Declar ative Representation of Revision Strategies
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Abstract. We introduce a nonmonotonic framework for belief re-
vision in which reasoning about the reliability of different pieces of
information based on meta-knowledge about the information is pos-
sible. The approach is based on a Poole-style system for default rea-
soning in which entrenchment information is represented in the log-
ical language. A notion of inference based on the |east fixed point of
amonotone operator is used to make sure that all theories possess a
consistent set of conclusions.

1 INTRODUCTION

Formal models of belief revision differ in what they consider as rep-
resentations of the epistemic states of an agent. Inthe AGM approach
epistemic states are identified with logically closed theories. Other
approaches like those discussed in [11] consider finite sets of for-
mulas, sometimes called belief bases, as epistemic states. A smaller
fraction of work in belief revision has studied an obvious alternative:
the revision of epistemic states expressed as nonmonotonic theories
[4,9, 16, 2, 6].

This is somewhat surprising since close relationships between
properties of nonmonotonic inference rel ations and postul ates for be-
lief revision have been established [10]. Indeed, one of the reasons
why nonmonotonic logics were invented is their ability to handle
conflicts and inconsistencies, one of the mgjor issues in belief re-
vision. If this is the case, shouldn't it be possible to use the power
of nonmonotonic inference to simplify revision? In fact, in this paper
wewill put the burden of revising beliefs entirely on the inference re-
lation. We will revise nonmonotonic theories smply by adding new
information, and leave everything else to nonmonotonic inference.

An early approach in this spirit was [4] where an extension of
Poole-systems [12], the so-called preferred subtheory approach, was
used. New information, possibly equipped with information about
thereliability level of thisinformation, was simply added to the avail-
able information. The nonmonotonic inference relation determined
the acceptable beliefs. This approach is not fully satisfactory for sev-
eral reasons. Existing theories of belief revision, including the one
presented in that paper, have difficultiesto model the way real agents
revise their beliefs. In particular, they do not represent information
which is commonly used by agents for this purpose. New informa-
tion always comes together with certain meta-information: Where
does the information come from? Was it an observation? Did you
read it in the newspaper? Did someone tell you, and if so, who? Did
the person who gave you the information have a motive to lie? and
so on. In most cases we reason with and about this meta-information
when revising our beliefs. We believe that realistic models of revi-
sion should provide the necessary means to represent this kind of
information.
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The meta-information is used to determine the entrenchment of
pieces of information. The less entrenched the information is, the
more willing we are to give it up. Again, entrechment relations are
not just there, they result from reasoning processes. To model this
kind of reasoning, entrenchment should be expressible in the logical
language. Once we have the possibility to express entrenchment (or
plausibility, or preference) in the language, it will also become pos-
sible to represent revision strategies declaratively. Thisin turn makes
it possible to revise the revision strategies themselves.

The following example illustrates what we have in mind. Assume
Peter tells you that your girl-friend Anne went out for dinner with
another man yesterday. Peter even knows his name: it was John, a
highly attractive person known for having numerous affairs. You are
concerned and talk to Anne about this. Shetells you she was at home
yesterday evening waiting for you to call. Peter insists that he saw
Anne with that man. You are not sure what to believe. Luckily, you
find out that Anne has atwin sister Mary. Mary indeed went out with
her new boy-friend John. This explains why Peter got mixed up. You
now believe Anne and happily continue your relationship.

What this exampleillustrates is the way we reason about the relia-
bility of information. Thereis no given fixed entrenchment ordering
to start with. In the example there is aso, at least in the beginning,
no reason to trust Peter more than the girl-friend, or vice versa. And
obviously, it is not the new information that is accepted in each situ-
ation. It is the additional context information which is relevant here:
it gives us an explanation for Peter’s mistake and decreases the relia-
bility of Peter’s observation enough to break thetie.

To be able to formalize examples of this kind we propose in this
paper an approach to belief revision where 1) nonmonotonic belief
bases represent epistemic states and nonmonotonic inference fully
solves the revision problem, 2) it is possible to express and reason
about meta-information, including the reliability of formulas, and 3)
revision strategies can be represented declaratively.

