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Abstract. In this paper we propose a conditional logic IBC to rep-
resent iterated belief revision. We define an iterated belief revision
system by strengthening the postulates proposed by Darwiche and
Pearl [3]. First, following the line of Darwiche and Pearl, we modify
AGM postulates to make belief revision a function of epistemic states
rather than of belief sets. Then we propose a set of postulates for it-
erated revision which, together with the (modified) AGM postulates,
entail Darwiche and Pearl’s ones.

The conditional logic IBC has a standard semantics in terms of
selection function models and provides a natural representation of
epistemic states. IBC contains conditional axioms, corresponding
to the postulates for iterated revision. We provide a representation re-
sult, which establishes a one to one correspondence between iterated
belief revision systems and IBC-models. We prove that Gärdenfors’
Triviality Result does not apply to IBC .

1 Introduction

In [8] we have introduced a conditional logic BC to represent belief
revision. The logic BC has a standard semantics in terms of possible
worlds structures with a selection function and has strong similarities
with Stalnaker’s logic C2.

According to Ramsey’s proposal [13] in order to decide whether
to accept a conditional proposition A > B (whose meaning is: “if
A were true thenB would be true”) we should add the antecedentA
to our belief set, changing it as little as possible, and then consider
whether the consequent B follows. In the context of the theory of
epistemic change, which has been developed by Gärdenfors [5, 7]
together with Alchourrón and Makinson [1], this acceptability crite-
rion is expressed by the well known Ramsey Test:

A > B 2 K iff B 2 K �A,

where K represents a belief set (that is, a deductively closed set of
sentences) and * represents a Belief Revision operator. The operator
* transforms (“revises”) a belief setK by adding a formulaA in such
a way that the resulting belief set, denoted by K � A, is consistent
if so is A; moreover, K � A is obtained by minimally changing K .
Gärdenfors Alchourrón and Makinson have proposed a set of pos-
tulates, called AGM, which are intended to characterize any belief
revision operator.

In spite of the similarities between the semantics of belief re-
vision and the evaluation of conditionals, the above very intuitive
acceptance principle leads to the well known Triviality Result by
Gärdenfors, [5], that claims that no significant belief revision sys-
tems are compatible with the Ramsey Test.
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10149 Torino, ITALY E-mail: fgliozzi, olivettig@di.unito.it

In [8] we have devised a correspondence between belief revision
systems and conditional logic that does not entail the Triviality Re-
sult. We have established a mapping between revision systems and
the conditional logic BC by a representation result showing how
each belief revision system determines a BC�structure, and how
eachBC�structure defines a belief revision system.

The aim of this paper is to explore if a similar correspondence
with conditional logics can be obtained for iterated belief revision
systems. Iterated belief revision has been widely investigated in re-
cent years [2, 3, 11, 14]. In particular, it has been shown that the
AGM postulates are too weak to ensure the rational preservation of
conditional beliefs during the revision process. For this reason new
postulates have been proposed which “characterize belief revision as
a process which may depend on elements of an epistemic state that
are not necessarily captured by a belief set” [3].

In this paper we introduce a conditional logic IBC to represent
iterated belief revision. The logic IBC is an extension of the logic
BC and it provides a natural representation of epistemic states. In
IBC epistemic states are not introduced as new semantic objects, as
it is done, for instance, by Friedman and Halpern in [4]. On the con-
trary, IBC-models are defined as standard possible worlds models
with selection function, and each world carries with itself, so to say,
all the information concerning an epistemic state: a belief set and a
set of revision strategies. As pointed out in [3], “any such strategy
encodes, and is equivalent to, a set of “conditional” beliefs, that is,
beliefs that one is prepared to adopt conditioned on any hypotheti-
cal evidence”. We identify an epistemic state with a set of equivalent
worlds in a IBC-structure, and the revision strategies relative to that
state simply with the conditional formulas holding in those worlds.

AGM postulates fail to properly regulate iterated revision, since
they are one-step postulates: they only deal with the transformation
of belief sets and do not deal with the transformation of revision
strategies as encoded in epistemic states. On the opposite, a theory
of iterated belief revision must not only account for the change of
beliefs in face of new observations, but also for the change of the
revision strategies, that is, of conditional beliefs.

