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Abstract. Lazy learning algorithms retain their raw training exam-
ples and defer all example-processing until problem solving time (eg,
case-based learning, instance-based learning, and nearest-neighbour
methods). A case-based classifier will typically compare a new tar-
get query to every case in its case-base (its raw training data) be-
fore deriving a target classification. This can make lazy methods pro-
hibitively costly for large training sets. One way to reduce these costs
is to filter or edit the original training set, to produce a reduced edited
set by removing redundant or noisy examples. In this paper we de-
scribe and evaluate a new family of hybrid editing techniques that
combine many of the features found in more traditional approaches
with new techniques for estimating the usefulness of training exam-
ples. We demonstrate that these new techniques enjoy superior per-
formance when compared to traditional and state-of-the-art methods.

1 Introduction

Inductive learning algorithms are often categorised as either eager or
lazy. The former transforms a set of training examples into an op-
timised reasoning structure at learning time, which is then used at
problem solving time; examples include decision tree learners and
neural networks. In contrast lazy learning methods retain the raw
training examples and reuse them directly at problem solving time;
examples include instance-based learning, case-based learning, and
nearest neighbour methods. Lazy learners typically suffer from high
problem solving costs. For example, a case-based classifier might
compare a new target query to every training example before de-
riving a target classification. If the training set is large, these costs
can be prohibitive. One strategy for reducing these costs is to pro-
cess the training examples to produce a reduced edited set of ex-
amples for the learner to use (see Section 2 for existing methods
[1, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15]).

In this paper we focus on lazy learning techniques for classifica-
tion tasks. We introduce a new family of hybrid editing techniques
that combine many of the features found in more traditional ap-
proaches with new techniques for modeling and evaluating the use-
fulness of training examples with respect to their future classifica-
tion competence (Section 3). We demonstrate, in Section 4, that this
new family of techniques benefits from superior editing performance,
both in terms of the size and accuracy of the edited sets produced.

2 Related Work

There are two basic reasons for editing training data - redundancy re-
duction and noise removal. Redundancy reduction algorithms aim to
eliminate training cases that do not contribute to classification com-
petence, for example, cases from the interior of a densely packed
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class cluster. These algorithms can produce significant training set
reductions but tend to preserve noisy examples as apparent excep-
tions. In contrast, noise reduction techniques aim to eliminate noisy
examples from the training set. These algorithms tend to result in
less dramatic size reductions (depending on the level of training set
noise) and they can also mistakenly remove important exceptional
cases, which are difficult to distinguish from true noise.

Hart’s condensed nearest neighbour (CNN) approach is an early
redundancy reduction technique [7]. It builds an edited set from
scratch by adding cases that cannot be successfully solved by the
edited set built so far; the algorithm makes multiple passes over the
training data until no more additions can be made. The technique
generates significant size reductions but the quality of the final edited
set depends on the presentation order of cases. Specifically, redun-
dant cases, which are examined early on in the editing process, tend
to be added to the edited set. Solutions to this problem have been sug-
gested, including a post-processing stage to remove redundant cases
from the edited set [6] and a pre-processing step to order cases prior
to editing [13].

The Edited Nearest Neighbour (ENN) method is a perfect coun-
terpoint to CNN [14]. ENN is a noise removal technique. It contracts
the training set by deleting noisy cases to produce the final edited set.
A noisy case is one that cannot be classified by its k nearest neigh-
bours. Tomek [12] introduces repeated ENN (RENN) which makes
multiple passes over the training data, applying the ENN rule until
no more cases can be deleted.

Recently, a number of authors have described editing algorithms
based on work from the case-based reasoning community that at-
tempts to explicitly model the competence properties of cases. Smyth
and Keane [9, 10] introduce two important competence properties:
the reachability set (1) of a case c is the set of cases that can success-
fully classify c; the coverage set (2) of a case c is the set of cases that
c can classify. The size and contents of these sets represent the local
competences of a case (and we will use these sets as the basis for our
competence model in the next section).

