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Abstract. Case-baseceasoninglCBR) aimsat using experience
from the pastin orderto guide future problemsolving ratherthan
“starting from scratch”every time. We proposea CBR stratgy par

ticularly suitablefor realizingthis principleif heuristicsearchis used
asa problemsolvingmethod:Givena new problem,a CBR method
exploitspreviously solvedproblemsn orderto predictaregion of the

searchspacewhich is (provably) probableto containthe solution.
The efficiengy of a searchmethodapplied afterwards for actually
finding thesolutionis thenimproved by focusingon this region. Our

resultsprovide a formal basisfor the intuitively meaningful(even

though not always justified) ideato concentrateon those parts of

the searchspacewheresolutionsto similar problemshave already
beenfound. Theapproactoutlinedin this papereithercanbeseeras
oneof CBR-supportecheuristicsearchor asa formal framewvork of

search-oriente€BR.

1 INTRODUCTION

Heuristic searchis undoubtedlyone of the most important prob-
lem solvingmethodsn operationsesearctandartificial intelligence
(Al). Unfortunately the size of searchspacesan alreadybe huge
for toy problems]et aloneproblemsoriginatingfrom practice Even
though sophisticatecheuristicscan greatly reducethe amountof
computation,an exponential(average)time compleity of (global)
tree-searchalgorithmsis often unavoidable. The rangeof applica-
tionsof heuristicsearctis hencdimited, atleastf oneisinterestedn
finding optimal solutions,possiblyunderreal-timeconditions.Still,
efficiengy canbe improved at the costof solution quality in mary
casesBesides|ocal (iterative improvement)searchtechniquesuch
as,e.g.,SIMULATED ANNEALING canbeusedwhengiving up the
optimality requirementSuchmethodsoften find nearoptimal solu-
tionswith reasonableomputationaéffort [13].

A further problem solving method of heuristic nature,namely
case-basetkasoning CBR), hasrecentlyreceved considerablet-
tentionin Al. Theguiding principle underlyingcase-basegroblem
solvingis the“CBR hypothesis'which, loosely speakingassumes
that “similar problemshave similar solutions. More precisely the
ideaof CBR is to exploit the experiencefrom (attemptsat) solving
similar problemsin the pastandto adaptthensuccessfusolutionsto
the currentsituation[11]. The similarity-guidedinferenceprinciple
of CBR is closelyrelatedto methodf instance-basel@arning[2].

The objectve of combiningthe merits of differentmethodshas
givenriseto theemegenceof hybrid (integrated)approaches sev-
eralfieldsof Al, notablyproblemsolvingandmachindearning.The
ideaof integratingCBR andheuristicsearchpresentstself if similar
problemshave to be solved repeatedlyandif heuristicsearchtech-
niguesturn out to be adequatdor doing so. Indeed realizationsof
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this ideacanalreadybe found in literature(e.g.[7]). The methods
proposeduse CBR mainly for guiding the searchprocessg.g., by
choosingsearchoperatorsdasedon the succesf their application
to similar searchstates Evenif this stratggy might be effective for
individual problems,we doubtthatit canbe successfuln general.
As amajorreasoriet usmentionthat CBR belongsto the so-called
lazy learningmethods[1]: It simply storesobsered casesbut de-
fers processinguntil receving the requestfor an information. An-
sweringthe requestis then accomplishedby someha combining
the storeddata,a processwhich requiresat leastthe searchingf the
case-baseThus, CBR canlearnvery efficiently by simply storing
obsenationsbut causeshigh computationakostswhen answering
requestsThis, however, doesgenerallyexclude the applicationof
CBR while searchs in progressEvenif it mightbeableto support
single searchdecisionsa CBR stratgy will probablyincreasethe
overall time compleity dueto the large numberof nodeexpansions
whichhaveto bemadeln fact,alternatve (model-baseddpproaches
suchas, e.g., probabilistic models[3] seemmore suitablefor this
kind of (“on-line”) decisionsupport.

