2|_x = |\gamma_2|_y = 0 \) implies \(\gamma_2 = \varepsilon \),
- for every \(x \in \text{var}(\alpha) \), if \(\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta \) with \(|\gamma|_x = 0 \), then \(\gamma \) is nested.
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

- \[\alpha = \beta \cdot x \cdot \gamma_1 \cdot y \cdot \gamma_2 \cdot x \cdot \gamma_3 \cdot y \cdot \delta \] with \(|\gamma_2|_x = |\gamma_2|_y = 0 \) implies \(\gamma_2 = \varepsilon \),
- for every \(x \in \text{var}(\alpha) \), if \(\alpha = \beta \cdot x \cdot \gamma \cdot x \cdot \delta \) with \(|\gamma|_x = 0 \), then \(\gamma \) is nested.

\[\Rightarrow \alpha \text{ is mildly entwined.} \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

\[\begin{array}{cccccccccccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 & \rightarrow & 5 & \rightarrow & 6 & \rightarrow & 7 & \rightarrow & 8 & \rightarrow & 9 & \rightarrow & 10 & \rightarrow & 11 & \rightarrow & 12 & \rightarrow & 13 & \rightarrow & 14 & \rightarrow & 15 & \rightarrow & 16
\end{array}\]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 16 \]
Mildly entwined patterns

\[\alpha = x_1 x_3 x_4 x_4 x_3 x_3 x_1 x_2 x_3 x_5 x_5 x_2 x_5 x_6 x_6 x_2 \]
Mildly entwined patterns

\[\alpha = x_1 \ x_3 \ x_4 \ x_4 \ x_3 \ x_3 \ x_1 \ x_2 \ x_3 \ x_5 \ x_5 \ x_2 \ x_5 \ x_6 \ x_6 \ x_2 \]

Definition

A graph is *outerplanar* iff it can be drawn in a planar way such that no vertex is entirely surrounded by edges (or, equivalently, all vertices lie on the exterior face).
Mildly entwined patterns

Lemma

A pattern α is mildly entwined if and only if A_{α}^s is outerplanar.
Mildly entwined patterns

Lemma

A pattern α is mildly entwined if and only if A^s_α is outerplanar.

Theorem (Bodlaender 86)

If G is an outerplanar graph, then $\text{tw}(G) \leq 2$.
Mildly entwined patterns

Lemma

A pattern α is mildly entwined if and only if A_{α}^s is outerplanar.

Theorem (Bodlaender 86)

If G is an outerplanar graph, then $\text{tw}(G) \leq 2$.

Theorem

Let $P := \{\alpha \mid \alpha$ is mildly entwined\}. The membership problem for the class P is decidable in polynomial time.
Mildly entwined vs. bounded scope coincidence degree

Observation

For every k, $k \geq 2$, $\{\alpha \mid \text{scd}(\alpha) \leq k\} \neq \{\alpha \mid \alpha \text{ is mildly entwined}\}$.

Daniel Reidenbach, Markus L. Schmid, Loughborough University, UK

Patterns with Bounded Treewidth