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Abstract. To offer a generic frame which groups together several
interval algebra generalizations, we simply define a generalized in-
terval asatuple of intervals. After introducing the generalized rela-
tions we focus on the consistency problem of generalized constraint
networks and we present sets of generalized relations for which this
problem is tractable, in particular the set of the strongly-preconvex
relations.

1 Introduction

In many areas of Artificial Intelligence, Allen’sInterval Algebra(l1A)
is used for temporal representation and reasoning [1]. Allen takes
intervals as primitive temporal entities and considers 13 atomic rela-
tions betweentheseintervals(fig. 1). |A wasgeneralizedin numerous
waysand particularly at thelevel of the basic entities considered. No-
tably, many formalisms [11, 12, 6, 3, 5] consider tuples of intervals
satisfying particular atomic relations of | A asbasic entitiesinstead of
intervals. In the continuity of Balbiani et al. [2] who define arepre-
sentation subsuming all these formalisms by introducing generalized
intervals, we define a framework still more flexible. This representa-
tion enables us to reason with qualitative constraints on generalized
intervals still more “general”. In the following section we define the
generalized intervals and the relations we consider between these en-

tities. Then in section 3 we will remind the notion of convexity and
we will introduce the weak preconvexity in section 4 — both notions
introduced respectively by Nokel [9] and by Ligozat [7] for IA. Sec-
tion 5 will be devoted to the generalized constraint networks and to
the path-consi stency and weak path-consistency methods. |n sections
6 and 7 we will characterize sets of generalized relations for which
the consistency problem of a generalized network is a polynomial

problem. Finally we will show that these results of complexity sub-
sumethe onesobtainedin [2].

2 The Generalized Interval Algebra
2.1 The Generalized Intervals

We define a generalized interval X to dimension p (with p > 0),
caled a p-interval, as a p-tuple of intervals z1, ... ,z, of the rea
line. This definition is very general and includesthe definition of the
generalized intervals of Ladkin [11, 12], Ligozat [6], and the one
of the n-blocks [5], an extension to any dimension n of the Allen’s
intervals. In all these definitions a generalized interval is a tuple of
intervals satisfying specific constraints expressiblewith Allen’srela-
tions (seefig. 1):

— for Ladkin ap-interval isaof p-tupleintervals z1, ... , z, of the
real linesuchthat z; and z; 41 satisfy the atomic relation “ precedes”.
Asan example of Ladkin’s 3-interval we have:
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x1 x2 x3
P 1 | 1 |
— Ligozat defines a generalized p-interval asatuple of p — 1 inter-
vaszi, ..., rp—1 SUchthat «; satisfieswith x4, theatomicrelation

“meets’. Hereis an example of aLigozat 's 4-interval:
x1 X2 x3

— The n-blocks are the blocks of the Euclidean space of dimension
n whose sides are parallel to the axe of some orthogonal base. A n-
block is characterized by its n projectionsonto the n axe. An example
of a3-block follows:

x3

X2

x1

Although the projections of an-block are on distinct axe, we can rep-
resent them on asameline. Hence, an-block can be represented by a
n-tupleof intervalsz, . .. , z,. Unlikethe previoustwo cases, every
pair (z;, ;) cansatisfy any |A atomic relation.

So our notion of generalized interval is very general since it sub-
sumes those previously cited. Moreover, we do not consider p-
intervals with a fixed p. Two generalized intervals can have two dif-
ferent number of sub-intervals (contrary to the generalized intervals
considered in [2]). Ancther difference with the generalized intervals
of [2] is that our generalized intervals do not have the same rigid
structure. In the next section we are going to present the relations
considered between the generalized intervals.

2.2 The generalized relations

In the sequel we will denote the set of matricesn x p onaset F by
M(E)y«p and the set of the 13 atomic relations of 1A by Ay:.

Relation | Symbol |Reverse Meaning Dim
precedes | p pi %‘ y 2
meets m mi ’f‘ y 1
overlaps ) oi ’X—‘ y 2
starts s s — ) 1
during d di y — 2
finishes | f i T 1
equals eq eq — 0

Figure 1. Theatomicrelationsof IA: A;p;.