The outline of the paper is as follows. In Sect. 2 we introduce
the nonmonotonic formalism used to represent epistemic states. In
Sect. 3 we show how to use this formalism for representing revision
strategies. Sect. 4 shows that almost al of the AGM postulates are
not valid in our approach. In Sect. 5 we briefly discuss contraction.
Sect. 6 discusses related work and concludes.

2 REPRESENTING RELIABILITY RELATIONS

In this section we introduce the formalism used in this paper. One of
the distinguishing features of our approach is the ablility to reason
about the reliability of the available information in the logical lan-
guage. In the AGM approach [7, 8] entrenchment relations are used
to represent how strongly an agent sticks to his beliefs: the more
entrenched a formula, the less willing to give it up the agent is. En-
trenchment relations have several properties which are based on the



logical strength of the formulas. For instance, logically weaker for-
mulas are not less entrenched than logically stronger ones. The in-
tuition is that if a weaker formula has to be given up, the stronger
formula has to be given up anyway.

In our approach we do not require such properties. We may even
have identical formulas p and p’ with different reliability. This may
happen when, for instance, p and p come from different sources s
and s" with different reliability. Note that although the less reliable
information does not add to the accepted beliefs as long as the more
reliable equivalent information is in force, the situation may change
when new information about the reliability of s isobtained. Should s
turn out to be highly unreliable later (of course, beliefs about the reli-
ability of sources may berevised as any other beliefs) then it becomes
important to have p’ with, say, somewhat lower reliability available.

All we require, therefore, is the existence of a strict partial order
< between formulas which tells us how to resolve potential conflicts.
To avoid misunderstandings we will not call < an entrenchment re-
lation. Instead, we speak of reliability, or simply priority among for-
mulas. Since we want to represent < in the logical language we need
to be able to refer to formulas. We will use named formulas, that is
pairs consisting of a formula and a name for the formula. Techni-
cally, names are just ground termsthat can be used everywherein the
language.

Our formalism extends the well-known Poole systems [12]. Such
systems consist of a consistent set of (first order) formulas F', the
facts, and a possibly inconsistent set of formulas D, the defaults.
A set of formulas E is an extension of a Poole-system (F, D) iff
E =Th(FUD'")where D' isamaximal F-consistent subset of D.

Our formaism differs from this approach in the following re-
spects:

1. Wedo not want to consider someinformation as absolutely certain
and unrevisable. We therefore do not use F'. Instead, we have a
single set T' containing all the information.

2. We represent preference and other meta-information in the lan-
guage. We therefore introduce names for formulas and a special
symbol <. d < d' intuitively says that in case of a conflict d
should be given up rather than d since the latter is more reliable.
We require that < represents a strict partial order?

3. Weintroduce anew notion of extension which takesthe preference
information into account adequately.

We now present the formal definitions. For simplicity, we only con-
sider finite default theoriesin this paper. A generalization to the infi-
nite case would have to be based on well-orderings rather than total
orders.

Definition 1 A named formula is a structure of the form d:p, where
pisafirst order formula and d a ground term representing the name
of the formula.

We use the functions name and form to extract the name respec-
tively formula of a named formula, that is name(d:p) = d and
form(d:p) = p. We will also apply both functions to sets of named
formulas with the obvious meaning.

Definition 2 A preference default theory T is a finite set of named
formulas such that

e form(T) isa set of first order formulas whose logical language
contains a reserved symbol < representing a strict partial order,
and

e di:p€eT,dyq€Tandp # qimpliesd; # da.

The second clause of the definition above guarantees that syntacti-
cally different formulas have different names.

Definition 3 Let T' be a preference default theory, < a total order
on T. The extension of T generated by <, denoted E7, is the set
EF = Th(UZ, E:) where

e Eqg=0,andfor 0 <4 < |T|

e E; = E;_ U{form(d;:p)} if thissetisconsistent, E;_ other-
wise.
Here d;:p isthe i-th element of T' according to the total order <.

Theset (J!”!) E; iscalled the extension base of E7.

Wesay FE isan extension of T if thereis sometotal order < such that
E = EZ.Obvioudly, all maximal consistent subsetsof form(T) are
extension bases. We now consider the general case of partial orders.