Yet, we suspecthata combinationof CBR andheuristicsearch
canbe very efficient, provided thatboth methodsareusedappropri-
ately In this paper we follow the ideaof using CBR andheuristic
searcmotsimultaneouslyut in successior.ooselyspeakingCBR
malkes useof previously solved problemsfor constrainingthe solu-
tionto anew problemi,i.e.,for restrictingthe searchspaceA search
algorithmis thenappliedfor actually solving the problem,i.e., for
finding a solution amongthe most promising candidatesThis ap-
proachis in line with the ideaof solving problemsby transforma-
tional (ratherthanby derivationa) analogy{5].

Interestinglyenoughgcase-baseproblemsolvingitself canbecast
asa searchprocessaccordingto the view of transformationabhdap-
tationtaken in [4]. Within the relatedmodel, (potential)casescor
respondto searchstatesand adaptationoperatorsplay the role of
searcloperatorsThemethodproposederecomplementshis model
in areasonablavay. In fact,in [4] the authorsnotethat, according
to their approachCBR could principally be realizedby completely
enumeratinghe searctspaceUnderstandablythey look atthisidea
with resenation, immediatelypointing to the enormouscompleity
it bringsabout.Our approachexactly appliesto this problem:It sup-
portsCBR by focusingsearcho promisingcases.

A methodparticularlysuitablefor realizingthe CBR-relatedpart
of theapproactoutlinedabore hasbeenproposedn [10]. Here,we
shall put this approachyeferredto as case-basethference(CBl),
into practice:By predictingthe solutionto a newv problemit will
do preparatorywork in the contt of CBR, at which we look as
repetitiveseach problems Suchkind of problemsareintroducedin
Section2. Section3 givesa brief review of CBIl andprovidessome
extensionsand new results.The aforementioneddea of exploiting
CBI in orderto focussearchis discussedn Sectiord4.



2 REPETITIVE PROBLEM SOLVING

Repetitiveproblemsolvingmeansthe processof successiely solv-
ing problemssharinga commonstructure Here,we concentraten
problemswhich canbe castin the framework of (heuristic)search.

Definition 1 (RSP) A repetitiveseach problem(RSP) is a (count-
able) parametrizedclassP = {py |0 € O} of well-definedseach
problemssharinga commonseach spaceS. More precisely these
problemsshae a relatedsearch graphin which nodess and s’ are
connectedy a directededc if a seach opertor canbe appliedto
s andyields s’ as a successorSeach statess € S provide com-
pleteinformationaboutrespectivesolutions? Each problemp € P,
also called an instanceof the RSP, definesan evaluationfunction
vp : S = R measuringhe quality of solutionswhee v,(s) = —oo
if s is notfeasible Theobjectiveis to find a solutionof high quality,
or evenanoptimalone We assumeroblemgo bechoserrepeatedly
andindependentlyaccoding to someprobability measue over P.

The needfor repeatedlysolving problemssharingsomecommon
characteristicarisesquite often in practice.In manufcturing or
transportationfor instance,specialtypes of (combinatorial)opti-
mization problemshave to be solved very frequently say several
timesaday or evenanhour For obviousreasonsuchproblemsare
interestingfrom the viewpoint of CBR [12]. Besidesjt hasalready
beenmentionedabove that CBR itself mightbeviewedasan RSP.

