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Abstract. Theory recovery is the process of restoring consistency
of a theory with respect to some intended semantics. Recently, a gen-
eral framework for theory recovery has been developed using a twin
semantics. In this paper we establish some relationships between this
recovery framework and the well-known AGM postulates for theory
revision. We show that the AGM revision postulates can be easily
adapted to theory recovery and AGM-style recovery can be embed-
ded in the general recovery framework. We also generalize the AGM
postulates to deal with recovery of not necessarily closed theories and
we show that the general recovery framework specialised to a clas-
sical intended semantics satisfies the AGM postulates. It turns out
that the backup semantics used is a special cumulative, non-inclusive
paraconsistent semantics. Finally, we generalize the AGM postulates
for recovery to cases where the intended semantics does not need
to be classical. We show that in such cases the postulates allow for
recovery by expansions.

1 INTRODUCTION AND MOTIVATION

Theory recovery refers to the process of restoring consistency of a
theory that, according to some intended semantics, is inconsistent.
In [7], a framework called twin-semantics for theory recovery was
introduced where a weaker backup semantics is used to guide this
recovery process. The recovery process was captured by using a re-
covery function R that, given a theory T , transforms it into another
theory T 0 in order to restore consistency. The general conception
there was that the intended semantics allows one to draw more con-
clusions from T than the backup semantics, capturing the idea that,
when everything (described by T ) is as expected, reasoning from T

is done firmly. However, as soon as some abnormalities are obtained
(in T ), the intended semantics may easily fail to assign a meaning to
T , and the reasoner can fall back to a more modest, but weaker se-
mantics (the backup semantics), for which T still makes sense. The
challenge then is to give an account for the abnormalities in some
theory T 0

= R(T ) which, (i) from the perspective of the backup se-
mantics, is equal to T and (ii) can be assigned a non-trivial meaning
in the intended semantics, so that one can carry on reasoning using
this semantics, together with T 0 . The theory T is said to be recovered
using R, yielding T 0

= R(T ).
The emphasis in [7] was on giving rationality postulates for R,

and, given these postulates, to establish a relation between the type
of recovery function (in [7], contractions, expansions and mixed re-
covery functions were distinguished) on the one hand, and abstract
properties of the intended and backup semantics, on the other hand.
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In particular, in [7] it was demonstrated that some nonmonotonic
backup semantics would require R to be an expansion instead of a
contraction whenever the intended semantics would render a theory
T as inconsistent.

In principle, one can iterate the process of recovering: in [8] an
example was given of a default theory T and three types of seman-
tics. The theory only had a meaning in the weakest semantics, which
could be used to transform T into some recovered theory R 1(T ).
This new theory still was inconsistent for the third semantics, but
now the second semantics was able to yield a new theoryR 2(R1(T ))

which was meaningful for the third semantics. (Note that in this case,
the second semantics plays both the role of an intended, and as a
backup semantics).

However, in all the examples considered thus far, the weakest
backup semantics used was classical, i.e., it was always assumed that
the theories to be recovered were classically consistent —only from
the perspective of a stronger, supra-classical, semantics the theories
could be inconsistent. In this paper, we want to relax this assump-
tion, and focus on the case where the intended semantics is that of
classical logic. Thus, we want to put the twin-semantics to work to
recover classically inconsistent theories.

Dealing with classically inconsistent theories, a natural challenge
is to relate the twin-semantics approach to the prominent AGM
framework of theory revision ([1]). To do so, we firstly turn the
AGM revision postulates into recovery postulates and show that ev-
ery AGM recovery framework based on these postulates can be em-
bedded in the general recovery framework. Then we adapt the AGM
postulates for recovery to base theories and we show that every gen-
eral recovery framework where the intended semantics is classical,
satisfies the AGM postulates for recovery. With respect to the ab-
stract properties of the backup semantics involved, we show that ev-
ery backup semantics necessarily has to be cumulative. Finally, we
generalize the AGM-inspired recovery frameworks to intended se-
mantics that do not need to be classical. We show that in such cases
AGM recovery frameworks also allow for recovery by expansion.
We conclude that in AGM-inspired recovery, the recovery method is
dependent on the abstract properties of the intended semantics used.