ReachabilitySet(c 2 C) = fc0 2 C : Solves(c0; c)g (1)

CoverageSet(c 2 C) = fc0 2 C : Solves(c; c0)g (2)

Smyth and Keane describe how these sets can be used to de-
fine categories of cases with different competence contributions
(for example, pivotal cases make unique competence contributions,
whereas auxiliary cases make no competence contributions). They
describe a case-base editing algorithm that biases pivotal cases and
actively deletes auxiliary cases.

Brighton and Mellish [3, 4] have recently adapted this technique
for use in classification problems. Their approach, called ICF (Incre-
mental Case Filtering), contracts the training set to produce a final
edited set by removing cases whose reachability set size is larger



than their coverage set size; a case c is deleted if c is solved by more
cases that it can solve itself. Brighton and Mellish demonstrate that
ICF achieves superior editing performance when compared to many
traditional algorithms, and matches the performance of a number of
state-of-the-art techniques.

We have provided a brief summary of editing algorithms span-
ning the last 4 decades of research. Of course, for space reasons,
many important approaches have had to be left out. In particular,
for completeness, we encourage the reader to refer to the follow-
ing additional research: Chang’s work on prototype selection [5]; the
Instance-Based Learning work of Aha et al. [1]; and finally, the work
of Wilson and Martinez [15].

3 A Framework for Case Editing

Conventional editing algorithms operate in one of two ways: either an
edited set is built from scratch by adding cases to it from the training
set; or an edited set is produced by contracting the original training
set. In this section we describe a new family of editing techniques
that combine these two strategies. The new algorithms combine four
important features: (1) an evaluation policy for evaluating cases ac-
cording to their competence contributions (based on their coverage
and reachability sets); (2) an addition rule to select cases from the
training set for addition to the edited set; (3) a deletion rule to re-
move cases from the training set before the next round of editing; (4)
an update rule to update the competence model (the coverage and
reachability sets) after each editing step. The template for this family
of algorithms is shown in figure 1.

T: Original training cases

CM: Competence model

Eval: Ordering function (MCOV/RFC/RC)

Add?: Use CNN Rule? (T/F)

Delete?: Delete covered cases? (T/F)

Update?: Update CM for remaining cases? (T/F)

1. Edit(T,CM,Eval,Add?,Delete?,Update?)

2. T� RENN(T) {that is, Repeated ENN}

3. E� {}

4. While T� {} Do

5. C � Next case in T according to Eval

6. If Add?

7. If � Solves?(E,C) then E� E� {C}
8. Else E� E� {C}
9. If Delete? then

10. E� E-CoverageSet{C}

11. Else E� E-{C}

12. If Update? then Update(CM)

13. EndWhile

14. Return(E)

Figure 1. The basic algorithmic template for the new family of
competence-guided editing techniques. Each algorithmic variation will differ

according to the Eval, Add?, Delete, and Update? parameters.

3.1 Evaluation Policy

The order in which cases are considered during editing can have an
important bearing on the quality of the final edited set. For example,

we saw earlier that CNN suffers from this problem because its se-
lection rule cannot distinguish between useful and redundant cases
during the early stages of editing. One solution is to order cases
prior to editing, using an evaluation function to measure the expected
usefulness of a case - the next case to be considered during edit-
ing is the most useful case left in the training set. We propose three
competence-guided evaluation policies that measure different com-
petence properties of cases.

The Reach for Cover Policy (RFC): The size of the reachability
set of a case can be used as an estimate of how difficult this case is to
classify, and thus how important this case is likely to be with respect
to classification competence or accuracy. For example, a case with
a small reachability set cannot be solved by many other cases, and
so this case may be a crucial element of the edited set. The reach for
cover (RFC) evaluation function implements this idea: the usefulness
of a case is an inverse function of its reachability set size. Thus, cases
with small reachability sets are considered for membership in the
edited set before cases with larger reachability sets.

The Maximal Cover Policy (MCOV): The size of the coverage
set of a case can also be used as a measure of case usefulness. Cases
with large coverage sets can be used to classify many target cases
and as such must make a significant contribution to classification
competence. These cases should be preserved in any edited set. The
maximal cover (MCOV) evaluation function implements this idea by
biasing cases with large coverage sets.