The set of the atomic relations between ap-interval and ag-interval,



Ay, 4, is defined by the set of the matrices p x ¢ of the IA atomic
relations:
Apg ={A: A€ M(Aint)pxq}

Let X beap-interval, Y ag-interval and A € A, ,, X and YV sat-
isfy A, denotedby X AY,iffvi € 1,... ,pandVy € 1,... ,q,
x; Aij y;. A p-interval and a g-interval satisfy one, and only one,
atomic relation from A4, ,. These ones are complete and mutually
exclusive. As an illustration, in the following figure are represented
az-interval X = (z1,22) anda3-interval Y = (y1, y2, ys):

3 oxi o2y x2
b . b eq bt by

Wehavex |~ " )y, x (¢4 X, Y[ b eqg bi | Y.
ot bi bi bi eq b b oeq

Let usremark that there exist generalized atomic relations which can
be never satisfy. For instance no pair of 2-intervals can satisfy the
b b

bi b

a p-interva and a g-interval in the generalized interval algebra is
the power set of A, ., i.e. 27, Given arelation R € 2*7¢, a
p-interval X and ag-interval Y, X and Y satisfy R iff there exists
A € Rsuchthat X AY. Letamatrix M € M(2%int),., begiven,
wewill note [T M therelation of 27 defined by:

atomic relation < . The set of relation considered between

[[M={Ae4,,: AjeMj1<i<pandl<j<aql

Let arelation R € 27 be, Ry;;,withl < i < pandl1 < j <g,
denotesthe Al relation: Ry;; = {A € Ain: : 3B € R, Bi; = A},
and R isthe matrix M(2%int), ., definedby (Ry):; = Ryi;. We
can easily prove the following proposition:

Proposition 1 Let R, S € 2*»¢ be (a) R C [[ Ry, and (b) if
RC SthenRy;; C Sy, withl <i<pandl <5 <gq.

When R =[] R, issatisfied we will say that R is saturated.

2.3 The Fundamental Operations

The fundamental operations, intersection (N), union (U), composi-
tion (o) and inverse (7') are defined on the set of the generalized
relations. The binary operations intersection and union are the usual
homonymous set operations. The operationsinverseand composition
are defined from the ones of 1A:

Definition 1

o Let A e A, be, A7 = Bwith B € Ay, and B;; = A}
wherel < i < pandl < j < q.Let R € 279 be, B! =
{A™': A e R}

o let R € 2*7aandS € 297 be, Ro S = [[ M, with M ¢
M(2%int) . and Vi € 1,...,pandj € 1,...,r, My =
Mi<k<q{RLik © Spks}.

We can notice that for each atomic relation A and for each relation
R, (A7)~ = Aand(R™!)~! = R. Theoperation of composition
defined here is different from the one of [2]. Moreover these funda
mental operations satisfy the following properties:

e X RT'YIff Y RX,
elf3Zsuchthaa X RZandZ SY thenX RoSY.

Contrary to the composition in A, the converse of the last implica-
tion is not true, for instancelet R={( b )} and S={( b eq )}
be. By considering the two generalizedintervals z = (z1) andy =

(y1, y2) from thefollowing figure satisfying Ro S = {( b b )}
X1 Y1

Y2
it is easy to seethat there doesnot exist al-interval z = (=) satisfy-
ing with y therelation {(b eq)} sincey: and y» are equal. We will
seein the sequel that it does not matter. For the saturated generalized
relations we can prove the following proposition:

Proposition 2 Let R, S € 2**#:¢ betwo saturated relations.

(@ R = [IM, with M € M(2%t) ., andVi €
1,...,pandj € l,...,q, My :(Riij)_l,
) RN S = [IM, with M € M((2%nt),,andV¥i €

1,...,pandj€l,...,q, Miyy; = Ryi; N Sy;.