1.1 Preliminaries

Given a language L, a theory T is any, not necessarily closed,
subset of L. Given a set of theories, a consequence operation
C : 2

L
! 2

L is said to be well-behaved w.r.t. T if C(T ) 6= L.
Usually, such a C is induced by a semantics for L. We focus on
theories that have more than one semantics, i.e. a backup seman-
tics with associated consequence operator C bck and an intended
semantics that corresponds to C int. Slightly abusing terminology,
if T is a set of theories, we say that a twin semantics (for T )
is a tuple S = (T ; Cbck; Cint) with the following property of



supra-inferentiality:

For all A � L, Cbck(A) � Cint(A) (supra)

To measure the difference between two theories w.r.t. the backup
semantics, a distance function dbck : 2

L
� 2

L
! R+ is used.

This function is minimally specified by (i) dbck(A;B) = 0 when-
ever Cbck(A) = Cbck(B) and (ii) dbck(A;B) = dbck(B;A)

for all A;B � L. A recovery operator is a computable function
R : T ! T . A recovery operator R is called an expansion if for all
T 2 T we have T � R(T ) and R is called a retraction if for all
T 2 T we have R(T ) � T . Given a twin semantics S for T , a reco-
very operator R on T and a distance function d bck , we call the tuple
R = (T ; Cbck; dbck; Cint;R) a recovery framework (using d bck).

Given a recovery framework R, it turns out that the properties
a suitable recovery operator R should have partly depend on some
abstract properties of the consequence operators C bck and Cint.
Therefore we recall (see e.g. [5]) some general properties along
which one can classify consequence operators:

A � C(A) (inclusion)
C(A) = C(C(A)) (idempotency)
If A � B then C(A) � C(B) (monotony)
If A � B � C(A) then C(B) � C(A) (cut)
If A � B � C(A) then C(A) � C(B) (cautious monotony)

A classical inference operation C will also be denoted by Cn.
An inference operation C is called tarskian 3 if it satisfies inclusion,
idempotency and monotony, it satisfies cumulativity if both cut and
cautious monotony hold for C . Finally, C is called a cumulative
inference operation, if it satisfies inclusion and cumulativity. The
following weaker forms of cut and cautious monotony are also
useful:

If A � B � C(A) and C(A) 6= L then C(B) 6= L (weak cut)
If A � B � C(A) and C(B) 6= L then C(A) 6= L (weak

monotony)

We say that C satisfies weak cumulativity if C satisfies both weak
cut and weak monotony and C is called weakly cumulative if it sat-
isfies inclusion and weak cumulativity.

2 RECOVERY USING TWIN SEMANTICS

We recall ([7]) the following postulates for recovery:

R1. Success : Cint(R(T )) 6= L whenever Cbck(T ) 6= L.
R2. Conservativity : R(T ) = T whenever Cint(T ) 6= L.
R3. Sufficiency : R(T ) � Cbck(T ).
R4. Minimization : dbck(T;R(T )) � dbck(T;R

0
(T )) for everyR0

satisfying R1-R3.

The intention of these postulates is to characterize recovery oper-
ations that are both intuitively acceptable and successful: A reco-
very framework R = (T ; Cbck; dbck; Cint;R) is successful if, for
every T 2 T , R(T ) satisfies the postulates R1 to R4, and, more-
over, there exists a T 2 T such that Cbck(T ) is well-behaved
while Cint(T ) is not well-behaved. If, moreover, it also holds that
dbck(T; R(T )) = 0, we say that postulate R4 is strongly satisfied

3 In particular, the classical consequence operator Cn is a tarskian conse-
quence operator.

and R is strongly successful.R is said to be everywhere successful
if for every T , Cint(Cbck(T )) 6= L. Finally, a recovery framework
R= (T ; Cbck; dbck; Cint; R) is said to be saturated if R = Cbck .

We briefly restate some results about R =

(T ; Cbck; dbck; Cint;R), as obtained in [7]. First of all, if Cbck sat-
isfies inclusion and Cint is weakly cumulative,R cannot be strongly
successful. A similar negative result applies to expansions: if R is an
expansion, Cbck satisfies inclusion, and C int weak monotony then
again, R cannot be strongly successful. Surprisingly enough, there
are also conditions under which one cannot successfully recover by
performing a contraction, i.e., in cases that Cbck satisfies inclusion,
and Cint satisfies weak cut.