The Relative Cover Policy (RC): The RFC and MCOV func-
tions, and indeed the ICF method discussed in the previous section,
use local measures of case competence as an editing guide: coverage
and reachability sets encode local competence characteristics only.
These sets tell us very little about the global competence character-
istics of cases. For example, a case c may have a large coverage set,
and according to MCOV it would be a prime candidate for inclusion
in the edited set. However, if the cases that c covers are themselves
covered by other cases then the unique competence contribution of c
is reduced. What is needed is a metric for computing the competence
of a case relative to other cases. Relative coverage is just such a met-
ric (3). It is based on the idea that if a case c is covered by n other
cases then each of the n cases will receive a contribution of 1/n from
c to their relative coverage measures [11]. The RC evaluation func-
tion uses the relative coverage metric as a measure of case usefulness
by preferring cases with higher relative coverage values.

RelCov(c) =
X

c02CoverageSet(c)

1

jReachabilitySet(c0)j
(3)

3.2 Addition Rule

We propose two possible addition rules. The first, and simplest, is the
null addition rule. According to this rule every case considered dur-
ing editing is added to the edited set. This still produces an edited set
of cases when combined with the coverage deletion rule to remove
cases from the training set (see Section 3.3).

The second addition rule is based on the CNN rule. Cases are only
added to the edited set if they cannot be correctly classified by this
set. This rule will produce smaller edited sets than the null addition
rule, but it is not clear what sort of impact this rule will have on the
accuracy of the resulting edited set (see Section 4).



3.3 Deletion Rule

During each iteration of editing, after a case has been considered for
addition to the edited set, there is an opportunity to remove cases
from the remaining training set. We propose two possible deletion
rules. The simplest is the null deletion rule, which only deletes the
current case from the remaining training set. A second option, the
coverage deletion rule, deletes all cases that the current case can be
used to classify (that is, all cases that the current case covers) on the
grounds that these cases must be redundant in the context of the cur-
rent edited set. Eagerly deleting groups of cases from the remaining
training set during each round of editing will lead to the production
of smaller edited sets but there may be a corresponding decrease on
classification accuracy.

3.4 Update Rule

Our editing algorithms are guided by a competence model, the cov-
erage and reachability sets of the training cases. These sets are the
basis for the evaluation functions and the coverage deletion rule. The
model is initialised with respect to the entire set of original training
cases. As cases are removed from the training set there is an oppor-
tunity to recompute the model with respect to the remaining training
cases. The update parameter specifies whether or not the competence
model is re-initialised after each iteration.

The evaluations of cases can change due to the absence of cases
from the training set, and this may lead to the addition of redundant
cases to the edited set. The advantage of updating the competence
model during editing is that it ensures that the evaluation functions
used to prioritise the remaining cases are optimised with respect to
the current set of remaining cases. Updating the model after each it-
eration should result in smaller edited sets but the accuracy of these
sets may be compromised due to overfitting in the competence model
- each new version of the competence model is computed with re-
spect to a smaller set of training cases. These cases may no longer be
representative of future target problems.

3.5 The Family Tree

This family contains 24 individual algorithms, since there are 24
different combinations of ordering strategy (x3), addition rule (x2),
deletion rule (x2), and update rule (x2). Six of these combinations
can be ignored since they do not produce edited sets that are smaller
than the original training cases. This occurs in those algorithms that
do not use the CNN addition rule or the coverage deletion rule (com-
binations, FFF, FFT for MCOV, RFC, and RC). This leaves a total of
18 different editing algorithms.

4 Evaluation

In this section we evaluate the performance of our new family of
competence-guided editing techniques on a range of data sets and by
comparison with a number of existing editing techniques.

4.1 Experimental Set-Up

We choose 11 classification datasets from the UCI ML Repository
[2]. For each data set a random 20% of the instances are held back
as unseen target instances. This is repeated 30 times, to produce 30
training and test sets for each data set. We also choose three editing
methods to compare against our new techniques: (1) CNN - to facil-
itate a comparison with a pure redundancy reduction technique; (2)

RENN - to facilitate a comparison with a pure noise removal tech-
nique; and (3) ICF - to facilitate a comparison with a state-of-the-art
hybrid method; ICF is chosen because it is directly related to our
techniques (in its use of a similar competence model), and because
recent results suggest it is one of the leading editing algorithms cur-
rently available [4].

