

Differentiating Diagnostic Theories through
Constraints over an Eight-valued Logic

Francisco Azevedo & Pedro Barahona1

1 {fa,pb}@di.fct.unl.pt

Departamento de Informática, Universidade Nova de Lisboa
2825-114 Caparica — Portugal

Abstract. In this paper we address the issue of
diagnosing propositional theories where only some
components are observable. More specifically, the
goal is to find tests that allow the differentiation of
two alternative theories. This subject is addressed
in the context of differential diagnosis of faulty
gates in a VLSI circuit where the only observable
findings are its input/output bits, but may be
extended to other areas, namely in diagnosing a
theory of an agent where knowledge about it is
based on its response to external stimuli.

To model these problems we developed an eight-
valued logic that describes the dependency of the
findings on the competing theories. Additionally,
we implemented a constraint solver to handle this
eight-valued logic domain, and to solve efficiently
the problem of obtaining differentiating tests that
allow the elimination of one of the alternative
theories. We discuss the limitations of the
currently more advanced techniques to handle
disjunctive constraints, and propose a new method,
iterative time-bounded search (ITBS) to overcome
them. The method is exemplified and tested in the
problem of generating differential test patterns for
digital circuits.

1. INTRODUCTION
When the output of some system does not correspond to its
expected behaviour for a given input, one is faced with the problem
of diagnosis. In this paper we are particularly concerned with
systems modelled by means of a set of propositional rules where
only the systems’ input and output may be observed. This means
that although we may assume alternative components for the
system model, we may not, in general, directly monitor them
because they are not accessible. This is the case dealt with in this
paper, VLSI combinational circuits, where the propositional theory
is embodied in the circuit components (gates) but only the input
and output bits are accessible for monitoring. Nonetheless, the
approach is more general and can be adapted to other situations

(e.g. an agent whose models can only be tested by observing its
behaviour for some inputs).

In this context, diagnosing a system requires the generation of
some specific input that makes the faulty component visible at the
output. We denote such input as an input test pattern, following the
usual VLSI terminology, where this is known as the Automatic
Test Pattern Generation (ATPG) problem. Current techniques deal
with this problem by trying to generate input vectors that cause
different outputs in two circuits (among the normal and the
alternative abnormal circuits) [6,5,10]. Although there are
techniques to avoid duplicating the whole circuit, the complexity
of the diagnosis increases significantly with the extra circuit.

Alternatively, a technique for generating test patterns for VLSI
circuits was suggested in [12] to code the dependency of a digital
signal on the (faulty) state of a gate: the Boolean domain that
models digital circuits was extended with two extra values that
denote such dependencies. A test pattern is thus an input yielding
one such extra value at some output bit.

We have extended this idea further to differentiate two
alternative models, and introduced an 8-valued logic whose values
not only denote dependency on faulty gates, but also discriminate
the dependencies between two sets of faulty gates [3]. In diagnosis,
there might be two sets of faults that, given some input, yield the
same (faulty) output. Hence, we are interested in generating
differential input test patterns, which may differentiate between
two alternative models. A differential test pattern is then an input
of the circuit that produces an output containing one of the values
that discriminate between the two diagnostic sets of arbitrary size.
Despite being inspired in that 8-valued logic, a previous system we
developed was implemented with a "traditional" 0/1 Boolean
solver.

In this paper we present a specialised constraint solver which,
by handling this 8-valued logic directly, greatly improves the
average performance of our previous system to solve problems in
this domain. Moreover, the problem of differentiating alternative
models imposes that some specific values appear in any one of the
outputs of the system (e.g. the VLSI circuit). This corresponds to a
disjunctive constraint, which in many cases cannot be handled
appropriately even by the currently most advanced techniques
available in constraint programming, namely the cardinality
constraint [13]. In the paper we thus propose a new technique,

iterative time-bounded search (ITBS), to overcome these
limitations.

The paper is organised as follows. Section 2 presents the 8-
valued logic. Section 3 shows how it can be used to model the
generation of differential test patterns in combinational circuits.
Section 4 describes a constraint solver to handle directly the 8-
valued logic. Section 5, introduces and justifies the ITBS method.
Experimental results obtained in the generation of differential test
patterns are discussed in section 6, before the conclusions are
summarised in the last section.