On the basis of these results one may conclude that the distinc-
tion Makinson ([5]) has made between two clusters of nonmonotonic
consequence operators, one cluster satisfying inclusion and cut (the
grounded cluster) and the other cluster satisfying cumulativity (the
minimal model cluster), has some major consequences for the type
of recovery operation to apply, viz. that expansions cannot be ap-
plied in the minimal model cluster characterized by preferential en-
tailment and Poole’s default logic; and contractions are not useful in
the grounded cluster containing a.o. DL, AEL and NMLP.

Fortunately, one can also identify conditions under which reco-
very frameworks are successful. First of all, it appears that reco-
very by expansion is as successful as general recovery frameworks
whenever the backup semantics is cumulative and the intended se-
mantics is a nonmonotonic one, satisfying weak cut. This shows that
using a mainstream nonmonotonic logic and a cumulative back-up
semantics expansions are able to characterize successful recovery
frameworks. In some cases, however, a much stronger result holds.
Let us define a minimal change recovery framework as a recovery
framework where R minimizes the difference between T and R(T ),
i.e., where, for every successful recovery frameworkR 0 it holds that
R(T )	T � R0

(T )	T , whereX	Y = (X�Y )[ (Y �X), the
symmetric difference between X and Y . Using this machinery, it is
not difficult to prove that the only recovery operators that can be used
in a successful minimal change recovery framework are expansions
if we use a cumulative backup semantics and an intended semantics
satisfying weak cut.

3 AGM REVISION AND THEORY RECOVERY

The recovery framework as discussedabove differs from the standard
AGM approach[1, 3] to theory revision in three respects:

1. As exemplified in the AGM approach to revision, only one seman-
tics, the intended semantics, is used. Moreover, this semantics is a
classical one.

2. The AGM framework deals with revision of a theory if new in-
formation has to be incorporated, instead of recovery. So in order
to compare the two frameworks more adequately, we should ei-
ther translate the recovery framework into a revision framework
or vice-versa.

3. The AGM approach deals with (classically) closed theories, while
the general recovery framework does not require theories to be
closed.

To deal with these differences, first we will simply translate the
AGM revision postulates into postulates for recovery. Using these
postulates, we define AGM recovery framework for closed theories
that characterizes the class of recovery functions satisfying these pos-
tulates. We show that AGM recovery can be embedded in the general
recovery framework.



Next, these postulates will be adapted in a simple way to deal with
theories that are not closed under classical consequence. The result
is a set of four AGM-style theory recovery postulates.

We show that whenever the intended semantics is restricted to a
classical semantics, the general recovery framework can be embed-
ded into an AGM-recovery framework for base theories. Using this
correspondence, we derive some properties of the backup semantics
when AGM recovery is seen as a special case of the recovery frame-
work. It turns out that in this case the backup semantics is a special
paraconsistent semantics, satisfying cumulativity.

Finally, we address some issues when AGM recovery is gener-
alized, allowing not only for a classical semantics as the intended
semantics but also for stronger (supra-classical) semantics to occur.

3.1 AGM revision and AGM recovery

To start with, let us take the well-known AGM postulates for revision.

K*1. Cn(K � A) = K � A

K*2. A 2 K � A

K*3. K �A � K + A

K*4. If :A 62 K , then K +A � K � A.
K*5. K �A 6= L iff 6` :A
K*6. A$ B implies K � A = K � B

K*7 K � (A ^B) � (K � A) + B

K*8 :B 62 K � A implies ((K �A) +B) � K � (A ^B)

To embed the AGM framework for revision into the general reco-
very framework, first of all we have to find a natural way for mod-
eling recovery as a particular form of revision. A very simple and
natural solution is to use an AGM recovery operator RAGM defined
as the revision of a theory T with>:RAGM (T ) = T �>. It is easily
seen that according to the postulates this operator restores consis-
tency whenever it is necessary (K*5) and leaves consistent (classi-
cally) closed theories untouched (K*3 + K*4).