Definition 4 Let T be a preference default theory, < a strict partial
order on T'. The set of extensions of T' generated by < is

Ext? = {EF | < isatotal order extending <}.
We next define two notions of compatibility:

Definition 5 Let T' be a preference default theory, < a strict partial
ordering of T', S a set of formulas. We say < is compatible with S iff

Su{d<d |dp<d:qyUu{=(d<d)|dp £d:q}

is consistent.
An extension E of T is compatible with S' iff there is a strict partial
ordering < of T compatible with S such that E € Ext3.

The set of extensions of T compatible with S is denoted Ext5..

Definition 6 Let T be a preference default theory. A set of formulas
E iscalled a preferred extension of T iff E € Extf.

Intuitively, E isa preferred extension if it is the deductive closure of
amaximal consistent subset of 7" which can be generated through a
preference ordering compatible with the preference information in £
itself.

Hereis asimple example illustrating preference default theories:

dy(z) : bird(z) — flies(z) | x isaground object term
d> : Vz.penguin(z) — —flies(x)

ds : bird(tweety) A\ penguin(tweety)

ds :Vz.ds < di (x)

ds : Vr.ds < di (x)

Asis common in Poole systems, rules with exceptions, that is, for-
mulas whose instances can be defeated without defeating the formula
as awhole (here d;), are represented as schemata used as abbrevia-
tions for al of their ground instances. As above we will make the
intended instances explicit in all examples. To make sure that the
different ground instances can be distinguished by name we have to
parameterize the names also. We assume that terms used as names
can be distinguished from other terms which we call object terms?
In our case, di (tweety) isa proper rule name, di (d1) is not. Since

2 We assume that the properties of <, like those of equality, are part of the
underlying logic and need not be represented through explicit axiomsin our
default theories.

3 A more elaborate formalization would be based on sorted logic with sorts
for names and other types of objects from the beginning. We do not pursue
this here since we want to keep things as simple as possible.



we only consider finite theories we must also assume that the set of
object termsisfinite.

In our example we obtain 3 extensions E;, E» and E3. In E; the
instance of di (x) with z = tweety isrejected, in E-» d» isrejected,
and E; rejects ds. All extensions contain ds and ds. It isnot difficult
to seethat only E; can be constructed using an ordering of 7" which
is compatible with this information. E, is thus the single preferred
extension of this preference default theory.

Preference default theories under extension semantics are very
flexible and expressive. Unfortunately, they can express unsatisfiable
preference information: there are theories which do not possess any
preferred extensions. The simplest exampleis as follows:

dy 1 ds < di
ds 1 di1 < d>

Accepting the first of the two contradictory formulas requiresto give
preference to the second, and vice versa. No preferred extension ex-
istsfor this theory.

This means that preference default theories together with the stan-
dard notion of nonmonotonic inference where a formula is consid-
ered derivable whenever it is contained in all (preferred) extensions
do not seem fully adequate for representing epistemic states of ratio-
nal agents.

We will therefore introduce another, somewhat less standard no-
tion of nonmonotonic consegquence based on the least fixed point of
a monotone operator. We consider an extension as acceptable if it
is contained in the biggest set of extensions £ satisfying the condi-
tion E € & implies E is compatible with (| £. To obtain this set
we first compute all extensions taking no preferences into account.
We then eliminate extensions not compatible with the intersection of
all extensions obtained so far and continue like this until no further
extension can be eliminated, that is, until afixed point is reached.

To formalize this idea we define an operator whose least fixed
point is the intersection of the extensions which are acceptable in
the sense just described. The least fixed point is computed by iterat-
ing the operator on the empty set. In each step, the argument of the
operator corresponds to the preference information that needs to be
taken into account, and the result of the operator corresponds to the
intersection of those extensions which are still under consideration.

Definition 7 Let T be a preference default theory, .S a set of formu-
las. We define an operator Cr as follows:

Cr(S) =) Exty
Proposition 8 The operator Cr is monotone.

Proof: S C S impliesthat an ordering < is compatible with S
whenever it is compatible with S'. We thus have Exty C Ext5.
and therefore () Exts. C (| Exts. . O

Monotone operators, according to the well-known Knaster-Tarski
theorem [15], possess a least fixed point. We, therefore, can define
the accepted conclusions of a preference default theory as follows:

Definition 9 Let T' be a preference default theory. Aformulap isan
accepted conclusion of T' iff p € Ifp(Cr), where Ifp(Cr) istheleast
fixed point of the operator Cr.