2. THE 8-VALUED LOGIC
The purpose of defining our 8-valued logic is to be able to trace the
dependency of a truth value on the alternative theories that are to
be differentiated. It is important to notice the context in which this
differentiation takes place.

Initially, there is a model N of a circuit (or some more general
system) that is assumed to be correct. When an output O is
observed which is not consistent with the input I and the circuit
model, such output can be explained by alternative theories that
justify the anomalous finding. Let us consider two such theories, T1
and T2 whose changes regarding theory N consist of some (faulty)
components, denoted by F1 and F2 respectively (F1 ⊆ T1, F2 ⊆ T2)
and that given input I logically entail output O. Since both theories
logically entail, from input I, an output O which is different from
that entailed by the initial model N, I is an input test pattern for
both F1 and F2. However, I does not enable the differentiation
between F1 and F2, since both produce the same output for input I.
We are thus concerned with finding a differential test pattern D,
that given as input to theories T1 and T2, yields two different
outputs, O1 and O2.

In case of a digital circuit, outputs O1 and O2 will be different if
at least one of the output bits is different, and this means that such
bit depends on either F1 or F2, but not on both. The logic presented
in this section captures this notion of dependency by means of its 8
values. Each value is denoted by a pair <p-X>: p ranges over the
set {n, m, d1 and d2} and denotes the dependency on the alternative
theories; X ranges over the usual 0/1 truth values and is the
"physical" truth value that could eventually be observed in the
behaviour of the agent with the initial model N. The intuitive
meaning of the 8 values is thus the following:

n-X the truth value is independent from faults F1 and F2. The
faults to the initial theory N have no influence on the
physical truth value which is always X.

d1-X the truth value depends on faults F1 but not on F2. If F1
occurs, the physical truth value is the complement of X;
otherwise it is X, as yielded with N and theory with F2.

d2-X similar to the previous, with F1 and F2 swapping roles.
m-X the truth value depends on both faults F1 and F2. If any of

them occurs, the physical truth value is the complement
of X.

With the above definitions let us analyse the problem of encoding,
in general, the truth value Z of some proposition in this 8-valued
logic. Table 1 shows the 8 possible cases.

Table 1. Truth value of a proposition with a normal model and two
different theories

N 0 0 0 0 1 1 1 1
T1 0 0 1 1 0 0 1 1
T2 0 1 0 1 0 1 0 1
Z n-0 d2-0 d1-0 m-0 m-1 d1-1 d2-1 n-1

In the first column of the table, the physical truth value is the same
(0) in all cases, i.e. when either one or none of the theories T1 and
T2 are considered. In the second column, the physical truth value is
0 in the initial theory N and in theory T1, but 1 in theory T2. It thus
depends on faults F2 (but not on F1) and is encoded as d2-0. In the
fourth column, the physical truth value is 0 in the initial theory N
but 1 in T1 and T2. It is thus dependent on both F1 and F2 and
encoded as m-0.

2.1 Boolean operations
A similar analysis can be performed to define the semantics of the
usual Boolean operations. For example, the semantics of the 8-
valued logic exclusive disjunction (xor) is shown in Table 2.

Table 2. XOR truth table in 8-valued logic
xor m-0 d2-0 d1-0 n-0 n-1 d1-1 d2-1 m-1
m-0 n-0 d1-0 d2-0 m-0 m-1 d2-1 d1-1 n-1
d2-0 d1-0 n-0 m-0 d2-0 d2-1 m-1 n-1 d1-1
d1-0 d2-0 m-0 n-0 d1-0 d1-1 n-1 m-1 d2-1
n-0 m-0 d2-0 d1-0 n-0 n-1 d1-1 d2-1 m-1
n-1 m-1 d2-1 d1-1 n-1 n-0 d1-0 d2-0 m-0
d1-1 d2-1 m-1 n-1 d1-1 d1-0 n-0 m-0 d2-0
d2-1 d1-1 n-1 m-1 d2-1 d2-0 m-0 n-0 d1-0
m-1 n-1 d1-1 d2-1 m-1 m-0 d2-0 d1-0 n-0

