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Abstract. We propose a very general syntactical notion of epis-
temic state and a compact axiomatization for iterated revision when
the new information is an epistemic state. We set representation the-
orems and give two semantical representations of operators: by poly-
nomials and by weighted belief bases. These representations will re-
sult to be equivalent.

1 Introduction

Most of the time, intelligent agents face incomplete, uncertain,
inaccurate information and need a revision mechanism to handle
their beliefs change in presence of a new piece of information. Belief
revision is the study of rational means an agent uses in order to
modify his epistemic state in view of new information. The epistemic
state has to be changed in order to restore consistency, keeping the
new item of information and removing the least possible previous
information. Most of the belief revision approaches consider a
knowledge base (generally represented by a set of formulas which
often is deductively closed) revised by a simple formula expressed
in a logical language. In this context one step belief revision has
been successfully characterized by the AGM postulates [1, 8].
But, although very elegant, AGM characterization do not capture
adequately iterated belief revision.

Thus, iterated belief revision has been bought into focus during the
last ten years, and new additional postulates have been proposed in
order to characterize iterated belief revision (see e.g. [6, 11, 13, 3]).
In all these approaches an epistemic state is something more
complex than a simple knowledge base, it not only has to represent
the agent’s current beliefs, but also the strategy the agent uses in
order to modify his beliefs in presence of a new item of information.

Yet all these approaches only consider the revision of an epistemic
state by a formula. However some applications require a more
general approach, that is the revision of an epistemic state by an
epistemic state. This approach is one of our main concerns in this
work. This corresponds, for example, to the revision of an agent’s
beliefs by another, more reliable, agent’s beliefs, or to the revision
of an agent’s beliefs by a stratified set of information. Such line of
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research has been previously considered by Nayak et al. [12, 14].

We propose a generalization of previously proposed revision
operations which stem from the principle of strong primacy of new
information [3, 10, 15]. In order to do that, the main idea will be to
consider that an epistemic state is given by two parts: theobservable
part and an additional information coding the agent confidence
(preferences) in alternative possible worlds. Then, the underlying
intuition concerning this principle is based upon the fact that the
agent considers the new entire epistemic state more reliable than the
old one.

We propose a very compact set of postulates capturing the
iteration process and give representation theorems. We do not only
logically study these operators but we also provide two particular
representations. That shows how to really implement those ideas.
In the first one, epistemic states are represented by polynomials.
This representation allows to compute the revision operations easily.
The second representation is more syntactic (but equivalent to the
first one). Epistemic states are then represented by weighted belief
bases. This is a natural and concise representation of epistemic states.

Section2 proposes a general set of postulates for iterated revi-
sion by an epistemic state and representation theorems. Therein we
consider the case where epistemic states are represented by total pre-
orders. In section3 we show that our operators have good iteration
properties. Section4 presents a polynomial representation of epis-
temic states and a corresponding revision operator, while section5
presents a syntactical approach.

2 Epistemic states: syntax, axioms for change and
representation

We give in this section a very general syntactical notion of epistemic
state and a new axiomatic proposal for change. We then give some
representation theorems.

Definition 1 An epistemic space E is a triple hE; �;F i where E is
a set, F is the set of formulas of the finite 5 propositional logic and �
is a function from E into F . The elements of the set E will be called
epistemic states. The elements of F will be called the observables
and � is the projection function; so if � 2 E, �(�) is the observable
part of �.

Notice that this idea was already implicit in [6, 11] where the
projection function is calledBel. From now on the epistemic states

5 i.e. the set of propositional variables will be finite



will be denoted by upper case Greek letters. The symbol` will
denote the logical consequence relation. ByW we denote the set of
classical interpretations, and if� is a formula thenMod(�) denotes
the set of its classical models.

We want to axiomatize a class of change operators which take
into account the iteration process. Essentially a change operator will
be a functionÆ mapping a couple of epistemic states into a new
epistemic state,i.e. Æ : E �E �! E.