We call extensions which are compatible with Ifp(Cr) accepted ex-
tensions.

Severd illustrative examples will be given in the next section. Here
we just show how the theory without preferred extension is handled

in this approach. Wehave T' = {d;:(d> < di),d2:(d1 < d2)}. We
first compute Cr (). Since no preference information is available in
the empty set we obtain Th({d> < di}) NTh({d1 < d2}) which
isequivalent to Th({d> < d1 V d1 < d»}). Thisset isaready the
least fixed point.

Proposition 10 Let T' be a preference default theory, p an accepted
conclusion of T'. Then p is contained in all preferred extensions of T'.

Proof: If T has no preferred extension the proposition is trivialy
true. So assume T possesses preferred extension(s). A simple in-
duction shows that each preferred extension is among the extensions
compatible with the formulas computed in each step of the iteration
of Cr. Therefore each preferred extension is also an accepted exten-
sion. O

Proposition 11 Let T be a preference default theory. The set of ac-
cepted conclusions of T is consistent.

Proof: We can show by induction that the set of formulas obtained
after an arbitrary number of applications of Cr is consistent. If S
is consistent, then Ext3. is nonempty since an S-compatible partial
ordering < exists and each partia ordering generates at least one
extension. Moreover, since extensions are consistent the intersection
of anonempty set of extensionsis also consistent. O

3 REVISING EPISTEMIC STATES

From now on we identify an agent’s epistemic state with a preference
default theory as introduced in the last section. It is natural, then, to
identify the set of beliefs accepted by the agent with the accepted
conclusions of this theory. We therefore define belief sets asfollows:

Definition 12 Let T be an epistemic state. Bel(T'), the belief set
induced by T, is the set of accepted conclusions of T'.

It is a basic assumption of our approach that belief sets cannot be
revised directly. Revision of belief sets is always indirect, through
the revision of the epistemic state inducing the belief set. Note that
since two different epistemic states may induce the same belief set,
the revision function which takes an epistemic state and a formula
and produces a new epistemic state does not induce a corresponding
function on belief sets.

Given an epistemic state T', revising it with new information sim-
ply means generating anew name for it and adding the corresponding
named formula.

Definition 13 Let T be an epistemic state, p a formula. Therevision
of T with p, denoted T'«p, is the epistemic state (7' U {n:p}) where
n isa new name not appearing in 7.

Notation: in the rest of the paper we assume that names are of the
form d; where j isanumbering of the formulas. If T' has 5 elements
and anew formulais added, then its new nameisd; ;1.

We now show how the revision strategies of an agent can be repre-
sented in our approach. We first discuss an example where the strat-
egy isbased on the type of the available information. We distinguish
between strict rules, observations and defaults. Strict rules have high-
est priority because they represent well-established or terminologi-
cal information. Observations can be wrong, but they are considered
more reliable than default information. Consider the following epis-
temic state 7"



d1 : penguin(tweety)

d> : Vz.penguin(x) — bird(z)

ds : Vz.penguin(z) — —flies(x)

da(x) : bird(z) — flies(x) | z isaground object term
ds : observation(d:)

dg : strictrule(ds)

dr : strictrule(ds)

ds : Vz.default(ds(z))

do : Y, n' .strictrule(n) A observation(n') = n < n’
dyo : Vn,n' .observation(n) A de fault(n') = n < n'

The set of accepted conclusions of 7' contains all formulasin T ex-
cept the instance of ds(x) with z = tweety. Bel(T) thus does not
contain flies(tweety).

The next example formalizes the revision strategy of an agent who
prefers newer information over older information and information
from a more reliable source over information from a less reliable
source. In case of a conflict between the two criteria the latter one
wins. Assume the following specific scenario: At time 10 Peter in-
formsyou that p holds. At time 11 John tells you thisis not true. Al-
though you normally prefer later information, you also have reason
to prefer what Peter told you since you believe Peter ismore reliable
than John. Since you consider reliability of your sources even more
important than the temporal order you believe p.