As expected, xor-ing independent values (n-0/1) produces
independent values according to the usual xor truth tables (centre
of Table 2). Xor-ing a d1 signal (truth value) and a d2 signal results
in an m signal reflecting the dependency on both F1 and F2. Due to
the nature of the exclusive disjunction, when both inputs depend
on the same faults, the output of the gate does not depend on any,
and is thus an n signal. Perhaps more interestingly, xor-ing an m
signal (dependent on both sets of faults) with a signal that only
depends on a set of faults, makes the output solely dependent on
the other set of faults.

This latter case is explained in Table 3 below. Columns N, T1
and T2 represent the cases to consider. The first two lines represent
the physical truth values which are to be xor-ed: input signal m-1,
takes the physical truth value 1 in theory N, but 0 in theories T1 and
T2, since it depends on both faulty components, as an m signal;
input signal d1-0, takes the physical truth value 0 in theories N and
T2, but 1 in theory T1 (it depends only on F1 as a d1 signal). The
physical truth value of the output is obtained by xor-ing the
physical truth values of the inputs. Since the physical output is 1 in
both theories N and T1, but 0 in T2 it is coded as d2-1.

Table 3. Physical output of an xor-gate with inputs m-1 and d1-0
N T1 T2

m-1 1 0 0
d1-0 0 1 0

m-1 ⊕ d1-0 1 1 0

Similar reasoning was used to define the semantics of all the usual
Boolean operations implemented by digital gates for the extended
8-valued logic.

3. MODELLING ALTERNATIVE DIAGNOSTIC
THEORIES IN DIGITAL CIRCUITS

We now show how to model a faulty digital circuit for which there
are two alternative diagnoses available. As usual we will assume
that the faults correspond to some of the circuit gates being either
stuck-at-0 or stuck-at-1. This is equivalent to inserting an
additional buffer at the output of the faulty gates and making this
buffer faulty. By doing so, it is only necessary to model one kind of
faulty gate, the buffer, leaving the rest of the circuit unchanged.
These buffers are referred to below as S-buffers.

According to the notation of the previous sections, theory N
corresponds to the circuit where all the S-buffers are functioning
correctly. In diagnostic theory Ti, (i in {1,2}), some gates are stuck
(corresponding to the Fi component of theory Ti) and the output of
the corresponding S-buffers have a fixed physical truth value.
Table 4 below shows the resulting model for all S-buffers.

Table 4. Truth table for the 8 different types of S-buffer
Input=

Dependency
m-0 d2-0 d1-0 0 1 d1-1 d2-1 m-1

T1/0, T2/0 n-0 n-0 n-0 n-0 m-1 m-1 m-1 m-1
T2/0 d1-0 n-0 d1-0 n-0 d2-1 m-1 d2-1 m-1
T1/0 d2-0 d2-0 n-0 n-0 d1-1 d1-1 m-1 m-1
T1/0, T2/1 d2-0 d2-0 d2-0 d2-0 d1-1 d1-1 d1-1 d1-1
T1/1, T2/0 d1-0 d1-0 d1-0 d1-0 d2-1 d2-1 d2-1 d2-1
T1/1 m-0 m-0 d1-0 d1-0 n-1 n-1 d2-1 d2-1
T2/1 m-0 d2-0 m-0 d2-0 n-1 d1-1 n-1 d1-1
T1/1, T2/1 m-0 m-0 m-0 m-0 n-1 n-1 n-1 n-1

The table entries are explained with an example. The fourth line
corresponds to an S-buffer that is stuck-at-0 in diagnostic theory T1
and stuck-at-1 in theory T2, and the first entry in that line
corresponds to its output, given an input signal m-0 (i.e. being an
m signal, the input of the gate denotes that it depends on both
faults F1 and F2, i.e. on other faulty gates in theories T1 and T2).
This case is depicted in Table 5.