In order to deal with iterated revision, the preservation of con-
ditional beliefs has to be ruled as well. Boutilier [2] has proposed
a belief revision operator, called natural revision, which guarantees
that conditional beliefs are preserved as much as the AGM postulates
permit. In [3] Darwiche and Pearl show that this solution may lead to
counterintuitive results, since it might compromise the preservation
of propositional beliefs. They adopt a more cautious approach which
aims to preserve all those conditional beliefs that might not compro-
mise the preservation of propositional beliefs. First, they propose a
modification of the AGM postulates in which revisions are applied
to epistemic states rather than to belief sets. Then they introduce four
postulates regulating iterated revision and provide a representation
theorem for them. However, they do not define a conditional logic



for iterated revision, which is the main aim of this paper.
In the next section we introduce a set of postulates for iterated be-

lief revision strenghtening the postulates proposed by Darwiche and
Pearl [3]. We show that Darwiche and Pearl’s postulates can be de-
rived from ours. Moreover, we provide a concrete operator satisfying
our postulates, thus proving their consistency. The proposed postu-
lates are well suited to be mapped onto conditional axioms. In section
3 we define the conditional logic IBC which has strong similari-
ties with Stalnaker’s logic C2 and contains conditional axioms corre-
sponding to the postulates for iterated revision. We also develop a se-
mantic interpretation for the logic IBC in terms of possible worlds
structures with a selection function. In section 4 we prove a repre-
sentation theorem, establishing a mapping between iterated revision
and conditional models: to each iterated belief revision system cor-
responds an IBC�structure and to each IBC�structure (satisfying
the covering condition) corresponds an iterated belief revision sys-
tem. Finally we prove that the logic IBC is non-trivial in the sense
of [9].

2 Iterated Belief Revision

Alchourrón, Gärdenfors and Makinson in [1] have proposed a set of
rationality postulates that any belief change operator must satisfy. In
[1, 7, 6] they introduce the operations of expansion and revision on
belief sets (that is, deductively closed set of propositional formulas).
Expansion is the simple addition of a formulaA to a belief setK , and
it is defined by:K +A = Cn(K [ fAg). Revision is the consistent
addition of a formula A to a belief set K , denoted by K � A.

As pointed out in the introduction, several authors [3, 4] have rec-
ognized that AGM postulates are too weak to account for iterated
revision: they only rule the preservation of propositional formulas
while they do not say anything about the preservation of conditional
beliefs.

In order to deal with iterated revision, we need a notion of epis-
temic state. An epistemic state has an associated belief set, but also an
associated set of revision strategies that the agent wishes to employ
in that state to accommodate new evidences. Such revision strategies
can be regarded as conditional beliefs, and they can be different in
two different epistemic states even when they share the same belief
set.

An iterated belief revision system is a triple hS; �; [ ]i where
S is a non-empty set whose elements are called epistemic states,
� : S � L ! S is the revision operator defined by the postulates
below, [ ] : S ! P (L) is a function that maps each epistemic state
to a belief set (i.e. a deductively closed set of propositional formulas).
Throughout this paper we shall consider consistent iterated belief re-
vision systems, i.e. iterated belief revision systems that contain only
consistent epistemic states, where an epistemic state is consistent if
its associated belief set is consistent. Moreover we will only consider
revisions with consistent formulas.

Let us now state our modified AGM postulates. Given hS; �; [ ]i,
and 	;� 2 S, we have:

(R � 1) A 2 [	 � A]
(R � 2) If :A 62 [	] , then [	 �A] = [	] +A;
(R � 3) If A is satisfiable, then [	 �A] is also satisfiable;
(R � 4) If A1 � A2, then 	 �A1 = 	 � A2;
(R � 5) [	 � (A ^B)] � [	 � A] +B
(R � 6) If :B 62 [	 � A], then [	 �A] + B � [	 � (A ^B)]

We can observe that most of the revision postulates above are only
concerned with the belief sets resulting from certain revisions: they

impose that two different revisions of an epistemic state lead to the
same belief set or to related belief sets. However, postulate (R*4),
as well as postulate (A4) below, requires something more: given an
epistemic state, its revision by the formula A1 and by an equivalent
formula A2 leads to the same epistemic state. Therefore, our postu-
late (R � 4) is stronger than the original AGM postulate, but also
than the corresponding Darwiche and Pearl’s postulate, which says
that the revision of an epistemic state by equivalent formulas gives
the same belief set, but not necessarily the same epistemic state.