4.2 Methods and Results

For each data set, we compute the classification accuracies (as a per-
centage of correct classifications) and edited set sizes (as a percent-
age of the training set) produced by each of the editing algorithm.
This gives 30 accuracy and size values for each data set and algo-
rithm pairing, from which we compute a mean values.

We also compute benchmark accuracy values for each data set
by classifying each test set by using the corresponding training sets
without editing. The benchmark size for each data set is 100%.

The mean accuracy and size for the 11 data sets, and the 21 algo-
rithmic variations, are shown in Figure 4; each table cell holds two
values, the top one is the edited set size as a percentage of the origi-
nal training set, and the bottom one is the percentage accuracy. Mean
values for each algorithm over all data sets are also shown.

4.3 Analysis

In general, these results are extremely positive. All of the new
competence-guided techniques produce significantly smaller edited
sets than any other technique, while maintaining comparable accu-
racy. In fact, 6 algorithms from our new family out-perform ICF and
CNN in terms of edited size and accuracy.

4.3.1 General Performance

Figure 2 documents the best performing of our new algorithms; we
present the MCOV, RFC, and RC variants that produce the small-
est edited sets and those that produce the best classification accu-
racy, alongside our comparison algorithms and the benchmark re-
sults. While the smallest variants suffer from some reduction in clas-
sification accuracy, the best variants consistently out perform CNN
and ICF. In fact, compared to ICF and CNN, the overall best of our
new family, algorithm 6 (RC with the FTF combination), delivers im-
proved classification accuracy with less than 50% of the cases needed
by the ICF edited set and less than 20% of the cases needed by CNN.
This best new algorithm needs only 7.35% of the original training
cases to achieve 77.79% accuracy (see Figure 4).

4.3.2 MCOV vs. RFC vs. RC

Figure 3 graphs the mean performance (size and accuracy) of our
18 family members over all data sets; the top set of curves corre-
sponds to accuracy. From this graph we can clearly see the impact
of different parameter combinations on the size and accuracy of the
resulting edited sets. In general, the 6 MCOV algorithms produce the
smallest edited sets, with an average size of 5.22%, as compared to
6.79% and 5.53% for the RFC and RC variants, respectively. How-
ever, the MCOV algorithms also suffer the greatest accuracy degra-
dation. They produce edited sets with a mean accuracy of 74.96%,
compared to 75.82% and 76.52% for the RFC and RC variants, re-
spectively. These results seem to confirm our earlier hypothesis that
the use of non-local competence measures such as relative coverage
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Figure 2. Comparative performance results for the best performing
(smallest and most accurate) of the new competence-guided techniques. The

bar-graph represents the size results and the line-graph represents the
accuracy results.

should produce superior editing techniques. The RC algorithms pro-
duce edited sets that are not significantly larger than the MCOV sets,
and yet the RC sets benefit from significantly improved accuracy.

4.3.3 Parametric Variations
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Figure 3. Performance results for the different parametric variations of the
competence-guided techniques; the accuracy results are indicated by dotted

lines, and the size results by solid lines.

Figure 3 also provides information about the impact of the differ-
ent parametric variations for each algorithm; that is, the addition rule,
deletion rule, and update rule variations. In terms of edited set size,
the CNN addition rule is seen to produce the greatest size reductions,
followed by the coverage deletion rule. In general, the TTF com-
bination (CNN addition rule, coverage deletion rule, and no model
update) produces the smallest edited sets. Similarly, the FTF com-
bination (null addition rule, coverage deletion rule, and no model
update) produces the largest edited sets (a mean size of 8.42% across
MCOV, RFC, and RC). This is consistent with our earlier predictions
(see Section 3).

Similar observations can be made regarding edited set accuracy,
although this is largely due to the inherent dependency between
edited set size and accuracy. The TTF combination tends to produce
edited sets that suffer from a significant loss in accuracy; a mean ac-
curacy for the TTF combination of 73.12% is observed across the
MCOV, RFC, and RC variants. Similarly, the FTF combination pro-
duces edited sets with a mean accuracy of 77.82%.

To sum up: this new editing family offers a range of algorithms
with excellent performance characteristics, and individual members
consistently out-performing common techniques, such as CNN and
ICF, in both edited set size and accuracy.