As anillustrative examplelet usconsideresouce-basedonfigu-
ration (RBC), a specialapproacto knowledge-basedonfiguration
[8]. It proceeddrom theideathata (technical)systemis assembled
of a setof primitive componentsA resource-basedescriptionof
componentss a specialtype of property-basedescriptionin which
eachcomponent(e.g. a lamp) is characterizecdy someset of re-
sourcesor functionalitiesit provides(e.g.light) and someotherset
of resourcest demandge.g.electriccurrent).Therelationbetween
componentss modelledin an abstractway asthe exchangeof re-
sourcesA configurationproblemconsistof minimizing theprice of
a configurationwhile satisfyingan externaldemandof functionali-
ties.In its simplestform it correspondso anintegerlinear program
A x ¢ > d, c x x = min, wherethematrix A specifiegshe quanti-
ties of functionalitiesofferedanddemandedby the componentsthe
vectord quantifiegheexternaldemandandthevectore containghe
pricesof thecomponentsA configurationis identifiedby the vector
x, wherethe jth entryis thenumberof occurencesf the sth compo-
nent.

A manufctureroffering client-specifigoroductshasto solve con-
figuration problemsrepeatedlywhile usingthe samesetof compo-
nents.Mathematically this meansthat different problemssharethe
sameknowledg base{A, ¢) while the externaldemandd changes.
This givesriseto an RSP whichis parametrizedby the demandvec-
tord. Thatis, P = {p4 | d € D}, wherepy correspondso the RBC
problemdefinedby thetriple {4, ¢, d) andD denoteghesetof pos-
sibledemandsFigure 1 shaws the knowledgebaseof an exemplary
configurationproblemto which we shallreturnin Section4.

Sincean RBC problemis equivalentto anintegerlinearprogram,
onecouldthink of usingstandardnethodsrom operationgesearch
for solvingit. However, this equivalenceis alreadylost underslight
(but practicallyrelevant) generalization®f the basicmodel.Realiz-
ing a heuristicsearchin the configuation space i.e., the setS of
possibleconfigurationgidentifiedby integervaluedvectors),seems

Figurel. Dependenggraphof an RBC problemindicatingthe offer
(directededgefrom component, to functionality f;) anddemanddirected
edgein thereversedirection)of functionalities.

tobeareasonablalternatve whichis morerobustagainsextensions
of themodel.Besidesthis approachis bettersuitedfor incorporating
experiencdrom alreadysolved problems.

In fact, therearedifferentways of realizingthe ideaof learning
from a setof (optimally) solvedproblemsin connectiorwith heuris-
tic searchOnepossibilityis to learnan appropriatesvaluationfunc-
tion for guiding the searchprocessij.e., for controlling the choice
of searchoperatorsin RBC, for instance(intermediateonfigura-
tionsz canbe choseron the basisof their costandan estimationof
the costof satisfyingthe demandd — A x & which remainsof the
original demandd. In this paper we shall considera secondpossi-
bility. As alreadysuggestedn Sectionl, the ideais not to learna
modelfor supportingsearchdecisionsput to usethe alreadysolved
instancedy more direct means,namelyfor obtaininginformation
aboutpromisingregionsof the searchspacelt goeswithout saying
thatthis approactcomplementsatherthanexcludesothermethods
of learningin heuristicsearchOn the contrary it suggests combi-
nationof instance-baseandmodel-basetkarning:CBR determines
thesearctregion,i.e., wheee to searchanda modelsupportingndi-
vidual searchdecisiondetermineghe strat@y; i.e., howto search.

Thesucces®f aninstance-basedpproacho learningfrom expe-
rienceassumethe CBR hypothesigo be someavhatvalid, of course.
In connectiorwith combinatorialoptimizationthis is definitely not
alwaysthecase® Still, for mary typesof problems(or problemvari-
ations)the CBR assumptiorappliesratherwell, for someof them
evenprovably. Forinstancejn connectiorwith RBC or, moregenef
ally, integerlinearprogrammingit canbeshavn thatthe (Euclidean)
distancebetweer(optimal)solutionsis boundedyy somefunctionof
thedistancebetweerdemandrectors[14]. Sensitvity resultsof such
kind canbe seenasa formal justification of applying CBR to op-
timization. Due to their generality however, correspondingestima-
tionsusuallyturn outto beratherimprecise Theapproactdiscussed
in the subsequerdgectioncanbe considerecasan“empirical” coun-
terpartto relatedtheoreticaresults. As will be seenwe obtainmore
precisepredictionsby adaptinga modelto arestrictedproblemclass
or evento individual problemsof thatclass.