The following set of axioms will be calledREEA (Revision by
epistemic states axioms).
(REE*1) �(� Æ	) ` �(	)

(REE*2) If �(�) ^ �(	) is consistent, then�(� Æ 	) $ �(�) ^
�(	)

(REE*3) If �(	) is consistent, then�(� Æ	) is consistent
(REE*4) If �(	1)$�(	2), then�(� Æ	1)$ �(� Æ 	2)

(REE*It) �((� Æ�) Æ �)$ �(� Æ (� Æ �))

Notice that the axioms (REE*1)-(REE*4) are the natural general-
ization of AGM postulates (R1)-(R4) when the new information is an
epistemic state. The axiom (REE*It), called iteration axiom is a gen-
eralization of postulates corresponding to AGM’s (R5) and (R6) [9].
Moreover this axiom, that expresses a sort of associativity ofÆ (at
observable level), will catch the strong priority of the new informa-
tion and will guarantee a good behaviour with respect to the iteration
process. The name of iteration axiom is due to the fact that it captures
the main postulates for iteration proposed by Darwiche and Pearl [6].
We will detail this in section 3.

Proposition 1 The axiom (REE*It) together with (REE*1)-(REE*4)
entail the following axioms:

(REE*5) �(� Æ	) ^ �(�) ` �(� Æ �) with �(�)$ �(	 Æ�)

(REE*6) If �(� Æ	)^ �(�) is consistent, then �(� Æ �) ` �(� Æ
	) ^ �(�) with �(�)$ �(	 Æ�).

(REE*Conj) If �(�) ^ �(�) is consistent, then for any epistemic
state �0 such that �(�0) $ �(�) ^ �(�) we have �((� Æ �) Æ
�)$ �(� Æ �0)

The axiom (REE*Conj) says that if we sequentially revise by
two epistemic states having observables mutually consistent then
the resulting observable is the same if we revise by an epistemic
state which observable is the conjunction of observables of epistemic
states. This property is close to theConjunctionpostulate proposed in
[13] (see also [18]). But (REE*Conj) is weaker thanConjunctionbe-
cause the former imposes only the equivalence between observables
whereas the later imposes the equality of the epistemic states.

Definition 2 Consider an epistemic space hE; �; F i. A function Æ :
E�E �! E is said to be a revision operator by epistemic statesif
it satisfies REEA.

In order to establish a first representation theorem we need the
following definition:

Definition 3 Let�1 and�2 be two total pre-orders onW . We define
the total pre-order �lex(�1;�2) by putting !1 �lex(�1;�2) !2 iff
!1 <1 !2 or !1 =1 !2 and !1 �2 !2.

Theorem 1 Let hE; �; F i be an epistemic space. Let Æ : E�E �!
E be a function. Æ is a revision operator by epistemic state iff for any
epistemic state 	 we can associate a total pre-order �0	 such that:
(i) Mod(�(	)) = min(W;�0	) if �(	) is consistent.
(ii)Mod(�(	Æ�)) = min(W;�lex(�0

�
;�0

	
)) if �(�) is consistent.

The if part of this theorem is a quite simple verification. For the
only if part, the key point is the definition of the mapping	 7!�0	.
This is done in the following definition:

Definition 4 Let hE; �;F i be an epistemic space and let Æ be a revi-
sion operator by epistemic state. For any epistemic state 	 we define
a total pre-order over interpretations �0	 in the following way:

!1 �
0
	 !2 , !1 j= �(	 Æ�)

with Mod(�(�)) = f!1; !2g.

Notice that it is thanks to (REE*4) that�0	 is well defined.

Unlike the well known representation theorem for classical
revision operators AGM [9], the previous theorem does not allow to
build the operatorÆ from the pre-orders. In this sense it is a weak
representation theorem. But what is quite interesting is that for
any representation of epistemic states the theorem gives a concrete
representation of observables via the pre-orders. Another important
aspect of this theorem is the computation process of the observables
of the new epistemic state via thelex pre-order. Below we will see
that this computation is a key point in our constructions.

One could reproach to this representation the fact that we do not
have necessarily	 Æ � =�lex(�0

�
;�0

	
) even when the interpretation

of epistemic states are total pre-orders. Nevertheless if the operator
satisfies a little bit more of rationality that equality holds.