In addition to the postulates (R � 1),. . . , (R � 6) we introduce
the following postulates for iterated revision. We assume that * as-
sociates on the left:

(A1) If B j= :A, then [	 �A � B] = [	 � B];
(A2) If A 2 [	 � B], then [	 � A � B] = [	 �B];
(A3) If :A 62 [	 � B], then [	 �A �B] � [	 � B] + A;
(A4) 	 � > = 	

Postulate (A1) says that if two contradictory pieces of informa-
tion, A and B, are successively learned, then the belief set obtained
by the revision of 	 by A and then by B does not depend on
the false intermediate revision A. In particular, (A1) implies that
[	 � A � :A] = [	 � :A]. Postulate (A2) says that if A is be-
lieved after the revision of the epistemic state 	 byB, then the belief
set obtained by the revision of 	 by A and then by B is the same as
the one obtained by the revision of 	 byB. Postulate (A3) says that
if A is consistent with the belief set resulting from the revision of 	
by B, then by revising 	 by A and then by B we cannot conclude
more than by adding A to the result of the revision of 	 by B. Ac-
cording to postulate (A4), the revision of an epistemic state with >
does not affect the epistemic state.

Note that while postulate (A4) (similarly to (R � 4)) says that the
two epistemic states 	 � > and 	 are the same, postulates (A1),
(A2) and (A3) say something about the relation between the two
belief sets [	 � A � B] and [	 � B]. But this does not say anything
about the conditional beliefs true in the two states 	 � A � B and
	 �B. Indeed, for postulate (A2), it might be the case that, although
A holds in the state 	 �B, we do not want to forget that the revision
of 	 by A has preceded the revision by B. For instance, we might
want to give the pieces of information a different reliability according
to their insertion time.

It can be shown that the postulates introduced above are consis-
tent3.

In particular it is possible to define a revision operator, which is
based on Spohn’s ordinal conditional functions [7] and which satis-
fies the postulates. For a definition of Spohn’s revision operator, we
refer to section 4 where it is used to prove the non-triviality of our
conditional logic.

We prove that, given the modified AGM postulates above, the fol-
lowing postulates for iterated revision introduced by Darwiche and
Pearl [3]:

(C1) If B j= A, then [	 � A � B] = [	 � B];
(C2) If B j= :A, then [	 � A � B] = [	 �B];
(C3) If A 2 [	 �B], thenA 2 [	 � A � B];
(C4) If :A 62 [	 � B], then :A 62 [	 � A � B];

3 However if we also considered inconsistent epistemic states postulate (A4)
would conflict with postulate (R*3). To see this, consider an inconsistent
epistemic state 	, according to (A4) 	 � > = 	, whereas according to
(R*3) 	 �> is consistent and hence different from 	. We think that in this
case it is not obvious which one of the two postulates should be discarded.
A possible way-out could be to weaken postulate (A4), by adding to (A4)
a precondition requiring 	 to be consistent.



can be derived from postulates (A1), (A2), (A3). Notice first that
(A1) is the same as (C2).

Lemma 1 (C1), (C2), (C3) and (C4) can be derived from (A1),
(A2),(A3) together with (R � 1)� (R � 6).

We cannot prove the converse of Lemma 1, since (A4) and (R�4)
cannot be derived from Darwiche and Pearl’s postulates. As a matter
of fact, none of Darwiche and Pearl’s postulates enforces the equality
between epistemic states obtained through different revisions. How-
ever, we believe that postulates (A4) and (R�4) define natural prop-
erties of revision functions. (A4) says that a revision with a tautology
cannot change the epistemic state and its revision strategy (	 and
	 � >will determine the same belief sets under any sequence of re-
visions). (R�4) says that the syntactical form of the revision formula
is irrelevant in determining the resulting epistemic state. The weaker
form of (R�4) adopted by Darwiche and Pearl only requires that the
syntactical form of the revision formula is irrelevant in determining
the resulting belief set. We can prove the following:

Lemma 2 (A1), (A2) and (A3) can be derived from (C1), (C2),
(C3) and (C4) together with (R � 1)� (R � 6).