3 CASE-BASED INFERENCE

Let P bea (countable)setof problems,andS a setof solutions.A
caseis atuple {p, s), wherep € P ands = ¢(p) € S denoteghe

2 In tree-searchalgorithms,the solutionassociateavith a nodeis generally
identifiedby the pathfrom therootto thatnode.

3 In fact, therearemary problemsfor which a slight variationof aninstance
canhave atremendougffect on the optimalsolution.



associatedunique)solution. We assumethe conceptof similarity,
which lies at the heartof CBR, to be formalizedby meansof (re-
flexive and symmetric)similarity measures» : P x P — [0,1]
andes : § x § — [0, 1] over the set of problemsand the set
of solutions,respectrely. Moreover, we suppose (finite) memory
M = ({p1, 51), {p2,82),--. ,{Pn, sn)) Of n > 1 casedo begiven.
M denotesthe projectionof M to P, i.e., MY = (p1,... ,pn).
The6-tuple® = (P, S, p,0p,05, M) is calleda CBI setup.

Case-baseihference[10] proceeddrom a preciseinterpretation
of the CBR hypothesisaccordingto which the similarity of prob-
lemsimposesa constrainion the similarity of associatedolutionsin
theform of alowerbound.Thisideais formalized(belon) by means
of asimilarity hypothesiswhichis anapproximatiorof thesimilarity
profile of a CBI setup.The latter statesn a preciseway the conclu-
sionswhich canbe drawvn from case-basethformation: Given, the
similarity of two (arbitrary) problems,it providesa lower boundto
thesimilarity of therespectte soltions.

Definition 2 (similarity profile) Thefunctionhs definedoy

hs(z) = as(e(®), ¢(®))

inf
p,p' €P,op(p,p' )=z
forall x € Dp = {op(p,p') |p,p’ € P} is called the similarity
profile of the setupX.

Definition 3 (similarity hypothesis) A similarity hypothesis is
identifiedby a functionh : [0, 1] — [0, 1]. Theintendedmeaningof
thehypothesis isthator (p,p’) =z = os(p(p), (') > h(z)
holdstrue for all p,p’ € P. A hypothesid is called strongerthana
hypothesi’ if A’ < h andh £ h'. A hypothesig is admissibleor
the CBI setupX if h(z) < hx(z) forallz € Dp.

Considera CBI setupX anda new problempe € P, andlet h
be an admissiblehypothesisMoreover, let the a-neighborhoodof
asolutions € § be definedasthe setof all solutionswhich areat
leasta-similarto s: Ny (s) = {s' € §|os(s,s) > a}.* Then,the
(set-\alued)prediction

N Natorwpo) (), (1)

{p,s)EM

Brm(po) =

is correctin the sensehatsg = ¢(po) € Pr,m(po), i.€.,it covers
thetrue solution.

Of course knowledgeaboutthe similarity profile of a CBI setup
will generallybe incomplete which meansthatwe principally can-
not guaranteehe admissibility of a hypothesish (exceptfor h = 0
which leadsto trivial predictions)and,hence the correctnessf the
prediction(1). In [9], we have developedan efficient learningalgo-
rithm £ which estimates hypothesish. = L£(M) from the cases
obsenredsofar. This hypothesidgs definedasthe strongestiypothe-
sish € ‘H consistentvith M, where# is the classof stepfunctions
definedon afixedpartition.A of [0, 1]:

ha(x) = as(e(®), ¢(®)) @)

min
p,p' €M iop(p,p')ER(T)
with & : [0,1] — A beingdefinedby k(z) = A & ¢ € A. Interest-
ingly enough h.. allows for deriving (non-trivial) predictionswhich
are probably correct More precisely we can prove that the proba-
bility of anincorrectpredictionis inverselyrelatedto the sizeof the
memoryM and,hence canbe madearbitrarily small[9]:

4 In thecontext of (local) searchthesets\, (s) defineaparametrizedeigh-
borhoodof thesearctstates.

Theorem1 Considera CBI setupwith a memoryM of n cases.
Moreover, supposehat problemsare chosenrepeatedlyand inde-
pendentlyaccoding to someprobability measue over P andlet po
bea naw problem.Thefollowing estimationholdstrue:

Pr(p(po) & Ph.,m(po)) < 2m/(1+mn),

whee h. is givenby (2) andm = | 4| is the sizeof the partition of
[0, 1] underlyingh... Thatis, the probability of an incorrect predic-
tion is boundedromabove by 2m /(1 + n).

Theuseof h. in (1) leadsto the mostpreciseamongthe predic-
tions which are compatiblewith the dataobsered so far. Yet, it is
not possibleto guaranteea certaindegreeof precision.In fact, the
accurayg of predictionsdependsn the suitability of the CBI setup
underconsideratiorand,hencejs stronglyinfluencedby the choice
of thesimilarity measuress andox . Looselyspeakingprecisepre-
dictionscannotbe expectedf the similarity structue of the setupis
poorly developed,i.e., if the applicationat handdoeshardly satisfy
the CBR hypothesisln this connectionit is notevorthy thatthefor-
malizationof the similarity structureby meansof a similarity profile
is ratherrestrictive. In fact, the enforcedglobal validity of the sim-
ilarity boundsspecifiedin Definition 2 might prevent from defining
tightbounddor those(sub)regyionsof theinstancespaceS x R where
the CBR hypothesisapplieswell and,hencefrom deriing precise
predictionsA way of avoidingthis effectis to maintainanindividual
similarity profile for eachcasein the memory

Definition 4 (local similarity profile) Letp € P. ThefunctionhX, :
Dp — [0,1] definedby

h3(z) = as(p(®), @)

is called the local similarity profile associatedwith p, or the p-
similarity profile of £. We call /\pemi K%, an M-similarity profile,
while the collectionhg® = {h% |p € M*} of local profilesis re-
ferredto asthelocal M-similarity profile.

inf
P EP,op(p,p)==

A local profile indicatesthe validity of the CBR hypothesisfor
individual cases.Loosely speaking,it reflectsthe extent to which
a problemp is “typical” or “representatie” of similar problems.
Sincetypical caseswith stronglydevelopedsimilarity profilescon-
tribute to precisepredictionsit seemsreasonabléo maintaina re-
ducedmemory M of selecteccasesThus,let M be a selectionof
the sequenceéD of caseswhich have beenencounteredo far. The
abore-mentionedearningalgorithmcanthenbe modifiedsuchthat
it dervesa local hypothesish™ = {h? |p € M*} = L(D, M)
from D and M [9]. Predictionsbasedon k** are generallymore
precisethanpredictions(1). At the sametime, however, the associ-
atedconfidencdevel is smaller Still, this level canagainbe made
arbitrarily large by increasinghe numberof obsered cases:

Theorem?2 Supposé¢hata sequenc® of n (independenandiden-
tically distributed)casehasbeenobservedFor a subsetM contain-
ing | M| casedet k™ bethelocal M-hypothesis(D, M). More-
over, let po € P bea new problem(chosenat randomfrom?P). The
probability that

1 Nerop@ron(s) (3)

{p,s)EM

@hM M @0) =

doesnot cover thetrue outcomeso = ¢(po) is boundedromabove
by | M|m/(n +1).

5 f A g denoteghefunctionz +— min{f(z), g(x)}.




4 FOCUSING SEARCH

The idea of exploiting experiencefrom previously solved prob-
lemsin RSP cannow be realizedby combining the two frame-
works which have beenoutlined in Section2 and Section3, re-
spectvely. For representingan RSP in the form of a CBI setup
» =(P,S,p,0p,05, M) we take P asthe classof problemin-
stances$S asthe searchspace,and M asthe memoryof already
solvedinstances.