Table 5. Output of an S-buffer (stuck-at-0 in T1 and stuck-at-1 in T2) for
input m-0

 N T1 T2
m-0 0 1 1

S-buffer (T1/0,T2/1) output 0 0 1

The first line corresponds to the physical truth value that is input to
the buffer, which is 0 in theory N and 1 in both theories T1 and T2.
In case of theory N (no faults) the buffer behaves correctly and
outputs the same value of the input. In theory T1 the buffer is
stuck-at-0 and thus outputs 0. Finally, in theory T2 the buffer is
stuck-at-1 and thus outputs 1. Inspection of the output, shows that
it is 0 in both theories N and T1, but 1 in theory T2; it is thus coded
as d2-0.

4. A CONSTRAINT SOLVER FOR AN 8-
VALUED LOGIC

In a previous approach [3], despite using an 8-valued logic, we
addressed the problem of differential diagnosis of digital circuits
with a 0/1 Boolean solver (the extra 6 values were propagated to
the output, by analogy with the demons approach taken in [6] but
with choice points to cope with the different possibilities)
implemented in SICStus [11]. The basic constraints ‘not’, ‘and’
(with an arbitrary number of inputs) and ‘xor’ were modelled as

user-defined constraints and the others (e.g. ‘or’ and ‘nand’)
modelled in terms of the basic ones.

To implement the solver, not only was necessary to adapt the
truth tables of the usual Boolean operators (plus the faulty gates)
for the particular encoding of the 8-valued logic, but also to specify
a constraint propagation strategy.

All user-defined constraints that implement this 8-valued logic
were thus activated by guards, normally fired at instantiation of one
of its variables. In addition to these higher-level constraints,
cardinality constraints were used, as well as constructive
disjunction and conjunction for some relations between 2
variables. By so doing, the constraint solver imposes a form of
consistency stronger than node consistency, but somewhat weaker
than arc consistency (too costly to maintain). Though possibly not
optimally, we think that the most interesting cases for constraint
propagation were considered.

For example, when one of the variables in a binary ‘xor’
constraint takes value n-0 (the guard checks this condition) the
constraint is simply rewritten as an equality of the other two
variables. As another example, if one variable takes value m-1,
there are eight possible pairs of values for the other two variables,
and the ‘xor’ constraint is thus rewritten into the constructive
disjunction of these cases. In a final example, if the output of an
'and-gate' takes value n-0, the ‘and’ constraint is fired and may be
replaced by the cardinality constraint imposing that at least one of
the inputs be n-0 (in fact, there are some combinations of di and m
signals that also yield value n-0 when ‘anded’; the ‘and’ constraint
checks this possibility).

5. ITERATIVE TIME-BOUNDED SEARCH
As explained in the introduction, to be a differential test pattern, an
input must produce a di signal in one of the output bits of a digital
circuit. This is a typical disjunctive constraint (either in the first
output bit, or in the second, or the third, …). A classical technique
to efficiently handle such constraints consists of delaying the
choice of the alternatives until a final labelling eventually makes a
commitment to one of the disjuncts. Such technique, using the
cardinality operator [13], is usually much more efficient than
traditional depth-first search, since making an early mistake can be
very costly to undo.

However, the least commitment strategy has a price: the
problem is kept less constrained than that resulting from making an
early commitment. In particular, less propagation is usually
possible, or only weaker heuristics may be used in the less
constrained problem.

The problem with early commitment is thus the difficulty in
undoing the wrong choices. But often, there is a huge difference in
complexity of solving the different problems that result from
making each of the possible choices. Some of these, might also be
much more easy to solve than the whole problem. If this is the
case, it pays to take some time trying to solve each of the sub-
problems in a round-robin discipline. To make the strategy
complete, the time allowed for each of the tries may be increased in
subsequent round-robin turns. This is the basic idea behind the
iterative time-bounded search (ITBS) that we propose for this kind
of problems and applied for the specific case of finding differential
test patterns.

5.1 The method
The method may be more completely described as follows. Being

the initial problem composed of a disjunction with k disjuncts,
ITBS assigns a time limit T to solve each of the sub-problems
defined with a commitment to one of the disjuncts. If all sub-
problems were aborted due to exceeding time limit T, this limit is
doubled (more generally multiplied by some factor f). The time is
thus increased in each of the rounds, until a solution is found.