Definition 5 Let hE; �;F i be an epistemic space such that the ele-
ments ofE are total pre-orders, and if for each��2 E, �(��) = '

with Mod(') = min(W;��) if �(�) is consistent, and �(��) =
? otherwise. Let Æ : E � E �! E be an operator. Æ is said to be
minimal-model preserving if the following equality holds

Mod(�(�	 Æ ��)) = min(Mod(�(��));�	)

For this kind of operators we have the following representation
theorem:

Theorem 2 Let Æ be a minimal-model preserving operator and�	,
�� the total pre-oders associated to 	 and �. Then Æ is a revision
operator by epistemic state iff

�	 Æ �� = �lex(��;�	)

Note that this representation theorem is simpler than the one pre-
sented in Nayak et al [12, 14] which have defined a revision by epis-
temic states, which are represented by means epistemic entrenchment
relations, using the lexicographical ordering.

3 Iterative behaviour of REEA

Now we study the behaviour of these operators with respect to itera-
tion. We begin adapting the postulates of Darwiche and Pearl [5, 6]
to framework in which the new information is also an epistemic state.

The postulates for the iterated revision of epistemic states are the
following ones:

(C1�) If �(�) ` �(�) then�((	 Æ �) Æ �)$ �(	 Æ �).

(C2�) If �(�) ` :�(�) then�((	 Æ �) Æ �)$ �(	 Æ �).

(C3�) If �(	 Æ �) ` �(�) then�((	 Æ �) Æ �) ` �(�).

(C4�) If �(	 Æ �) 6` :�(�) then�((	 Æ �) Æ �) 6` :�(�).



Let hE; �; F i andÆ be an epistemic space and a minimal-model
preserving operator as in Definition 5. LetC be a subset ofE. Define
ÆC as the restriction ofÆ to E � C. For instance ifC is the class of
pre-orders with at most two levelsÆC is the basic operator defined in
[10] (see also [3]). For these operators the following result holds:

Theorem 3 Suppose that ÆC is a minimal-model preserving revi-
sion operator by epistemic states. Then ÆC satisfies (C1�-C4�) iff the
elements of C are the pre-orders having at most two levels.

In the general case we have the following theorem:

Theorem 4 A revision operator by epistemic states satisfies the pos-
tulates (C1�), (C3�) and (C4�). But in general (C2�) does not hold.

Notice that by Theorems 3, 4 and the fact that we have pre-orders
with more than two levels the minimal-model preserving revision
operator by epistemic states build overE satisfies (C1�), (C3�) and
(C4�) but does not satisfy (C2�).

In example 1, we give a counterexample for (C2�), where we con-
sider thatE is the set of pre-orders over interpretations given by
the Hamming distance whose first level isMod(�(�	)). Remember
that the Hamming (or Dalal [4]) distance between two interpretations
is the number of propositional variables on which they differ.

Example 1 Consider an electric circuit with an adder and a mul-
tiplier. There is no initial information about the state of the circuit.
Let � be such that �(�) = >. After, we learn that the adder and
the multiplier work well, i.e. �(	) = adder ok ^ multiplier ok.
But after that we learn that the adder does not work, i.e.
�(�) = :adder ok. Thus we have �(�) ` :�(	) but
�((� Æ 	) Æ �) $ :adder ok ^ multiplier ok whereas
�(� Æ �) $ :adder ok. The application of (C2�) would lead to
�((� Æ	) Æ �) � :adder ok, that is to “forget” that the multiplier
works!

Below the pre-orders corresponding to the epistemic states are
represented. The interpretation 01 denotes adder ok is false and
multiplier ok is true, etc. Two interpretations are equivalent if they
are at the same level. An interpretation !1 is better than !2 if !1 is
in a level below the level of !2.

��= 00 01 10 11 �	=
00

01 10
11

��=
10 11
00 01

�[�Æ�]=
10 11
00 01

�[�Æ	Æ�]=

10
11
00
01

4 Semantic representation by means of
polynomials

We propose in this section a suitable representation of epistemic
states based on polynomials [15, 2]. This representation allows to
formalize the change of epistemic states by simple operations on
polynomials, to keep track of the sequence of revisions and hence to
come back to previous epistemic states, which is not possible with
the other representations (see [15] for more arguments for the use of
polynomials).