Proof (a) Let A € R~ be. AsA™ € R, Vi € 1,...,p ad
Vi€, ...,q (A;)7" € Ry . Hence Aj; € (Ryiy) ™' it follows
that A ¢ J[M.Let A € [[M be A;; € (Ry;)~", therefore
(A;)7' € Ryy and(A™Y)i; € Ryiy. It followsthat A™' € T Ry.
SinceR=[[R,, A" ¢ RandA e R™'.(b)Let A€ RN S be.
A€ Rand A € S, consequently A;; € Ryi; N Syq;. Thisimplies
that A € [TM.Let A € T[ M be. Ai; € Ryi; N Sy, therefore
Ai; € Ryijjand A;; € Spi;.Hence, A€ [ R, and A € T[ 5,. As
R and S are saturated we deducethat A € Rand A € S. O

3 The Convex Relations

In this section and the following one we will define two particular
subsets of generalized relations: the set of the convex relations and
the set of the preconvex relations. For this purpose we will extend
some notions introduced by Ligozat [7, 8] to redefine the convex
relations [9] and the ORD-Horn relations [10] (called preconvex re-
lations by Ligozat) of IA. Ligozat arranges the atomic relations of
A;ne inapartia order which definesalattice: theinterval lattice (see
fig. 2). From this order we organize the atomic relations of A, , ina

Figure 2. Theinterval lattice (A;p:, <).

partial order C: let A, B € A, 4 be,

ACBiffViel,... ,pandVje1,...,q, Ay < Bi,.

(Ap,q4, C) defines a lattice too, called the generalized (p,q)-lattice.
Since (A;,q, C) is the product order of (A;xn¢, <) each interval of
the (p,q)-lattice correspondsto a Cartesian product of p x ¢ intervals

of theinterval lattice:

Proposition 3 Let[A, B] beaninterval of the (p,g)-lattice. We have:
[4, B] = [I M, with M € M(24i"t),., andVi € 1,... ,p and
J€L, ..., q M= [A,‘],B,‘J].

Now we extend the definition of convex closureinthefollowing way:

Definition 2 Let R € 2*#¢. The convex closure of R, denoted by
I(R), isthe relation of 2».« corresponding to the smallest interval
of the generalized (p,q)-lattice containing R.



I(R) always exists because the intersection of two intervals of the
(p,0)-lattice isan interval too. We have the following properties:

Proposition 4 Let R, S € 2*#¢ and T € 24" be.

@ RCI(R)yandI(I(R))=I(R),
(b) if R C SthenI(R) C I(S),

(© I(R) = TIM, with M € M((2%nt),,and¥i €
1, ,pandj € 1,...,q, M, :](Ruj),

@ I(R™Y) =1(R)7",

(€ I(RoT) CI(R)oI(T),

) I(I(R)NI(S)) = I(R)NI(S),

(@ I(I(R)o I(T)) =I(R) o I(T).

Proof

— (@ and (b) follows directly from the definition of the convex
closure.

—(c) : let us denote the interval I(R:;) of the interval lattice by
[Al;, Bi,] with A};, B!, € Ains. Let us denote by A and B the
atomic relations of A, , defined by A;; = Aj; and Bi; = B/;.
From prop. 3[[ M = [A, B]. As Ry;; C I(Ry:;) we deduce that
R C J[ M. Consequently, [[ M is an interval of the generaized
(p,g)-lattice containing R. Now, we must show that [[ M is the
smallest interval containing R. Let arelation S = [, D] € 274pa
besuchthat R C S. From prop. 1 (b), Ry:; C Sy:;. It follows that
I(Ryi;) C I(Syij), but I(Syi5) = Sya; because Sy;; isaninterval
of the interval lattice (prop. 3). Thus, I(Ry:;) C Sy, from it we
deducethat [T M C J] S. As S isasaturated relation (prop. 3) we
concludethat [T M C S.

—(d) follows from (¢) and prop. 2.