Taking A = >, the standard AGM postulates for revision reduce
to the following AGM-recovery postulates AGM1 - AGM4:

From K*1 we derive

AGM1* Cn(RAGM (T )) = RAGM (T )

Since K*2 translates to > 2 RAGM (T ), it is a consequence of
AGM1 (and the properties of Cn). So our second postulate is de-
rived from K*3,taking into account that T +> = Cn(T )+> = T :

AGM2* RAGM (T ) � T

The next postulate is a straightforward translation from K*4:

AGM3* If T 6= L, then T � RAGM (T )

Clearly, K*5 translates to

AGM4* RAGM (T ) 6= L

The remaining postulates now all are covered by these four pos-
tulates: Note that K*6 is trivially satisfied since we only allow
A = B = >; K*7 reduces to RAGM (T ) � RAGM (T ) + > and
is implied by AGM1; finally, K*8 reduces to: ? 62 RAGM (T ) im-
plies (RAGM (T ) + >) � RAGM (T ). By AGM4, this reduces to
RAGM (T ) + > � RAGM (T ) and again, this inclusion can be eas-
ily derived from AGM1 and the properties of Cn. Note that, by
AGM2, contraction is a hard-wired property of AGM recovery op-
erators RAGM , of course due to the fact that all theories are closed.

Let T be the class of classically closed theories. Note that by
AGM2*, for every T 2 T , RAGM (T ) � Cn(T ), hence Cn is
supra-inferential w.r.t. Cbck , so (T ;RAGM ; Cn) is a twin semantics.
Therefore, we can define an AGM-recovery framework as a special
(saturated) recovery framework R = (T ; Cbck; dbck; Cn;RAGM )

where RAGM = Cbck and RAGM satisfies the postulates AGM1*-
AGM4*. The following result shows that an AGM-recovery frame-
work can be embedded in the general recovery framework:

Theorem 1 Let T be a class of (classically) closed theories and
R = (T ; Cbck; dbck; Cn;RAGM ) an AGM-recovery framework
with RAGM = Cbck . Then R = (T ; Cbck ; dbck; Cn;RAGM ) is an
everywhere strongly successful recovery framework satisfying the re-
covery postulates R1-R4.

PROOF By AGM1* and AGM4*, we have Cn(RAGM (T )) =

RAGM (T ) 6= L. Hence, postulate R1 is satisfied. By AGM2* +
AGM3*, RAGM (T ) = T , whenever Cn(T ) 6= L, so postulate
R2 is satisfied. Since RAGM (T ) = Cbck(T ), postulate R3 is
trivially satisfied. Finally, by AGM4*, RAGM (T ) 6= L, hence, by
AGM2*+AGM3*, it follows that RAGM (T ) = RAGM (RAGM (T )).
Since RAGM = Cbck , Cbck(RAGM (T ) = Cbck(T ) and postulate
R4 is (strongly) satisfied.

What can we say about the revision operator R if the class T of
theories we consider only contains classically closed theories? First
of all, note that there is only one theory T that is inconsistent under
the intended semanticsCn, viz. T = L, and that this is the only case
where R(T ) 6= T . Hence, R is completely determined if R(L) has
been specified. Classical AGM approaches to contraction acknowl-
edge the idea that a contraction of T with a sentence ' has to deal
with maximal subsets T 0

� T for which T 0
6` '. Let us denote

the set of all such subsets T 0 of T by T 6 '. Then, a contraction of
T with ' typically is comprised of making some selection from the
set T 6 '. To fix some more notation, for any set X of sets X , let
Sel(X ) denote any collection fX1;X2; : : :g from X and let Sel1 be
a selection function such that, Sel1(X ) is always a singleton. Spe-
cializing to the case where T = L and' = ?, we must restrict such
selections to L 6 ?, the set of (classically) maximal consistent sets�.

1 Maxichoice. Here, R(T ) = Cn(Sel1(L6 ?)) = Sel1(L6 ?):

Thus, recovery from classical inconsistency here is simply falling
back upon one designated maximal consistent set. Such a reco-
very supports the wish to hold on to a maximal number of con-
sequences of T (R(T ) does not allow any additional conclusion),
but suffers from the arbitrariness of Sel1 .

2 Full meet. This kind of recovery takes all maximal sets into ac-
count, and is defined by R(T ) = Cn(

T
(L6 ?)) = Cn(;). This

seems to be the most careful way of recovering: as soon as an
inconsistent theory T is encountered, one removes all contingent
facts from T .