Let’s denote byB, the set of polynomials which coefficients be-
long tof0; 1g that isp 2 B 6 is of the formp =

Pm

i=0 pix
i. Poly-

nomials allow to represent shift operations easily (a right shift is a
multiplication byx). We define an order on polynomials ofB, de-
noted by<B which represents the lexicographical order:

Definition 6 Let p; p0 2 B. p <B p0 iff 9i 2 IN such that 8j; j <
i; pj = p0j and pi < p0i: (The reflexive closure of <B is denoted
by �B).

Definition 7 A weight distribution is a function which associates
with each interpretation ! 2 W a polynomial of B.

Semantically, an epistemic state	 will then be represented by a
weight distribution denoted byp(	) and we will denote byp!(	)
the weight of! in p(	). The ordering�	 associated to	 is defined
by !1 �	 !2 iff p!1 (	) � p!2 (	). The function� is defined by:
�(	) =  iff Mod( ) = f! 2 W : @!0 p!

0

(	) <B p!(	)g.

Remark 1 It is always possible to represent ordinal ranking on W by
polynomials where we associate with each ordinal n a polynomial,
as follows. Let (n0; n1; : : : ; nj) be the binary decomposition of n,
that is n =

Pj

k=0 nk2
k where nk 2 f0; 1g and where j is such

that 2j � n < 2j+1. We assign n the polynomial
Pj

i=0 p
0
i x

i where
p0i = nj�i corresponding to binary decomposition of n read in the
reverse order. Thus, there is an injection from total pre-orders into
weight distributions. For example, letW be the set of interpretations,
W = f!1 = :a:b; !2 = :ab; !3 = a:b; !4 = abg, the ordinals
corresponding to !1, !2 , !3 et !4 are respectively 3, 2, 1 et 0. In
this example, j = 1 and the weight distribution is: p!1(	) = 1+ x,
p!2(	) = 1, p!3(	) = x, p!4(	) = 0. It is worthy to note that

p!(	) <B p!
0

(	) iff the ordinal corresponding to ! is lower than
the ordinal corresponding to !0.

Since we represent epistemic states by weight distributions, we
need to describe the construction of the revised weight distribu-
tion. We want to define a revision by epistemic state operatorÆp,
which revise an epistemic statep(	) by a new epistemic statep(�)
such that the resulting epistemic state, denotedp(	 Æp �), satis-
fies: p!1(	 Æp �) <B p!2(	 Æp �) iff p!1(�) <B p!2(�)
or (p!1(�) =B p!2(�) and p!1(	) <B p!2(	)). In order to
do that we set the following notation. Letmax(�) be the high-
est degree of the polynomials ofp(�). More formally,max(�) =
maxfdeg(p!(�)); ! 2 Wg wheredeg(a) refers to the degree of
the polynomiala. We noteM� = max(�) + 1.

Definition 8 The revision of the weight distribution p(	) by the
weight distribution p(�), denoted p(	 Æp �) (i.e. p(	) Æp p(�) =
p(	 Æp �)), is defined by the following

8! 2 W; p
!(	 Æp �) = x

M�p
!(	) + p

!(�)

A priority is given to the total pre-order corresponding to the new
epistemic state� with respect to the total pre-order corresponding
to the initial epistemic state	.

With this encoding the following result is easy to see

Proposition 2 Æp is a revision operator by epistemic states.

Let us illustrate all this with the following example.

6 In order to simplify notation, we denote a polynomial byp instead of the
standard notationp(x).



Example 2 Let 	 be an initial epistemic state with total pre-order
interpretation �	, defined by
!4 <	 !1 <	 !3 =	 !2.
Let � be an epistemic state with total pre-order interpretation ��

defined by
!2 <� !4 =� !1 <� !3.
The following array shows the behaviour of Æp when the weight dis-
tributions of 	 and � are defined as in the previous remark:

W p(	) p(�) p(	 Æp �) p0p1p2p3

!1 x 01 x 01 x3 + x 0101
!2 1 10 0 00 x2 0010
!3 1 10 1 10 x2 + 1 1010
!4 0 00 x 00 x 0100

After the revision of p(	) by p(�), the column of p(	Æp�) describes
the new weight distribution. It is easy to see that it corresponds to the
total pre-order�	Æp� where: !2 <	Æp� !4 <	Æp� !1 <	Æp� !3.
Actually the column p0 p1 p2 p3 gives the total pre-order correspond-
ing to the current epistemic state 	 Æp �, the column p2 p3 gives the
total pre-order corresponding to the initial epistemic state 	, and
the column p0 p1 gives the total pre-order corresponding to the new
epistemic state �.