5 Conclusions

Training set editing is a core issue for improving the cost and ac-
curacy of many lazy learning techniques including case-based learn-
ing, instance-based learning, memory-based reasoning, and nearest-
neighbour methods. Traditional editing techniques utilise one of two
basic strategies: (1) add selected cases to a growing edited set, from
the original training set; or, (2) delete selected cases from the original
training set to produce a filtered edited set.

We have described a new family of techniques that employ both
of these strategies, and that are guided by an explicit model of clas-
sification competence. We have demonstrated that, as a whole, this
family of algorithms benefits from superior performance character-
istics, and that individual members significantly out-perform tradi-
tional and state-of-the-art editing techniques in terms of edited set
size and accuracy.
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Algorithm

/Data Set
Type Adult BCancer Bupa Credit Cylinder Diabetes Hepatitis Hungarian Ionosphere Voting TicTacToe Mean

1
----RC----

TTT

4.94

72.64

0.95

94.52

5.15

61.64

3.7

78.07

5.32

66.08

4.45

60.89

2.93

80.11

3.71

75.29

2.76

74.19

1.67

88.43

3.82

68.53

3.58

74.58

2 TFF
6.06

74.67

1.48

95.68

7.79

63.62

7.21

81.76

8.16

68.89

6.78

62.72

3.74

81.83

5.48

77.99

3.81

75.05

2.84

90.93

11.30

79.65

5.87

77.51

3 TFT
5.67

74.47

1.34

95.61

7.22

63.82

6.59

81.06

7.96

68.33

6.50

59.78

3.58

81.51

5.07

78.44

3.85

75.14

2.97

91.46

11.15

78.87

5.63

77.14

4 TTF
4.92

71.14

0.89

94.52

5.19

61.88

4.11

78.67

5.59

66.36

4.45

60.06

2.98

79.78

3.74

75.34

2.81

73.81

1.71

85.59

4.60

71.03

3.73

74.38

5 FTT
6.35

75.28

2.12

95.83

9.88

64.64

10.68

83.26

11.20

70.80

8.28

61.11

4.41

81.72

7.40

79.60

4.67

73.52

4.14

91.57

7.94

77.71

7.01

77.73

6 FTF
6.61

75.65

2.20

96.06

10.06

65.27

11.23

83.24

11.63

70.99

8.39

60.94

4.57

81.61

7.49

79.66

4.71

73.62

4.46

91.76

9.50

76.89

7.35

77.79

7
---RFC---

TTT

5.29

74.07

1.11

91.76

5.79

62.37

4.31

76.84

5.95

66.23

5.23

60.89

4.36

77.74

3.63

68.56

4.98

69.14

2.17

86.97

1.30

65.60

4.01

72.74

8 TFF
7.06

75.89

1.91

95.76

8.64

64.11

7.49

80.89

9.17

69.94

7.23

60.50

5.75

79.25

6.12

78.97

6.71

72.43

3.80

91.11

8.29

75.08

6.56

76.72

9 TFT
7.10

75.73

1.88