ITBS thus shares the underlying idea of iterative deepening and
other techniques (e.g. [7], [9], [14]) to overcome the problems of
depth-first search, by searching side-branches before fully
exploring a previously selected branch of the search space.

5.2 Complexity Analysis
If a solution is found in round r (r ≥ 0), the worst execution time of
ITBS is A = k*(T+T*f+…+T*f r), occurring if the best choice is
the last. Compared with the best execution time achieved when
committing to the right choice but with no time limit, i.e. B=T*f r-1,
ITBS is penalised by a factor of

A / B = [k*T*(f r+1-1)/(f-1)] / (T*f r-1) ≈ k*f
If B is much less than time C obtained when solving the full
problem with a least commitment strategy (more precisely, when
B < C / (k*f)), the ITBS strategy pays off. ITBS thus pays off
whenever there is some heuristic to solve one sub-problem much
faster than the whole problem (with least commitment). This is, of
course, problem dependent. We tested this strategy in the problem
of finding differential test patterns.

5.3 Heuristics
To do so, we tried three different scenarios. In the first, we used the
least commitment approach, implemented with a cardinality
operator on the output bits that included a d value in their domains
after setting up the circuit. To speed up this execution, we labelled
first the input bits that lead to the possible S-buffers, and then the
inputs that lead to the possible output bits. This is the Cardinality
(#) heuristic.

The second scenario adopted the ITBS strategy with a heuristic
that is similar to the previous one, but which is applied only after
committing to one of the output bits. This is the ITBS-Bit strategy.
The advantage now is that by committing to some output bit, more
propagation is possible in principle and less input bits are relevant,
which thus decreases the search space.

The third scenario, ITBS-Path, also used the ITBS technique
but with a different heuristic (Path) that is obtained after selecting a
definite d-signal to an output bit. Since this d-signal depends either
on faulty components F1 (values d1-0 and d1-1) or on faulty
components F2 (d2-0 and d2-1), it is then mandatory that the
corresponding S-buffers produce the d signal. This is imposed with
a cardinality constraint. To reach the output bit, there must be a
differential test path, i.e. a path from an S-buffer to that bit [3]. We
then label the variables starting in the d-signal “backwards” to an
S-buffer in a way that they remained always dependent on F1 or F2.
We then label the input bits that are relevant to the path, i.e. that
allow the d signal to reach the output bit. We did it starting at the
S-buffer (the path start gate) and proceeding backwards through its
dependencies, and eventually reaching some input bits, which are
then labelled first. We then followed along the chosen differential
test path. For each gate in the path, we would similarly find the
input bits of the circuit that are relevant for this gate, and label
them in the second place. This process finishes when reaching the
final path bit (a circuit output).

6. EXPERIMENTAL RESULTS
To test the performance of our system, we used the ISCAS set of
benchmark digital circuits [8], widely used by the Electronics
Computer Aided Design community for testing several digital
circuit design tools and techniques.

Table 6. ISCAS benchmark circuits

circuit

gates
#in
bits

#out
bits

circuit

gates

#in
bits

#out
bits

432 196 36 7 2670 1426 233 140
499 243 41 60 3540 1719 50 22
880 443 60 26 5315 2485 178 123

1355 587 41 32 6288 2448 32 32
1908 913 33 25 7552 3719 207 108

For the problem of differentiating fault diagnoses we created, for
each circuit, some specialised benchmarks [2]. Each benchmark
consists of a set of all minimal diagnoses that explain some faulty
behaviour of a circuit. These are the most interesting diagnoses to
differentiate as they are tightly related. For each problem, the
number of variables is the number of gates plus the number of
input bits, and the number of constraints is roughly the double of
the variables.

Table 7 below shows some of the experimental results obtained
with our solver, a system implemented in SICStus over Linux on a
PentiumIII/500 (times reported are all in seconds).