It is interesting to notice that if at each iteration of the revi-
sion process, we keep the weight distribution corresponding to
the epistemic state with which revision is performed, the use of
polynomial allows to come back to previous weight distribution
(and so to previous total pre-orders). Letp(	 Æp �) be the weight
distribution obtained after revisingp(	) by p(�). The distribution
corresponding top(	) can be obtained fromp(	 Æp �) by putting
p!(	) = x�M�(p!(	 Æp �)� p!(�)).

In the special case where revision is performed by a formula
� 2 F , i.e. �(p(�)) = � and p(�) is defined by if ! 2
Mod(�) then p!(�) = 0; elsep!(�) = 1. Revisingp(	) by a
� 2 F , leads to: if! 2Mod(�) thenp!(	 Æp �) = xp!(	)), else
p!(	 Æp �) = xp!(	) + 1. The weights of models of� are right
shifted, while the weights of counter-models of� are right shifted
and translated by1.

5 Syntactical representation

In the previous section we have characterized the iterated revision of
epistemic state by weight distributions. In this section, we give an
alternative (but equivalent) syntactical representation of an epistemic
state	. Instead of explicitly specifying the weight distribution
on all W, the agent specifies a set of weighted formulas, called a
weighted (or stratified) belief base and denoted by�	. We then
define a function� which allows to recover�	 from �	 by also
associating to each interpretation! a polynomial of B, that we
denote by��	 (!). When��	(!) = p!(	) for each!, we say that
�	 is a compact (or syntactic) representation of	.

Given this compact representation, we are interested in defining
a syntactic counterpart ofÆp, which syntactically transforms two
weighted belief bases�	 and�� respectively associated with the
epistemic states	 and �, to a new weighted base, denoted by
�	Æs�, corresponding to the new epistemic state�	Æs��. This new
weighted base should be such that:8!, p!(	 Æp �) = ��	Æs�

(!).

Definition 9 A weighted belief base �	 is a set of pairs
f(�i; p

�i(	)) : i = 1; :::; ng where �i is a propositional formula,
and p�i(	) is a non-null polynomial of B (i.e., different from the
polynomial 0).

Polynomials associated with formulas are compared according to
Definition 6. When p�(	) >B p (	), we say that� is more im-
portant (or has a higher priority, etc) than the formula . A weighted
base�	 is said to be consistent (resp. to entail�) if its classical
base (obtained by forgetting the weights) is also consistent (resp. en-
tails �). Note that�	 is not necessarily deductively closed. More-
over, nothing prevents�	 from containing two weighted formulas
(�; p�(	)) and( ; p (	)) such that� and are classically equiv-
alent, but having different weightsp�(	) 6= p (	). In this case,
we will see later that the least important formula (called a subsumed
formula) can be removed from the weighted belief base.

Definition 10 With each weighted belief base �	 is associated a
weighted distribution, denoted by ��	 , defined by:
8!; ��	(!) = maxfp�i(	) : (�i; p

�i(	)) 2 �	 and ! 6j= �ig,
where by convention max(;)=0.

We now interpret an epistemic state	 in a weighted base�	
and the observable part,�(�	), is defined by�(�	) =  such that
Mod( ) = f! : @!0 s: t: ��	(!

0) < ��	(!)g:

This semantics is basically the same as the one used in possibilis-
tic logic [7], in System Z [16] and for generating a complete epis-
temic entrenchment relation from a partial one [17]. Indeed, all these
approaches share the same idea, where they associate with each in-
terpretation! the weight of the most important formula falsified by
this interpretation. The lowest is the weight of an interpretation, the
preferred it is. In particular, models of�	 (namely those having a
weight equal to 0) are the most preferred ones. Next, we give the
operatorÆs defined over weighted knowledge bases.