3 Partial meet. Tries to combine the best of two worlds by defining
R(T ) = Cn(

T
Sel(L6 ?)) =

T
Sel(L6 ?). Here, upon hitting

an inconsistency, one falls back upon some determined consistent
theory R(T ), which does not have to be a maximal consistent set.

It follows immediately that all three recovery functions R

described above lead to successful recovery frameworks R =

(T ; Cbck; dbck; Cint;R) and, conversely, every such framework can
be conceived as the result of applying a partial meet contraction. To
see the latter, observe that for a successful framework, R has to sat-
isfy R(L) = Cn(A) for some consistent set of sentences A. Let



M be the set of classical models m for which m j= A. Note that
the theory of every m, Th(m), is a maximal consistent set. Hence,
R(T ) = Cn(

T
Sel(L 6 ?)) = Cn(

T
fTh(m)jm j= Ag.

Summarizing, when restricting ourselves to classically closed the-
ories, the contraction T 0 of every inconsistent theory T is the same
and rather arbitrary. Hence, we will look into theories that are not
necessarily classically closed and we will adapt the AGM postulates
accordingly.

3.2 Adapting the AGM postulates to non-closed
theories

Since we want to deal with AGM recovery of not necessarily closed
theories, we will generalise the postulates AGM1*- AGM*4. The
simplest generalisation is to replace in these postulates every occur-
rence of a theory T by its closed form Cn(T ): whenever we have
to deal with closed theories, these new postulates will reduce to the
original AGM postulates for recovery:

AGM1 Cn(Cn(RAGM (T ))) = Cn(RAGM (T ));
AGM2 Cn(RAGM (T )) � Cn(T );
AGM3 If Cn(T ) 6= L, then Cn(T ) � Cn(RAGM (T ));
AGM4 Cn(RAGM (T )) 6= L.

Note that in the context of classical recovery, postulate AGM1 is
superfluous as it is implied by idempotency of Cn. However, since
we want to generalize from classical recovery later on, we will keep
it here. We now easily derive the following properties of RAGM :

Proposition 1 Let RAGM (T ) = T � > satisfy the AGM postulates
AGM1-AGM4. Then (i) Cn(RAGM ) is an idempotent operator. (ii)
Cn(RAGM (T )) = Cn(T ) wheneverT is (classically) consistent.

Let us now again consider a general recovery framework where
the intended semantics is classical, i.e. C int = Cn. Surprisingly, it
turns out that if the framework is everywhere strongly successful, it
also satisfies the AGM postulates for recovery, whatever the backup
semantics may be:

Theorem 2 Let R = (T ; Cbck; dbck; Cint;R) be an everywhere
strongly successful recovery framework, where C int = Cn. Then
R satisfies the AGM postulates AGM1-AGM4 for recovery.

PROOF AGM1 is trivially satisfied by the idempotency of Cn; By
R3, R(T ) � Cbck(T ). Since Cint = Cn is supra-inferential, we
have R(T ) � Cbck(T ) � Cn(T ); by monotony and idempotency
of Cn it follows that Cn(R(T )) � Cn(T ); so AGM2 follows.
By R2, we have R(T ) = T , whenever Cn(T ) 6= L, immediately
implying AGM3. By R3, R(T ) � Cbck(T ), hence by monotony
of Cn, Cn(R(T )) � Cn(Cbck(T )). Since R is everywhere
successful, Cn(bup(T )) 6= L. Hence, Cn(R(T )) 6= L and AGM4
is satisfied.

Note that this embedding result heavily depends on the monotonic
properties of Cn. Also note that this embedding is not restricted to
saturated recovery frameworks and that the embedding does not de-
pend on the choice of the particular backup semantics involved: it
only requires Cn to be supra-inferential w.r.t. Cbck .