Lehmann in [11] has proposed a set of rationality postulates for
iterated revision. In his framework he represents the sequence of re-
visions applied to the initial belief set by a sequence of formulas �
and denotes by [�] the resulting belief set. The belief set [�:A] rep-
resents the result of revising the belief set [�] by the formula A. In
his framework the revision of [�] by the formula A depends not only
on the belief set [�], but also on �, that is the sequence of revisions
that leads to [�]. This sequence of revisions plays the role of the
epistemic states in our context.

As Lehmann shows, (C1), (C3), and (C4) can be derived from
his postulates. However, only a weaker version of (C2) holds in
his framework (namely [�::A:A]� [�]+A), and (C2) (or (A1))
cannot be derived from Lehmann’s postulates. On the other hand,
Lehmann’s postulates (I4) and (I6) cannot be derived from our
postulates (nor can they be derived from Darwiche and Pearl’s).
Let us consider, for instance, his postulate (I4): if A 2 [�] then
[�:� ] = [�:A:� ], where � and � are sequences of formulas. This
postulate could be restated in our notation as: if A 2 [	], then
	 �A = 	. It means that whenA is believed in 	, 	 �A and 	 are
the same epistemic state. This property cannot be derived from our
postulates from which a weaker property follows, namely if A 2 	,
then [	 � A] = [	], which is a consequence of (R � 2) 4.

Among the consequences that Lehmann proves from his postu-
lates, is the property that a mild revision (that is a revision with a
formula consistent with the current belief set) essentially fades away
at the first severe revision (that is a revision with a formula which is
inconsistent with the current belief set). This property contrasts with
the Principle of Minimal Change and is intuitively unwanted. Such a
property cannot be proved from our postulates (nor from Darwiche
and Pearl’s ones).

3 The Conditional Logic IBC

In this section we introduce the conditional logic IBC . We will use
it to represent iterated belief revision systems.

Definition 3 The language L> of logic IBC is an extension of the
language L of classical propositional logic obtained by adding the
conditional operator >. Let us define the following modalities:

4 From our postulates we can prove	 �A = 	 only for A = >.

2A � :A > ?
3A � :(A > ?).

We define the language of modal formulasL2 as the smallest subset
of L> including L and closed under :;^;2;35. The logic IBC
contains the following axioms and inference rules:

(G I) (CLASS) All classical axioms and inference rules;

(ID)A > A;

(RCEA) if ` A$ B, then ` (A > C)$ (B > C);

(RCK) if ` A! B, then ` (C > A)! (C > B);
(G II) (DT ) ((A ^ C) > B)! (A > (C ! B)), for A;B;C 2 L;

(CV ) :(A > :C) ^ (A > B) ! ((A ^ C) > B), for
A;B;C 2 L;

(G III) (BEL) (A > B)! >> (A > B);

(REFL) (>> A)! A;

(EUC) :(A > B)! A > :(>> B);

(TRANS) (A > B)! A > (> > B);
(G IV) (MOD)2A! B > A, where A 2 L2;

(U4)2A! 22A, where A 2 L2;

(U5)3A! 23A, where A 2 L2 .
(G V) (C1) 2:(A ^ B) ^3A ! [(A > B > C) $ (B > C)],

where A 2 L2 andC 2 L;

(C2)B > A! [(A > B > C)$ (B > C)], whereA 2 L2
and C 2 L;

(C3) [:(B > :A) ^ (A > B > C)] ! (B > (A ! C)),
where A 2 L2 andC 2 L.

We have gathered the axioms in different groups. Axioms of (G
I) are those of the basic conditional logic CK+ID. Axioms (DT) and
(CV) define essential properties of the conditional operator; they are
part of the axiomatization of Stalnaker’s logic (C2). We will come
back to this point.