Definition 11 Let �	 and �� be the knowledge bases associated
with the epistemic states 	 and �. Let M� = maxfdeg(p�(�)) :
(�; p�(�)) 2 ��g+1. The weighted base �	Æs� (i.e.�	 Æs �� =
�	Æs�) is composed of:
� all the formulas  of �	 with the weight: p (	 Æs �) =
xM� p (	),
� all the formulas � of �� with the weight: p�(	 Æs �)= p�(�),
� all the possible disjunctions between formulas  of �	 and for-
mulas � of ��, different from from tautologies, with the weights:
p�_ (	 Æs �) = xM� p (	) + p�(�).

The following result shows that�	Æs� allows us to recover the
distributionp(	 Æp �) syntactically.

Theorem 5 Let �	 and �� be two weighted bases associated with
the epistemic states 	 and � such that p!(	) = ��	(!), and
p!(�) = ���(!). Then: p(	) Æp p(�) = ��	Æs�

This theorem together with the Proposition 2 give:

Proposition 3 Æs is a revision operator by epistemic states.

Once�	Æs� is computed, we propose to compute�(�	Æs�) di-
rectly from �	Æs�. But we first proceed to a pre-processing step
which makes the computation easier. This pre-processing step con-
sists in removing useless (or redundant) formulas, called subsumed
formulas.



Definition 12 Let (�; p�(	 Æs �)) be a formula in �	Æs�, and
A� be a subbase of �	Æs� composed of formulas having a weight
greater than p�(	 Æs �), namely: A� = f : ( ; p (	 Æs �)) 2
�	Æs� and p (	 Æs �) > p�(	 Æs �)g. Then, (�; p�(	 Æs �)) is
said to be subsumed by �	Æs� if it is classically entailed from A�.
We denote by ��	Æs� the weighted subbase obtained by removing
subsumed formulas from �	Æs�.

Theorem 6 Let �	Æs� be a weighted base. Then �	Æs� and
��	Æs� are equivalent, in the sense that 8! we have: ��	Æs�

(!) =
���

	Æs�
(!):

The removing of subsumed formulas allows us a direct computa-
tion of �(�	 Æs ��).

Theorem 7 If ��	Æs� is consistent, then �(�	 Æs ��) is the classi-
cal base (i.e., without weights) associated with �	Æs�. If ��	Æs� is
not consistent, then let Minweight be the set of formulas in�� having
minimal weights. Then �(�	 Æs ��) is the classical base of ��	Æs�
- Minweight.

Next example illustrates the concepts and results of this section.

Example 3 Let
�	 = f(:a _ b; 1); (a _ :b; 1); (b; x)g
and
�� = f(:a _ b; 1); (:a; x); (b; x)g
be two weighted belief bases. A straightforward verification shows
that these two weighted belief bases are the compact representation
of the epistemic states p(	) and p(�) given in the Example 2.
Applying Definition 11, we have M� = 2, and we get:

�	Æs� = f(:a _ b; x2); (a _ :b; x2); (b; x3); (:a _
b; 1); (:a; x); (b; x); (:a _ b; x2 + 1); (:a _ b; x2 + x); (:a _
b; x3 + 1); (:a _ b; x3 + x); (b; x3 + x)g.

Let us compute the function � associated with �	Æs� :
��	Æs	

(ab) = x; ��	Æs	
(a:b) = x2 + 1,

��	Æs	
(:ab) = x2; ��	Æs	

(:a:b) = x3 + x.
We can easily check that we got the same weights as in example 2,

namely: ! 2 W : ��	Æs	
(!) = p!(	 Æp �).

Now we want to compute ��	Æs�. Notice that
� The formulas (:a_ b; x2); (:a_ b; 1); (:a_ b; x2 + x); (:a_
b; x3 + 1); (:a _ b; x3 + x) are all subsumed, since they are
entailed by (:a _ b; x2 + 1).
� The formulas f(b; x3); (b; x)g are all subsumed, since they are
entailed by (b; x3 + x).
After removing these formulas we get the final subbase:
��	Æs� = f(:a _ b; x2 + 1); (a _ :b; x2); (:a; x); (b; x3 + x)g:

Now let us compute �(�	 Æs ��). Since ��	Æs� is
not consistent, then Minweight = f(a _ :b; x2)g. Thus,
�(�	 Æs ��) is the classical base (by forgetting weights) of
��	Æs��Minweight = f(:a_ b; x2+1); (:a; x); (b; x3+x)g:

Clearly, �(�	 Æs��) has exactly one model which is :ab. More-
over, it is easy to check that :ab is the unique minimal model in
��	Æs�

(i.e., has the minimal weight) computed previously.