Hereisthe formal representation of this scenario. Weuse X < d
where X isafinite set of names as an abbreviation for A . = < d:

dy :p

ds : —p

d3 : time(dl) =10

d4 : time(dg) =11

ds : source(di) = Peter

dg : source(dz) = John

dr : more-rel(Peter, John)

ds(n,n’) : more-rel(source(n), source(n')) - n < n’
do(n,n’) : time(n) < time(n') > n' <n

dip : Vn,n' {ds, ... ,d7} < ds(n,n’) < do(n,n’)

The schemata ds(n,n’) and do(n,n’) represent ground instances
with n,n" € {di,...,dr}. Note that we have to make sure that
the rules representing our revision strategy cannot be used - via con-
traposition - to defeat our meta-knowledge about d; and d». Thisis
what the first inequality in dio achieves.

We next present the example from the introduction. Thistime we
use categories low, medium and high® to express reliability: the
reliability of aformulawith namen isrel(n). We have the following
information:

d, : date(A, J)

d> : —date(A, J)

ds : rel(di) = medium

ds : rel(d2) = medium

ds : date(M, J)

de : twins(M, A)

dr : date(M, J) A twins(M, A) — rel(dy) = low

ds : Vn,n'.rel(n) = high A rel(n’) = medium — n < n’

do : Vn,n.rel(n) = medium Arel(n’) =low - n <n'

dio : rel(ds) = rel(de) = rel(d7r) = rel(ds) = rel(dy) =
high

di1 : rel(ds) = rel(ds) = medium

4 We assume uniqueness of names for the categories. Otherwise the set
{ds,ds,ds,d7} would be consistent and could be used to defeat & which,
obviously, is unintended.

Although the agent initially considers d; and d» as equally reliable,
the information that Anne has atwin sister Mary who is dating John
decreases the reliability of d; to low. ds and dg say how the reliabil-
ity categories are to be translated to preferences. dip and d;; make
sure that meta-information is preferred, and that d; can defeat ds.

4 POSTULATES

We now discuss the postulates for revision which are at the heart
of the AGM approach [7]. Since our approach uses epistemic states
rather than deductively closed sets of formulas (belief sets) as sub-
strate of revision, some of the postulates need reformulation. In par-
ticular, AGM use the expansion operator + in some postulates. Ex-
pansion of abelief set K with aformulap means adding p to the be-
lief set and closing under deduction, that is K +p = Th(K U {p}).
Since epistemic states always induce consistent belief sets the dis-
tinction between revising and expanding an epistemic state does not
make much sense in our context. We therefore translate expansion
to expansion of the induced belief set. The following reformulations
of the postulates are obtained from the original AGM postul ates by
replacing K= A with Bel(TxA) and K + A with Bel(T') + A.

(T*1) Bel(TxA) isbelief set.
Obviously satisfied.
(T*2) A € Bel(T+A)

Not satisfied. New information is not necessarily accepted in our ap-
proach. We see this as an advantage since otherwise belief setswould
always depend on the order in which information was obtained.

(T*3) Bel(T+A) C Bel(T) + A

Not satisfied. Assume we have T' = {di:p, d2:—p}, that is Bel(T)
isthe set of tautologies. Let A = di < d». Now Bel(T'+xA) contains
p which isnot contained in Bel(T') + A.

(T*4) if =A ¢ Bel(T) then Bel(T) + A C Bel(T*A)

Not satisfied. It may be the case that — A, although not in the belief
set, is contained in one of the accepted extensions. Adding A to the
epistemic state does not necessarily lead to a situation where this
extension disappears.

(T*5) Bel(T+A) F Liff - —A

Not satisfied. Revising an epistemic state with logically inconsistent
information has no effect whatsoever. The information issimply dis-
regarded. Inconsistent belief sets are impossible in our approach, so
theright to left implication does not hold.

(T*6) If A +> B then Bel(T*A) = Bel(T+B)

Satisfied under the condition that A and B are given the same name,
or the names of A and B do not yet appear in S. But note that logi-
cally equivalent information may have different impact on the belief
sets when different meta-information is available. For instance, d; :p
and d»:p may have different effects if different meta-information
about the sources of d; and da, respectively, is available.