Table 7. Differentiation results with the different heuristics
ITBS

Bit Path
circuit F1 F2 No Time Ni bit Lim TT Ni d Lim TT Ni
432 47/1,430/0 270/1,430/0 3 n/a 36 3 5 10.2 36 2 5 5.2 36
432 223/0,338/1 223/0,319/0 4 396.4 36 2 5 5.3 36 2 5 5.2 36
432 223/0,430/1 223/0,338/1 4 0.2 36 2 5 5.3 36 2 5 5.3 36
432 223/0,386/1 223/0,319/0 4 373.0 36 2 5 5.2 36 2 5 5.2 36
432 37/1,105/0 270/1,430/0 7 n/a 36 1 5 0.3 19 1 5 0.3 18
432 329/0,430/0 270/1,430/0 5 0.2 36 1 5 0.2 27 1 5 0.2 27
6288 3486gat/0 2434gat/1 23 4.2 32 1 5 4.1 20 3 5 14.0 20
6288 5348gat/1 5163gat/1 7 4.8 32 1 5 4.8 32 2 10 74.8 32
6288 5461gat/0 4808gat/1 7 4.8 32 1 5 4.8 32 5 5 24.9 32
6288 6285gat/0 5727gat/1 2 5.3 32 1 5 5.8 32 1 5 5.7 32
6288 1173gat/0 1128gat/0 17 4.8 32 1 5 4.6 32 1 5 4.8 32
6288 1546gat/1 1343gat/1 23 n/a 32 n/a n/a n/a n/a 1 5 4.0 20

The two sets of faults F1 and F2 that we want to differentiate
consist of one or more faults in the form gate/stuck-at-value; No is
the number of output bits that remain with d-values in their
domains after all the gate constraints have been posted and
propagated; Ni is the number of input bits that must be labelled to
guarantee the solution; TT is the total time needed to obtain the
solution with ITBS, being Lim the time limit when it was found; bit
indicates on which of the possible output bits the solution was
found; and d indicates the number of the successful d-value choice.
Non available values represent aborted executions.

6.1 Discussion
The cardinality operator to deal with disjunctive constraints is
often effective. However, in a significant number of cases the
results are quite disappointing. In the smaller circuit, c432, the first
test shown could not be solved in any acceptable time limit (tens of
hours). In fact, by not committing to any of the 3 output bits where
a d signal occurs, no significant pruning of the search space (236)
was achieved. This is not the case with the ITBS method where
such commitment is enough to propagate enough information to
prune the search space. Of course, the most effective choice was

not always considered first. But here the time bounded nature of
the ITBS method avoids a strong commitment to the wrong choice.
For example, ITBS with the Bit heuristic easily finds a solution in
the 3rd choice, being interrupted after 5 seconds of fruitless search
in the previous 2 choices. Similarly, ITBS with the Path heuristic
finds a solution with the second choice of a d signal.

It is not simple to analyse how the pruning takes place. In
general, it is due to constraint propagation, as the number of bits to
label is the same in all heuristics. There are some exceptions
though. In one of the experiences with the c432 circuit, committing
to some output bit immediately reduces the number of bits to label
from 36 to 19 (ITBS-Bit) or 18 (ITBS-Path) with the
corresponding efficiency improvement.

Of course, a heuristic is not always guaranteed to succeed. Even
when there is a commitment to some output bit (and hence a
stronger heuristic (Bit) compared to the case with no commitment
(#)), this stronger heuristic is not guaranteed to find a solution (e.g.
last line in Table 7). However, using the other more specialised
heuristic (Path) one was always able to find a solution (sometimes
only at the cost of being diverted from the wrong choices by the
time limits of ITBS).

This shows the importance of the ITBS technique as an
alternative to the cardinality operator. The former allows the use of
more powerful heuristics in the labelling phase of problem solving.
The risks associated to the wrong choices are softened by the time
bounded commitment to them.

7. CONCLUSIONS AND FURTHER
RESEARCH

In this paper we presented an 8-valued logic and showed how it
could be used to differentiate between alternative diagnostic
theories in the cases where the initial theory is not fully observable.
The methodology is illustrated in the problem of generation of
differential test patterns in combinational circuits.

This problem presents a rather large search space, and to solve it
efficiently we developed a specialised constraint solver for this 8-
valued logic. This solver appears to be quite effective to handle
these problems but its efficiency has still to be properly assessed (it
should be compared with one that could be automatically generated
from the specification of our logic [1]).