95.63

8.16

63.09

7.16

80.51

8.90

69.35

7.05

60.11

5.70

79.25

6.07

79.02

6.52

71.95

3.78

90.81

2.85

67.35

5.93

75.71

10 TTF
5.32

73.74

1.32

94.57

6.14

62.46

4.77

79.32

6.27

67.01

5.72

60.33

4.68

78.50

4.04

73.28

4.80

69.67

2.20

87.20

3.42

69.42

4.43

74.14

11 FTT
12.02

75.61

2.63

96.01

12.38

63.38

13.83

82.73

13.67

71.85

10.10

60.83

8.28

79.68

9.10

79.89

10.21

74.52

5.56

90.84

13.14

79.91

10.08

77.75

12 FTF
11.57

75.49

2.55

95.93

12.11

63.29

13.24

82.56

13.32

71.51

9.92

60.83

8.23

79.79

8.67

80.34

9.96

75.67

5.44

91.38

12.20

79.77

9.75

77.87

13
-MCOV-

TTT

4.67

70.81

0.68

95.61

5.27

62.17

4.07

78.65

5.61

67.16

4.55

60.94

2.82

79.68

3.84

77.41

2.95

71.48

1.87

91.72

4.03

69.98

3.67

75.06

14 TFF
5.02

65.53

0.75

96.01

6.1

61.40

4.61

76.45

7.39

67.59

5.16

57.50

2.58

76.88

4.25

75.75

2.50

72.38

2.39

90.35

3.09

54.90

3.98

72.25

15 TFT
6.36

73.54

0.97

95.76

7.61

63.77

6.48

79.76

8.31

69.97

6.79

58.83

3.60

78.71

4.79

78.51

3.15

71.90

2.94

90.54

9.85

77.68

5.53

76.27

16 TTF
3.63

63.13

0.54

95.96

4.26

58.41

2.72

74.76

4.73

65.52

3.88

59.00

1.91

75.91

2.63

73.51

1.89

72.33

1.67

90.81

1.15

50.16

2.64

70.86

17 FTT
6.49

75.45

2.34

95.51

10.46

64.25

11.33

83.50

11.68

72.04

8.66

60.56

4.73

81.29

7.59

78.79

4.70

72.43

4.25

91.38

8.92

77.85

7.38

77.55

18 FTF
7.11

76.1

2.68

95.81

10.99

64.35

12.77

83.45

12.90

71.33

9.66

60.33

5.03

81.72

8.02

79.31

4.83

73.05

5.08

92.26

10.67

78.32

8.16

77.82

19 CNN
42.85

71.91

11.67

92.88

57.03

61.88

38.64

76.69

44.07

75.56

59.03

60.06

39.81

73.98

37.84

75.00

43.29

69.05

16.88

90.65

34.50

82.39

38.69

75.46

20 RENN
73.71

77.28

96.36

96.75

58.37

63.57

83.74

84.88

69.51

71.70

56.53

59.83

74.41

81.08

78.36

81.72

71.27

73.67

91.05

92.57

75.00

80.65

75.30

78.52

21 ICF
13.16

75.77

3.33

95.73

15.98

63.53

13.85

83.24

17.79

70.90

14.29

59.22

13.06

80.54

8.50

79.02

10.40

73.95

9.73

91.69

42.55

78.64

14.79

77.47

22 Benchmark
100

75.69

100

95.01

100

62.90

100

82.39

100

79.51

100

60.78

100

77.85

100

78.16

100

76.33

100

91.61

100

82.74

100

78.45

Algorithm

/Data Set
Type Adult BCancer Bupa Credit Cylinder Diabetes Hepatitis Hungarian Ionosphere Voting TicTacToe Mean