Axioms of (G III) are motivated by the introduction of the modal
operator > > A, whose meaning is “A is believed”. The other ax-
ioms of this group (the last two for A = >) give to this belief opera-
tor the properties of an S5 modality.

Similarly, axioms of (G IV) define a necessity operator2 and give
it S5-properties. Axiom (MOD) governs the relation between2 and
the conditional operator.

Axioms of (G V) encodes our postulates for iterated revision (A1),
(A2),(A3) by conditional axioms.

As mentioned above, (ID), (DT), (CV), (MOD) belong to the ax-
iomatization of Stalnaker’s logic C2 (see [12]). Stalnaker’s logic
contains also other axioms such as (CS) and (CEM); these axioms
can be derived from the axiomatization above if we add axiom
A ! (> > A) (”everything true is believed”), that we clearly do
not want.

Moreover, it must be noticed that we have put restrictions on some
axioms, by requiring that they only hold for formulas ranging over
L rather than any conditional formula in L> . These restrictions are
motivated by the fact that our logic is intended to model the revision
postulates, and some of them, such as (A2) and (A3), only put re-
quirements on the belief sets (but not on the epistemic states). This is
also true for the semantic conditions (CV) and (DT), which are used
to represent postulates (R*6) and (R*2).

5 We assume that the conditional> has higher precedence than the material
implication !.



We develop a semantics for the logic IBC in the style of stan-
dard Kripke-like semantics for conditional logics. Our structures are
possible world structures equipped with a selection function [12].
Intuitively, the selection function, call it f , given a formula A and
a world w, picks up the most preferred or closest worlds to w, de-
noted by f(A;w), which satisfyA (if any). To evaluate a conditional
A > B in a world w we check if B holds in all worlds in f(A;w).
Different logics are obtained by imposing conditions on the selection
function.

In our case, there is an intuitive correspondence between iterated
belief systems and selection function models satisfying the prop-
erties of the next definition. The idea is that an epistemic state �
can be represented by any set of equivalent worlds (in the sense de-
fined below) which evaluate conditional formulas in the same way.
Given a formula A, the selection function associates to two equiv-
alent worlds w1 and w2 the same set of ‘most-preferred’ worlds
f(A;w1) = f(A;w2), and the worlds in this set are all equivalent
among themselves. Thus f(A;w1) represents an epistemic state. We
can see how the selection function can be used to specify a revision
operator: the revision of an epistemic state � (a set of worlds) by A
is simply the epistemic state f(A;w), for any w 2 � (it does not
depend on the choice of w). In the next section we will see how each
selection function model determines an iterated belief revision sys-
tem and each iterated belief revision system determines a selection
function model.

Definition 4 An IBC-structure M has the form hW;f; [[]]i, where
W is a non-empty set, whose elements are called possible worlds, f is
a function of type L> �W! 2W and is called a selection function,
[[]] : L> ! P (W ) is a valuation function satisfying the following
conditions:

(?) [[?]] = ;
(^) [[A ^B]] = [[A]]\ [[B]]
(:) [[:A]] =W � [[A]]
(>) [[A > B]] = fw : f(A;w) � [[B]]g.

The above definition is extended to the classical connectives _;!;
$, by the usual classical equivalences. Let Prop(S) = fA 2 L:
S � [[A]]g. We assume that the selection function f satisfies the
following properties:

(S � ID) f(A;w) � [[A]];
(S � RCEA) if [[A]] = [[B]] then f(A;w) = f(B;w)
(S � DT ) Prop(f(A ^ C;w)) � Prop(f(A;w) \ [[C]]), for
A;C 2 L;

(S � CV ) f(A;w) \ [[C]] 6= ; ! Prop(f(A;w) \ [[C]]) �
Prop(f(A ^C;w)), for A;C 2 L ;

(S � REFL) w 2 f(>;w);
(S � TRANS) x 2 f(A;w) ^ y 2 f(>;x)! y 2 f(A;w);
(S � EUC) x;y 2 f(A;w)! x 2 f(>;y)
(S � BEL) w 2 f(>;y)! f(A;w) = f(A; y)
(S �MOD) If f(B;w) \ [[A]] 6= ;, then f(A;w) 6= ;, where
A 2 L2.