Remark Note that the converse relation does not hold: there are
recovery functions R satisfying the AGM postulates AGM1-AGM4
that cannot be used in any recovery framework satisfying the reco-
very postulates R1-R4. To give an example: take a (full meet) re-
covery R such that R(T ) = Cn(T ) whenever T is consistent and

R(T ) = Cn(;) else. This recovery function satisfies the AGM pos-
tulates AGM1-AGM4 but violates recovery postulate R2 whenever
T is not closed. It is possible, however to show that the recovery pos-
tulates can be satisfied by weakening R2 to the following postulate
wR2:

wR2 Cint(R(T )) = Cint(T ) whenever Cint(T ) 6= L

and changing the distance function d bck to dbck(A;B) = 0, when-
ever Cint(Cbck(A)) = Cint((Cbck(B)). After these modifications,
it can be shown that AGM recovery can be strictly embedded in (a
weaker) general recovery framework.

3.3 Paraconsistent semantics and AGM-recovery

Although Theorem 2 showed that the embedding result is indepen-
dent from the specification of the backup semantics, it turns out that
we can easily derive some special properties that have to hold for any
backup semantics used in a classical recovery framework.

In general, a semantics represented by its consequence relation C ,
is called paraconsistent if there exists a theory T such that C(T ) 6=
L, while Cn(T ) = L.

If R = (T ; Cbck; dbck; Cint;R) is an everywhere strongly suc-
cessful recovery framework, where Cn(Cbck) = Cbck , i.e. the
backup semantics satisfies left absorption, C bck is an example of
such a para-consistent consequence operator 4 We would like to char-
acterize the abstract properties a paraconsistent backup semantics
should satisfy if (i) RAGM = Cbck and (ii) Cbck = Cn(Cbck) -
i.e. the backup semantics is classically closed - in an (everywhere)
successful AGM recovery framework:

Proposition 2 Let R = (T ; Cbck; dbck; Cn;RAGM ) be an every-
where strongly successful AGM recovery framework, where Cn Æ
Cbck = Cbck = RAGM . Then Cbck is a paraconsistent consequence
operator satisfying non-inclusiveness, idempotency and cumulativity,
but not necessarily monotony.

PROOF Paraconsistency follows immediately. If Cn(T ) = L, by
AGM4 we have Cn(Cbck(T )) = Cn(RAGM (T )) 6= L, henceCnÆ
Cbck is not inclusive. Idempotency follows from Proposition 1.

Cumulativity also follows easily: First of all, if T � T 0
�

Cbck(T ), then T must be consistent. For else, by inclusion and
monotony of Cn we would have T � Cn(T 0

) � Cn(Cbck(T )).
Now, Cn(T 0

) = L and, by AGM4, Cn(Cbck(T )) 6= L; con-
tradiction. So, we can assume that T is consistent. Now by
supra-inferentiality, monotony and idempotency of Cn we have
T � T 0

� Cn(Cbck(T )) � Cn(Cn(T ) = Cn(T ). Then,
by cumulativity of Cn we derive Cn(T 0

) = Cn(T ). Since, T
is consistent, by AGM2+AGM3, Cn(Cbck(T )) = Cn(T ) =

Cn(T 0
) = Cn(Cbck(T

0
)). Therefore, Cbck = Cn Æ Cbck satisfies

cumulativity. Monotony does not need to be satisfied: for example
take a maxi-choice recovery functionRAGM and two theories T and
T 0 such that Cn(T 0

) = L and T is consistent. Then T � T 0 , while
Cbck(T ) = Cn(T ) � Cbck(T

0
).

3.4 Generalized AGM recovery frameworks

AGM revision and recovery is restricted to the use of a classical
semantics as the intended semantics. To generalize it to recovery

4 This corresponds to a neutral paraconsistent logic, cf. [2].



in other intended semantics, we use an operator C int to denote
an arbitrary intended semantics and a saturated recovery operator
Cbck = RAGM to denote both the recovery function and the backup
semantics.

AGMg1 Cint(Cint(RAGM (T ))) = Cint(RAGM (T ));
AGMg2 Cint(RAGM (T )) � Cint(T ));
AGMg3 If Cint(T ) 6= L, then Cint(T ) � Cint(RAGM (T ));
AGMg4 Cint(RAGM (T )) 6= L.

Clearly these postulates simply reduce to the standard AGM pos-
tulates if Cint = Cn and all theories T are classically closed. We
will show now that by a suitable choice of intended and backup se-
mantics, a recovery function RAGM expanding a theory T instead of
contracting it, also satisfies the AGMg postulates.