1
----RC----

TTT

4.94

72.64

0.95

94.52

5.15

61.64

3.7

78.07

5.32

66.08

4.45

60.89

2.93

80.11

3.71

75.29

2.76

74.19

1.67

88.43

3.82

68.53

3.58

74.58

2 TFF
6.06

74.67

1.48

95.68

7.79

63.62

7.21

81.76

8.16

68.89

6.78

62.72

3.74

81.83

5.48

77.99

3.81

75.05

2.84

90.93

11.30

79.65

5.87

77.51

3 TFT
5.67

74.47

1.34

95.61

7.22

63.82

6.59

81.06

7.96

68.33

6.50

59.78

3.58

81.51

5.07

78.44

3.85

75.14

2.97

91.46

11.15

78.87

5.63

77.14

4 TTF
4.92

71.14

0.89

94.52

5.19

61.88

4.11

78.67

5.59

66.36

4.45

60.06

2.98

79.78

3.74

75.34

2.81

73.81

1.71

85.59

4.60

71.03

3.73

74.38

5 FTT
6.35

75.28

2.12

95.83

9.88

64.64

10.68

83.26

11.20

70.80

8.28

61.11

4.41

81.72

7.40

79.60

4.67

73.52

4.14

91.57

7.94

77.71

7.01

77.73

6 FTF
6.61

75.65

2.20

96.06

10.06

65.27

11.23

83.24

11.63

70.99

8.39

60.94

4.57

81.61

7.49

79.66

4.71

73.62

4.46

91.76

9.50

76.89

7.35

77.79

7
---RFC---

TTT

5.29

74.07

1.11

91.76

5.79

62.37

4.31

76.84

5.95

66.23

5.23

60.89

4.36

77.74

3.63

68.56

4.98

69.14

2.17

86.97

1.30

65.60

4.01

72.74

8 TFF
7.06

75.89

1.91

95.76

8.64

64.11

7.49

80.89

9.17

69.94

7.23

60.50

5.75

79.25

6.12

78.97

6.71

72.43

3.80

91.11

8.29

75.08

6.56

76.72

9 TFT
7.10

75.73

1.88

95.63

8.16

63.09

7.16

80.51

8.90

69.35

7.05

60.11

5.70

79.25

6.07

79.02

6.52

71.95

3.78

90.81

2.85

67.35

5.93

75.71

10 TTF
5.32

73.74

1.32

94.57

6.14

62.46

4.77

79.32

6.27

67.01

5.72

60.33

4.68

78.50

4.04

73.28

4.80

69.67

2.20

87.20

3.42

69.42

4.43

74.14

11 FTT
12.02

75.61

2.63

96.01

12.38

63.38

13.83

82.73

13.67

71.85

10.10

60.83

8.28

79.68

9.10

79.89

10.21

74.52

5.56

90.84

13.14

79.91

10.08

77.75

12 FTF
11.57

75.49

2.55

95.93

12.11

63.29

13.24

82.56

13.32

71.51

9.92

60.83

8.23

79.79

8.67

80.34

9.96

75.67

5.44

91.38

12.20

79.77

9.75

77.87

13
-MCOV-

TTT

4.67

70.81

0.68

95.61

5.27

62.17

4.07

78.65

5.61

67.16

4.55

60.94

2.82

79.68

3.84

77.41

2.95

71.48

1.87

91.72

4.03

69.98

3.67

75.06

14 TFF
5.02

65.53

0.75

96.01

6.1

61.40

4.61

76.45

7.39

67.59

5.16

57.50

2.58

76.88

4.25

75.75

2.50

72.38

2.39

90.35

3.09

54.90

3.98

72.25

15 TFT
6.36

73.54

0.97

95.76

7.61

63.77

6.48

79.76

8.31

69.97

6.79

58.83

3.60

78.71

4.79

78.51

3.15

71.90

2.94

90.54

9.85

77.68

5.53

76.27

16 TTF
3.63

63.13

0.54

95.96

4.26

58.41

2.72

74.76

4.73

65.52

3.88

59.00

1.91

75.91

2.63

73.51

1.89

72.33

1.67

90.81

1.15

50.16

2.64

70.86

17 FTT
6.49

75.45

2.34

95.51

10.46

64.25

11.33

83.50

11.68

72.04

8.66

60.56

4.73

81.29

7.59

78.79

4.70

72.43

4.25

91.38

8.92

77.85

7.38

77.55

18 FTF
7.11

76.1

2.68

95.81

10.99

64.35

12.77

83.45

12.90

71.33

9.66

60.33

5.03

81.72

8.02

79.31

4.83

73.05

5.08

92.26

10.67

78.32

8.16

77.82

19 CNN
42.85

71.91

11.67

92.88

57.03

61.88

38.64

76.69

44.07

75.56

59.03

60.06

39.81

73.98

37.84

75.00

43.29

69.05

16.88

90.65

34.50

82.39

38.69

75.46

20 RENN
73.71

77.28

96.36

96.75

58.37

63.57

83.74

84.88

69.51

71.70

56.53

59.83

74.41

81.08

78.36

81.72

71.27

73.67

91.05

92.57

75.00

80.65

75.30

78.52

21 ICF
13.16

75.77

3.33

95.73

15.98

63.53

13.85

83.24

17.79

70.90

14.29

59.22

13.06

80.54

8.50

79.02

10.40

73.95

9.73

91.69

42.55

78.64

14.79

77.47

22 Benchmark
100

75.69

100

95.01

100

62.90

100

82.39

100

79.51

100

60.78

100

77.85

100

78.16

100

76.33

100

91.61

100

82.74

100

78.45

Figure 4. Size and accuracy results for all data sets and algorithms. Each cell contains a percentage size value (top) and a percentage accuracy value
(bottom). The final column contains the mean size and accuracy values for each algorithm over all data sets. Benchmark values are listed in the final row.