Sincewe considerrelatively well-structured(optimization)prob-
lemsit is generallynot difficult to definemeaningfulsimilarity mea-
suresop andos, respectiely. Oneshouldbearin mind, however,
thatos determineghe structureof the neighborhoodsV, (s) and,
hence,hasa stronginfluenceon the compleity of computingpre-
dictions(1). In RBC, for instance problemsand(searchstatescor
respondto integervaluedvectors.Thus, the neighborhoodsV, (s)
aregivenin the form of (hyper)rectanglesvhendefiningthe simi-
larity betweertwo vectorse, y asadecreasingunctionof |z — y|oo -
This approachallows for anefficient computatiorof (1).

In this connectionijt shouldalsobe notedthat(1) remainscorrect
if the intersectionis taken over k < = of the problemsp € M?*.
Indeed deriving a predictionbasedon & problems(maximally sim-
ilar to the new problempo) might bereasonabléf the derivation of
(1) is computationallycomplex. Besidesit is interestingto notethat
(1) canbe approachecfficiently by meansof parallelcomputation
techniqueslin fact, the setswhich have to be combined(via inter
section)canbe derived independentlyof eachother Moreover, the
(associatie andcommutatve) combinationitself canbe realizedin
anarbitraryorder

It Section3, we have assumed functionalrelationy : P — S.
For the sale of simplicity we thereforesupposehat eachproblem
instancep € P hasa unique (optimal) solution, namely¢(p). Of
course,a case(p, s) € M doesnot guarantees to be an optimal
solutionto p whenusinganon-admissiblée.g.local) searchmethod.
Onemay thenalsothink of ¢(p) assomenearoptimal solution.In
thecontext of RSP, the CBR hypothesishouldhencebeunderstood
in thesensehat“similar searctproblemshave similar (near)optimal
solutions! Let us mentionthat the framework in Section3 canbe
generalizeduchthatp is a set-aluedfunction, therebyallowing to
take the non-uniquenessf (optimal) solutionsinto account.

Having representeén RSP in the framewvork of CBI, a process
of repeategroblemsolving canbe sketchedasfollows:

(a) TheprocessnaintainghememoryM anda (local) hypothesig:.

Eachtime a new problemhasbeensolved, the memoryandthe hy-

pothesisareupdatedNotethatin generahot all caseswill beadded
to M.

(b) Having to solve anew problempo, CBI is usedfor predictingthe
solutionse = ¢(po). To thisend, M andh arecalledin for deriving

apredictiongn, a1 (po) basedon (1) resp.(3).

(c) The predictioncoversthe true outcomeso with high probabil-
ity (provided thatenoughproblemshave asyet beensolved). For a
heuristicsearchmethodwhich is usedin orderto find s, it is hence
advisableo focuson thereducedsearctspaceSo = @, a1 (po).

(d) Evenif unlikely, it canhappenthatSy fails to cover sq. In this

case,it might be necessaryo starta secondsearchprocesswhich

seeksso in S\ So.

Theabove outline leavesseveralimportantdetailsopen.Notably
it is not clearwhatis meantby focusingthe searchon §o. The most
ohviousidea,of course,is to searchSy systematicallybeforeeven-
tually inspectingS \ So. A systematicsearchof a (complete)state
spacecanevenberealizedby simple(uninformed)stratgiessuchas

breadth-firs{ BFS) andbest-firstsearch(DFS). Iterative deepening
search(ID) is particularly interestingin connectionwith the con-
figurationproblemin Section2, sinceit is the methodof choiceif
the searchspaceis large andthe depth(cost) of the solutionis not
known. ID combinesthe merits of both, breadth-firstsearch(opti-
mality, completenessind depth-firstsearch(linear spacecomple-
ity). Still, the size of the searchtree and, hence,the searcheffort
is generallyexponentialin the sizeof the solution.A combinationof
CBI andID couldhencegreatlyreducehesearcheffort: Ratherthan
proceedingrom therootof theoriginal searcttreeandsearchinghe
completestatespacepnestartsatthenodewhich correspondso the
leastexpensve statein Sp. Moreover, a searchpathis cut off not
only whenexceedingthe currentcostlimit, but alsowhenreaching
the boundaryof S8p. Thatis, a single ID searchphaseis not only
cost-limitedbut also“similarity-bounded.