To motivate this generalization, we present an example where, us-
ing a non-classical semantics as an intended semantics, an intuitive
acceptable recovery of an inconsistent theory is obtained by expand-
ing the theory instead of contracting it. We then show that in general
such expansions can be shown to satisfy the generalized AGM pos-
tulates.

Example 1 Suppose that you are in an elevator and you push the
button for the 13th floor (a). You know that if you can assume the
system not5 to be faulty (not x), then the cage moves up to the 13th
floor (b). This rule can be represented by the (logic programming)
rule b  a; not x. Secondly, if the system is faulty (x) and you can
assume there is no other person to notice this (not c), then you call the
mechanic (d): this rule will be represented by the rule d x; not c.
Using the stable semantics6 as your intended semantics indeed you
will expect to move up to the 13th floor i.e. you expect b to hold.
But suppose that it happens that the cage doesn’t move up to the 13th
floor, i.e. :b holds. In that case, we will expect the system to be faulty
and, since we have no evidence that another person already noticed
this fact, we will expect that d will hold, too. Consider the theory
T = fa  ; :b  ; b  a; not x; d  x; not c g representing
this scenario. Unfortunately it is inconsistent: that is Cstable(T ) = L

i.e. it does not have a stable model. But every strict subtheory of T
as well as the supertheory T 0

= T [ fx  g does have a stable
model. Clearly, only the latter corresponds to our expectations: in
the unique stable model of T 0 , both x and d are true. So here, taking
the expansion T 0

= R(T ) = T [ fx  g would recover the theory
from inconsistency in an intuitively acceptable way.

We will now analyse this example in a more general setting. Let
us take as the class of theories T the class of all (classical consis-
tent) logic programs with explicit negation over some (finite) Her-
brand Base B. That is, every such program T is a consistent sub-
set of the set L = Rules(B) consisting of all normal rules r that
can be formed by taking atoms from B (cf. [7]). As the intended
semantics we use the skeptical stable semantics represented by the
consequence operator C int = C

stable . The skeptical stable conse-
quences C stable

(T ) of T consist of all rules r 2 Rules(B) that
are true in every stable model of T . The “classical consequence” op-
erator Cn applied to a program T is defined as: Cn(T ) = fr 2

Rules(B) j T j= rg.
The following proposition is based on some well-known proper-

ties of the stable semantics (cf. [6]) for propositional normal logic
programs:

5 The negation operator we use here is the negation by default operator.
6 suitably extended to logic programs with both default and explicit negation

Proposition 3 For every normal logic program T ,

(i) C stable
(C

stable
(T )) = C

stable
(T ),

(ii) T � T 0
� Cn(T ) implies C stable

(T 0
) � C

stable
(T ),

(iii) Cstable
(Cn(T )) 6= L.

Now, as a recovery function, let us use the following function R:
R(T ) = T , wheneverC stable

(T ) 6= L; otherwiseR(T ) = Cn(T )7.
Using the proposition stated above, it is easy to see that the gener-
alised AGM postulates AGMg1 - AGMg4 are satisfied. Hence, since
R(T ) expands the current theory T if T needs to be recovered, this
shows that recovery by expansion can also satisfy the (generalised)
AGM-postulates.

It is not difficult to come up with more complex examples where
a nonmonotonic intended semantics is used for theories that even
might be classically inconsistent. In such cases, we might prefer to
use an iterative approach as mentioned in the introduction, where a
classical semantics is used as both an intended semantics (to restore
classical consistency) and as a backup semantics in the (second) re-
covery process w.r.t. the nonmonotonic semantics. In such cases, we
can show that a mixed recovery ( cf. [4]), where some part of the the-
ory has to be removed before expansion is applied, is a most suitable
recovery method.

4 CONCLUSIONS

We have shown that the AGM framework for revision can be easily
transformed into a recovery framework. This framework can be eas-
ily embedded into the general framework for recovery. Adapting the
AGM postulates to recovery of base theories shows that the special-
ization of the general framework for recovery to classical semantics
as the intended semantics can be shown to satisfy these AGM postu-
lates. Finally, we have shown that the AGM postulates can be easily
generalized to recovery of non-classical theories and we have shown
that in some cases also recovery by expansion satisfies the AGM pos-
tulates.
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