(S � UNIV ) if [[A]] 6= ;, 9B such that f(B;w) \ [[A]] 6= ;,
where A 2 L2 .

(S � C1) if [[A]] \ [[B]] = ; and y 2 f(A;x), then
Prop(f(B;x)) = Prop(f(B; y)), where A 2 L2 .

(S � C2) if f(B;x) � [[A]] and y 2 f(A;x) then
Prop(f(B;x)) = Prop(f(B; y)), where A 2 L2 .

(S � C3) if f(B;x) \ [[A]] 6= ; and y 2 f(A;x), then
Prop(f(B; y)) � Prop(f(B;x) \ [[A]]), where A 2 L2 .

We say that a formula A is true in an IBC-structure M =
hW; f; [[]]i if [[A]] = W . We say that a formula is IBC-valid if
it is true in every IBC-structure. For readability, we also use the
notation x j= A instead of x 2 [[A]].

In a IBC-structure M , we can define by means of the selection
function f the equivalence relation �f on the set of worlds W as
follows: for all w;w0 2W ,

w �f w
0 iff w0 2 f(>;w):

The properties of �f being reflexive, transitive and symmetric come
from the semantic conditions (REFL), (TRANS) and (EUC) of the
selection function f . As a consequence of (S-BEL), all worlds in one
equivalence class [w]�f

evaluate conditional formulas in the same
way. Moreover, by (EUC) and (TRANS), the set f(A;w) is an equiv-
alent class in itself. We will see in the next section that each model
M determines an iterated belief revision system , just by considering
the equivalence classes as epistemic states and the revision operator
� as the canonical extension of f on the equivalence classes.

The other semantic conditions are needed to represent our pos-
tulates. From (S-UNIV), which corresponds to (U4) and (U5), and
from (S-MOD) we get the property: if [[A]] 6= ;; then f(A;w) 6=
;. This property is needed to model the revision postulate (K5).

The semantic conditions (S-C1), (S-C2) and (S-C3) are associated
with the axioms (C1), (C2) and (C3) for iterated belief revision.

The axiomatization is sound and complete with respect to the se-
mantic properties.

Theorem 5 (Soundness) If a formula A is a theorem of IBC then
is IBC-valid.

Theorem 6 (Completeness) If A is IBC-valid then it is a theorem
of IBC .

4 Conditionals and Iterated Revision

In this section, we show a correspondence between iterated belief re-
vision systems and IBC-structures.
In one direction, to each iterated belief revision system hS; �; [ ]i
corresponds an IBC-structure hW;f; [[]]iwhere W is a set of pairs
(	; w) such that 	 is an element of S and w is a classical inter-
pretation that satisfies the beliefs [	] associated to 	; f is defined
by means of the revision operator * by saying that f(A; (	; w)) =
f(	0; w0) : 	0 = 	 � Ag; [[p]] = f(	; w) : w j= pg.

In the other direction, we show that each IBC-structure
hW; f; [[]]i gives rise to an iterated belief revision system. Indeed,
consider the structure hW=�f ; �M ; [ ]i, where W=�f is the quotient
of W with respect to�f , �M is the canonical extension of f with re-
spect to �f and [ ] is the function Prop that associates to each set of
worlds the set of propositional formulas true in all worlds of the set.
This structure is a belief revision system where epistemic states are
the equivalence classes of W , the belief sets associated to epistemic
states are the sets of propositional formulas holding in the epistemic
states and �M is the revision operator.

We say that an IBC-structure satisfies the covering condition if,
for any A consistent, [[A]] 6= ;.