(T*7) Bel(T*(A A B)) C Bel(T+A) + B

Not satisfied. Here is a counterexample. Assume we have T =
{dlzp,dg:ﬂp, dgzﬂp}. Nowlet A = d; < do and B = d; < ds.



Clearly, revising the epistemic state with A A B leadsto asingle ac-
cepted extension containing p since the two conflicting formulas are
less preferred. p isthusin the belief set induced by the revised state.
On the other hand, revising the epistemic state with A leads to two
extensions, one containing p, the other —p. p isthus not in the belief
set induced by the new state. This does not change when we expand
the belief set with d, < ds.

(T*8) If =B ¢ Bel(T*A)
then Bel(T+A) + B C Bel(T+(A A B))

Not satisfied. Thisisimmediate from the fact that Bel(T+(A A B))

does not necessarily contain B, that is from the failure of (T*2).
This analysis shows that the intuitions captured by the AGM pos-

tulates are indeed very different from those underlying our approach.

5 CONTRACTION

Contraction means making a formula underivable without assuming
its negation. In the context of AGM-style approaches the contraction
operator — can be defined through revision on the basis of the so-
called Harper identity: K — A = (K*—A) N K. Theintuition hereis
that revision with —.A removes the formulas used to derive A, and the
intersection with K guarantees that no new information is derived
from —A. This intuition can, to a certain extent, be captured using
Poole’s constraints [12]. Constraints are formulas used in the con-
struction of maximal consistent subsets of the premises, but not used
for derivations. To model contraction of epistemic states we must
distinguish between these two types of formulas, premises and con-
straints. Extension bases consist of both types and also the compat-
ibility of preference orderings is checked against premises and con-
straints. Extensions, however, are generated only from the premises.
Constraints, as regular formulas, have names and may come with
meta-information, e.g., information about their reliability.

We cannot go into technical detail. Instead, we illustrate contrac-
tion using an example. We indicate constraints by choosing names of
the form ¢; for them. Assume the epistemic state is as follows:

d1 : peng(tw)
da2(x) : peng(z) — —flies(x)

The agent receives theinformation “do not believe - flies(tw)”, that
is, we add the constraint ¢; : flies(tw). Let inst(d2) denote the set
of all ground instances of d». \We obtain three extension bases

E, = {peng(tw)} Uinst(dz)
E> = {peng(tw), flies(tw)} U

inst(dz) \ {peng(tw) — —~flies(tw)}
Es = {flies(tw)} U inst(dz)

Although E> and E3 contain flies(tw) this formula is not in the
extensions generated from these extension bases, and for this reason
not in the belief set, sinceit is a constraint.

Notethat constraints do not necessarily prohibit formulasfrom be-
ing in the belief set since they may have low reliability. For example,
if we revise the epistemic state obtained above with di < ¢; and
Vz.dx(z) < c; then the belief set contains —flies(tweety).

Although we used the Harper identity above to motivate the use of
constraints for contraction, its natural reformulation

Bel(T — A) = Bel(T+—A) N Bel(T)

isnot validin our approach. AssumeT' = {d, :p, d>:—p}. Obviously,
Bel(T) isthe set of tautologies. Now let A = =(d: < d2). We con-
tract by adding the constraint ¢;: (d1 < d2). Now the single accepted

extension of the new epistemic state and thus its belief set isTh(p),
astrict superset of Bel(T).

6 RELATED WORK AND DISCUSSION

We proposed a framework for belief revision where preference de-
fault theories together with a corresponding nonmonotonic inference
relation are used to represent epistemic states and belief sets, respec-
tively. Our underlying formalism draws upon ideas developed in [3]
and [5], the notion of accepted conclusions introduced to guarantee
consistency of belief setsand its application to belief revision is new.
The framework is expressive enough to represent and reason about
reliability and other properties of information.

In [4] nonmonotonic belief bases in the preferred subtheories
framework were used to model revision. This approach, however,
did not represent reliability information explicitly. Williams and An-
toniou [16] investigated revision of Reiter default theories. In asimi-
lar spirit, Antoniou et a [2] discuss revision of theories expressed in
Nute's defeasible logic. Also these approaches do not reason about
the reliability of information. This is also true for existing work in
revising logic programs, see [1] for an example. These approaches
are thus very different from ours.
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