ECAI-2000 Logo

ECAI-2000 Conference Paper

[PDF] [full paper] [prev] [tofc] [next]

Discovering Conceptual Relations from Text

Alexander Maedche, Steffen Staab

Non-taxonomic relations between concepts appear as a major building block in common ontology definitions. In fact, their definition consumes much of the time needed for engineering an ontology. We here describe a new approach to discover non-taxonomic conceptual relations from text building on shallow text processing techniques. We use a generalized association rule algorithm that does not only detect relations between concepts, but also determines the appropriate level of abstraction at which to define relations. This is crucial for an appropriate ontology definition in order that it be succinct and conceptually adequate and, hence, easy to understand, maintain, and extend. We also perform an empirical evaluation of our approach with regard to a manually engineered ontology. For this purpose, we present a new paradigm suited to evaluate the degree to which relations that are learned match relations in a manually engineered ontology.

Keywords: Text Mining, Ontologies

Citation: Alexander Maedche, Steffen Staab: Discovering Conceptual Relations from Text. In W.Horn (ed.): ECAI2000, Proceedings of the 14th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2000, pp.321-325.

[prev] [tofc] [next]

ECAI-2000 is organised by the European Coordinating Committee for Artificial Intelligence (ECCAI) and hosted by the Humboldt University on behalf of Gesellschaft für Informatik.