Theorem 7 (Representation Theorem) (1) Given a belief revi-
sion system hS; �; [ ]i, there is an IBC-structure M� =
hW;f; [[]]i such that:
for every	 in S, there exists w in W such that:

B 2 [	 �A1 � : : : � An] iff w j= A1 > : : : > An > B:



(2) Given an IBC-structure M = hW;f; [[]]i which satisfies the
covering condition, there is an iterated belief revision system
hW=�f ; �M ; [ ]i such that:

W=�f = f[w]�f : w 2Wg;
[w]�f �M A = f(A;w);
[[w]�f ] = Prop([w]�f)

and, for each [w]�f ofW=�f , andA1 : : :An,B 2 L (A1 : : :An,
B consistent),

B 2 [[w]�f �M A1 : : : �M An] iff w j= A1 > : : :An > B:

The representation theorem establishes a relation between condi-
tionals and belief revision which is reminiscent of the Ramsey Test.
However, differently from the Ramsey Test, the relation stated by the
representation theorem does not entail the triviality of every belief re-
vision system, since it holds also for non-trivial ones. Here we show
that our logic is not trivial according to the definition by [9].

Definition 8 A logic L is said to be non-trivial [9] if there are at
least four formulas �,  , �, � such that `L :( ^�), `L :( ^�),
`L :(� ^ �) and (� ^  ), (� ^ �), (� ^ �) are consistent in L.

We can now prove that our logic is non-trivial. As in the proof of the
following theorem we make use of Spohn’s revision operator, let us
recall it here.

Spohn’s revision operator is a method to revise rankings, i.e. func-
tions from sets of possible worlds into the class of ordinals. Rankings
can be seen as a natural representation of epistemic states. Given
then a set of worlds W , consider the structure hK; �; [ ]i, where
K = fk : W ! Ordg; * is Spohn’s revision operator defined
as follows 6:

k � A(w) =

�
k(w)� k(A) if w j= A
k(w) + 1 otherwise

and [ ] : K! P (L), such that [k] = Propfw : k(w) = 0g. Since *
satisfies postulates (R*1)-(R*6), (A1)-(A4), the structure hK;�; [ ]i
is an iterated belief revision system.

Theorem 9 The logic IBC is non-trivial.

Proof. (Sketch) Consider the language L containing only the propo-
sitional variables p1; p2; p3; p4 . Let � = p1; = :p2 ^ :p3 ^
p4;� = :p3 ^ :p4 ^ p2; � = :p2 ^ :p4 ^ p3.
Clearly, `IBC :( ^ �);`IBC :( ^ �) and `IBC :(� ^ �).
To show that (� ^  ); (� ^ �) and (� ^ �) are consistent in IBC ,
we build an IBC� model that satisfies them.
We proceed by building the model < W; f; [[]] > as follows:

� W = f(k;w) : w 2 2fp1;p2;p3 ;p4g; k : 2fp1;p2 ;p3 ;p4g ! Ord
and k(w) = 0g.

� let * be Spohn’s revision operator. We define f as follows: if A 2
L, f(A; (k; w)) = f(k0; w0) 2 W : k0 = k � Ag; if 9�A 2
L : [[A]] = [[�A]], f(A; (k;w)) = f(�A; (k;w)); otherwise,
f(A; (k; w)) = ;.

� [[p]] = f(k;w) 2W : w j= pg.

This model satisfies all the semantic properties of IBC . The proof is
similar to the proof of the first part of the Representation Theorem.
Moreover, asW contains all pairs (k;w) such that k(w) = 0, for any
k : 2fp1;p2 ;p3 ;p4g ! Ord, it will also contain all pairs (k1; w) for

6 This is the simplified version of Spohn’s function proposed in [3]

k1 such that k1(w) = 0 if w j= p1, and k1(w) 6= 0 otherwise. There
will then be (k1; w1); (k1; w2); (k1; w3) 2W such that (k1; w1) j=

�^ ; (k1; w2) j= �^�; (k1; w3) j= �^�. Thus, (�^ ); (�^�)
and (� ^ �) are consistent in IBC . 2

By the representation theorem this property gives an indiect7 proof
that there exists a non-trivial belief revision system.

5 Conclusions

In this paper we have presented the conditional logic IBC to capture
iterated belief revision. The logic IBC provides a natural represen-
tation of epistemic states and belief sets. We have proved a repre-
sentation result which establishes a mutual correspondence between
iterated belief revision systems and the models of our logic. Finally,
we have shown that the logic IBC is non-trivial.
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