The size of the reducedstatespaceSy dependson several fac-
torssuchas,e.g.,the similarity structureof the RSP athandandthe
availability of casessimilar to the target problem.The diameterof
So mayalsogrow with the sizeof theproblemclassP (or evenwith
thesizeof individual solutionsif CBI usedocal similarity profiles).
However, it will generallydo soto a much smallerextentthanthe
original statespaceBesidesijt shouldbenotedthatthe searcheffort
itself may grov muchstrongerthanthe diameterof the statespace
(size of the solution),which is partly dueto the problemof gener
ating repeatedstatesin fact,therearemary optimizationproblems
(of simplestructure)for which it canbe provedthattherelationbe-
tweenthe expectedsearcheffort of ID andthat of its combination
with CBI is of exponentialorderin the size of the solution. Need-
lessto say thereareaswell applicationdor whichasimilarity-based
predictionhardly improvesefficieng. Besidesjt deseresmention-
ing thatan optimal searchmethod(suchasBFS) becomesgprobably
optimalin combinationwith CBI, in the sensethatSy is not guar
anteedo coverthe (overall) optimalsolution.Thus,it mightbecome
necessaryo go beyondSy in orderto prove (with probability 1) that
thebestsolutionin Sy is alsoglobally optimal.

Of course the modificationof simple (uninformed)searchstrate-
giesasoutlinedabore is only oneexampleof usingtheinformation
aboutthe probabldocationof sg. CombiningCBI with othersearch
methodamight call for alessstraightforvard adaptatiorof anunder
lying searchstratgy. Local (iterative improvement)searchmethods
seemto beparticularlyqualifiedfor suchanadaptationFor instance,
the performanceof suchalgorithmscrucially dependson the state
fromwhich searctstarts Thus,So mightsimply beusedfor defining
agoodinitial stateor severalinitial statesn algorithmssuchas,e.g.,
random-restarill-climbing. Likewise,aninitial collectionof search
stategmight bedistributedover S whenusinggeneticalgorithmsor
parallel(local) search Quite naturalwaysof integrationexist in the
caseof TABU SEARCH [6]. In fact, this heuristicprovides explicit
control structureswhich supportthe focusingof the searchprocess
on promising(or still unexplored)regionsof the searchspace.

Experimentalresultssupplyingevidencefor the effectivenessof
CBI, which arenot presentedn this paperdueto spacdimitations,
canbefoundin [9]. Still, let us reconsidethe simple configuration
problemin Section2 in orderto corvey afirstideaof hov CBI per
forms.Thecorrespondinginovledgebaseis specifiedoy thedepen-
deng graphin Figurel andthe pricevectore = (2,1, 3,1, 6).

For the problemclassdefinedby thesetD = {d € N§ | |d|o0 <
6} of externaldemandswe have carriedout the following experi-
ment:A (rathersmall) subseof k = 20 problemsis choserat ran-
dom and solved optimally. For the resultingmemory M, the M-
similarity profile aswell asthe local M-profile are estimated.To
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Figure2. Expectedprecision(abore)andcorrectnesgbelan) of
predictionsfor configurationproblemswhenusingthe M-similarity profile
andthelocal M-profile (dashedine), respectiely.

this end, the learning methoddiscussedn Section3 is appliedto
n (randomlychosen)training examples.The averageprecisiong s