An algorithm that computes��	Æs� from�	Æs� and which needs
a logarithmic number of satisfiability tests can be easily provided.

6 Conclusion

We have proposed a general notion of epistemic state and illustrated
its semantics with three interpretations: total pre-orders, weighted
distributions and weighted bases. We proved that postulates defining
our revision operators by epistemic states capture the postulates for
iteration of Darwiche and Pearl. But in general the controversial
postulate C2 is not valid. This postulate will be valid only if we
restrain the new epistemic states to be extremely simple,i.e. when
they can be identified to formulas.

The polynomial representation has an interesting feature: it allows
the reversibility of the revision process. The syntactical representa-
tion, which is very natural, provides a reasonable way for the com-
putation of the resulting epistemic state. This suggests syntactical
restriction over formulas in order to consider simple weighted bases
for which the computations might be done in polynomial time.
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itérée bas´ee sur la primaut´e forte des observations. InJNMR’99 elec-
tronic proceedings, pages 0–10, 1999.

[4] M. Dalal. Investigations into Theory of Knowledge Base Revision. In
Proceedings of the 7th National Conference on Artificial Intelligence,
pages 475–479, 1988.

[5] A. Darwiche and J. Pearl. On the logic of iterated belief revision. In
Theoretical Aspects of Reasoning about Knowledge: Proceedings of the
1994 Conference (TARK’94), pages 5–23, 1994.

[6] A. Darwiche and J. Pearl. On the logic of iterated revision.Artificial
Intelligence, 89:1–29, 1997.

[7] D. Dubois and H. Prade. Belief change and possibility theory. In
P. Gärdenfors, editor,Belief Revision, pages 142–182. Cambridge Uni-
versity Press. U. K., 1992.

[8] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epis-
temic States. Bradford Books. MIT Press, Cambridge, 1988.

[9] H. Katsuno and A. Mendelzon. Propositional Knowledge Base Revi-
sion and Minimal Change.Artificial Intelligence, 52:263–294, 1991.

[10] S. Konieczny. Operators with memory for iterated revision.Technical
Report, n. IT-314, LIFL, 1998.

[11] D. Lehmann. Belief revision, revised. InProceedings of 14th Int. Joint
Conf. on Artificial Intelligence, pages 1534–1539, 1995.

[12] A. C. Nayak. Iterated belief change based on epistemic entrenchment.
Erkenntnis, 41:353–390, 1994.

[13] A. C. Nayak, N. Y. Foo, M. Pagnucco, and A. Sattar. Changing Condi-
tional Beliefs Unconditionally. InProceedings of 6th Conference Ra-
tionality and Knowledge, pages 119–135, 1996.

[14] A. C. Nayak, P. Nelson, and H. Polansky. Belief change as change in
epistemic entrenchment.Synthese, 109(2):143–174, 1996.

[15] O. Papini. Iterated revision operations stemming from the history of an
agent’s observations.Frontiers of Belief Revision. to appear.

[16] J. Pearl. System z: A natural ordering of defaults with tractableapplica-
tions to default reasoning. In R. Parikh, editor,Proc. of the 3rd Conf. on
Theoretical Aspects of Reasoning about Knowledge (TARK’90), pages
121–135. Morgan Kaufmann, 1995.

[17] M. A. Williams. Transmutations of Knowledge Systems. In J. Doyle
et al., editor,Inter. Conf. on Principles of Knowledge Representation
and Reasoning (KR’94), pages 619–629. Morgan Kaufmann, 1994.

[18] W.Spohn. Ordinal conditiona functions: a dynamic theory of epistemic
states.Causation in Decision, Belief Change, and Statistics, pages 105–
134, 1988.