The disjunctive nature of some constraints in the problem
pushed to the limit the usual techniques to handle these constraint
solving problems, namely the cardinality operator. We therefore
proposed a new technique, iterative time-bounded search, that aims
at avoiding the dramatic consequences of bad initial choices in the
depth-first search used in the labelling phase of constraint solving.

So far we have not compared our results with those obtained in
the ECAD area ([6,5,10]), but we intend to do it soon. We expect
that our modelling technique, by using only one circuit rather than
duplications of the circuit, may be competitive with the current
approaches in this area, even if requiring some tuning of the
existing constraint solver (this hypothesis will be tested in a joint
project with colleagues from this area). Another interesting result,
lies in the possibility of extending our modelling to other ATPG
problems, such as optimisation problems (e.g. generation of test
patterns that detect a maximum number of faults). Rather that using
more values to represent dependencies, the signals could carry set
variables, denoting the sets of faults they depend on. This
modelling would therefore rely on the use of set constraints [4].

ACKNOWLEDGEMENT

The first author was financially supported by “Sub-Programa
Ciência e Tecnologia do 2º Quadro Comunitário de Apoio”.

REFERENCES

[1] Krzysztof R. Apt and Eric Monfroy. Automatic Generation of
Constraint Propagation Algorithms for Small Finite Domains, in
Proceedings of CP’99, Joxan Jaffar (Ed.), Springer, pp. 58-72,
1999.

[2] F. Azevedo and P. Barahona. Benchmarks for Differential
Diagnosis, at URL httt://www-ssdi.di.fct.unl.pt/~fa/differential-
diagnosis/benchmarks.html.

[3] F. Azevedo and P. Barahona. Generation of Test Patterns for
Differential Diagnosis of Digital Circuits (Extended Abstract), in
Proceedings of CP’98, M. Maher and J.-F. Puget (Eds.), Springer, p.
462, 1998.

 Long version in Proceedings of the 1998 ERCIM/COMPULOG
Workshop on Constraints, K. Apt, P. Codognet and E. Monfroy
(Eds.).

[4] C. Gervet, Interval Propagation to Reason about Sets: Definition
and Implementation of a Practical Language, Constraints
International Journal, vol. 1, Number 3, Kluwer Academic
Publishers, pp.191-244, March 1997.

[5] T. Gruning, U. Mahlstedt, H. Koopmeiners, DIATEST: A Fast
Diagnostic Test Pattern Generator for Combinational Circuits,
Proceedings of the IEEE International Conference on Computer-
Aided Design (ICCAD91), pp. 194-197, 1991

[6] I. Hartanto*1, V. Boppana, W.K. Fuchs, J.H. Patel, Diagnostic Test
Pattern Generation For Sequential Circuits, Proc. 15th VLSI Test
Symposium (VTS), Monterey, pp. 196-202, April 1997.

[7] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search, in
Proc. of the 14th Int. Joint Conf. on A.I., 1995.

[8] ISCAS. Special Session on ATPG, Proceedings of the IEEE
Symposium on Circuits and Systems, July 1985.

[9] P. Meseguer. Interleaved Depth-first search, in Proceedings of the
15th Int. Joint Conf. on A. I., pp. 1382-1387, 1997.

[10] I. Pomeranz, S.M. Reddy, A Diagnostic Test Generation Procedure
for Synchronous Sequential Circuits based on Test Elimination,
International Test Conference (ITC98). Washington, D.C., USA, pp.
1074-1083, 1998.

[11] Programming Systems Group of the Swedish Institute of Computer
Science. SICStus Prolog User’s Manual, 1995.

[12] H. Simonis. Test Generation using the Constraint Logic
Programming Language CHIP, in Proc. of the Sixth Int. Conf. on
Logic Programming, MIT Press, pp 101-112, 1989.

[13] P. Van Hentenryck and Y. Deville. The Cardinality Operator: a
new logical connective and its application to constraint logic
programming, in: Eighth International Conference on Logic
Programming, 1991.

[14] T. Walsh. Depth-bounded discrepancy search, in Proc. of the 15th
Int. Joint Conference on Artificial Intelligence, 1997.