(numberof searchstateslandcorrectness 4 (probability of correct
prediction)of (1) resp.(3) arederived afterwards:

1 " 1
M= ﬁ Z |Pr,m(d)], em= ﬁ Z 1$h,M(d)(‘P(d))7
deD

deD
where|A| denotesthe cardinality of the set A. The expectedval-
uesp = Em(pam) ande = Epx(err) have beenapproximatedoy
repeatinghis experimenta large numberof timesandtakingthere-
spectve averageof the resultsobtained.Figure 2 showvs theseval-
uesasa function of the numbern of training examples.As canbe
seen the useof local hypothesedeadsto more precisepredictions
at the costof a lower level of confidence Anyway, this level con-
vergestoward 1 in bothcasesthusconfirmingourtheoreticaresults
of Section3.

5 CONCLUDING REMARKS

We have proposedo combineheuristicsearchand case-basedea-
soningfor improving efficiengy in repetitive problemsolving: CBR
brings a promisingsubsetof searchstatesinto focus, therebypro-
viding importantinformationto a searchmethodwhich is applied
for actually finding a solution. From the perspectie of CBR, our
methodshouldnot merelybe seenasan application.In conjunction
with [4], it contritutesin amoregeneralway to aformal framewvork
of CBR in which (transformationaladaptations realizedasasearch
processand (case-basedxperienceis usedin orderto concentrate
on promisingregionsof therelatedsearctspace.

Our methodof learningfrom experiencecanberealizedin acom-
putationally efficient way. Even thoughit is principally instance-
based,it alsocontainsa model-basedomponentA similarity hy-
pothesigs usedfor quantifyingthe (minimal) similarity of solutions,
given the similarity of associateghroblems.In fact, this quantifica-
tion can be seenasthe basicprerequisitefor combiningthe infor-
mation provided by several caseqvia intersection)and, hence for

deriing precisepredictions.The CBR-relatedpartof our approach
is actually lessheuristicthan CBR in general,sinceit guarantees
a certaincorrectnes®f suchpredictions.A successfulhpplication
of case-basenhferenceproviding precisepredictionsstill assumes.
problemdomainwhichis somehw in accordancevith the CBR hy-
pothesisFortunatelylocal models(hypothesesarelessdemanding
andonly assumeheexistenceof individual probleminstancesvhich
arerepresentate of similar instances.

In [4], the conceptof similarity is integratedinto problemsolv-
ing by meansof a, say “ideal” similarity measureBy pointing to
optimal initial searchstatesthis measuresomeha guaranteeshe
retrieval of caseswvhich canbe adaptedn anoptimalway. Needless
to say thatfinding suchmeasuresvill bedifficult in practice,if pos-
sibleatall. Here ,we take a different(morepragmaticapproachlt is
quitepossiblethatasimilarity measurdnasbeenlearnedbr is succes-
sively adaptedo the currentapplication,but our predictionmethod
takesit asa giveninput. It then derives a set of promisingsearch
statesratherthanthe optimal initial state,andthe precisionof this
predictiondependson how “ideal” the similarity measureactually
is. In fact, this measureictatesthe quality of predictionsobtained.
Looselyspeakingit is not the solutionswhich definethe conceptof
similarity; ratherit is the similarity measureshatdefinethe (quality
of) solutions.

In this paper the combinationof case-basethferenceandbasic
searchstratgiessuchasiterative deepeninghasbeenoutlined. Be-
sides,we have briefly touchedon the integration with other algo-
rithms, particularly local searchmethods A morethoroughinvesti-
gationandtherealizationof concretgcase-basedjearchalgorithms
is animportanttopic of ongoingwork. Besideswe currentlyaddress
furtheraspectavhich have anessentialmpacton the succes®f the
problemsolvingapproacloutlinedin Section4. This concernse.g.,
a stratgyy for maintainingan optimalmemoryof casesandtheques-
tion of how to define,or evenlearn,suitablesimilarity measures.
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