—(e) : from (c) and def. 1 I(R o T) = [[M, with
M € M(2%)pur and Mij = I(M; << {Ruik © Tixs}). Still
from (c) and def. 1, T(R) o I(T)=[] N, with N € M(2%4int),,
and Nij =, cpco {L(R1ix) 0 I(T1k;y)}. From (a), Ry 0 Tyrj C
](Rl.ik o Tl.k;)_ It follows that ﬂ1<k<q{Riik o Tl.kj} -
ﬂ1<k<q I(Ryix 0 Tiky). From (b), ](rT1<_k<q{Rl.ik o Tyr;}) C
I(Mychegl (Ruik o Tiky)). As the intersection of two in-
tervals of the interval lattice is an interval too, we have
](ﬂ1<k<q ](Rl.ik e} Tikﬂ)):ﬂ1<k<q ](Rl.ik e} Tl.kj)- It fol-
lows that 1(, << Ruin © Tiks}) C Micpay L (Ruin 0 Tixj).
In 1A the property is true, consequently we can conclude that
M;; C N;; therefore[IT M C [T V.

—(f) results from the fact that the intersection of two intervals of
the (p,g)-lattice isalso an interval.

—(g) :letusshowthat I(R) o I(T) isaninterval of the (p,r)-lattice.
From (c) anddef. 1, I(R) o I(T) = [] M, with M € M(2%int), .,
and Mi;= (N, cpcq U (Ryir) o I(T1x;)}. Moreover we know that
the intersection and the composition of two relations corresponding
to two intervals of the interval lattice is also an interva of the
interval lattice. From this, we deduce that M,;=[A!,, B.;] with

RN

Al Bl € Aine. Let A,B € A, bedefinedby A;; = A/, and
Bi; = Bl;, fromprop.3[] M = [A, B]. Consequently I (R)o I(T)
isaninterval of the (p,r)-lattice. 0

The convex relations of IA [7, 9] correspond to the intervals
of the lattice interval. In anatural way and like in [2], we define the
convex relations of 2+#:¢ to be the relations of 2#-¢ corresponding
to the intervals of the generalized (p,q)-lattice. From prop. 3 we can
assert that each convex relation R is a saturated relation and for all
i €1,...,p,5 €1,...,q, Ry isaconvex relation of 24int,
Obvioudly R € 2779 is convexiff I(R) = R. From thisand prop.
4 we can prove the following theorem:

Theorem 1 The set of the convex relations of 274 is closed with
respect to the fundamental operationsn, o and ~*.

4 The Weakly-Preconvex Relations

Another important concept of |A is the dimension of a relation.
Ligozat represents an interval » = (»7,2%) in the read Eu-
clidean plane by a point of coordinates (z~,=™). Given a point
(w5, x3) representing a reference interval xo, an atomic relation
A of A, is represented by the region: {(y~,yT) € R?
(y~,y%) A (»7,23)}. The resulting regions are: a point (for eg),
some semi-lines (for m, mi, f, f1, s, si) and regions of dimension 2
(for b, bi, d, di, 0, 0t). The dimension of A, denoted by dim(A), is
the dimension of the region representing it (seefig. 1). Given arela
tion R € 2t dim(R) = max{dim(A) : A € R}. We define
the dimension of a generalized relation in the following way:

Definiton3 Let A € A,, and R € 2%7¢ be dim(A) =
Zlgigp,lgqu dim(A;;), dim(R) = maz{dim(A) : A € R}.

For a saturated generalized relation we have:

Proposition 5 Let R be a saturated relation of 2».4. dim(R) =
ZlSiSP,ISJSq dim(Ryij).
Now, it istimeto extend the notion of preconvexity:

Definiton 4 Let R ¢ 2%7¢ be R is weakly-preconvex iff
dim(I(R)\ R) < dim(R).

Intuitively, a relation is weakly-preconvex iff to compute its convex
closure, we only add its atomic relations of dimension strictly lower
than its own dimension. Let us notice that the weakly-preconvex
relations of 2“1 are the preconvex relations of I1A. For example,

let R:{<7; 7;) , <Z z>} be. R is weakly-preconvex. because

i=((5 ) (0 0) (5w (56 i =
8anddim(I(R)\ R)=7.

We extended the concept of preconvexity to the generalized inter-
val algebrain adifferent way than the one proposed by Balbiani et
al. in[2]. With their extension the resulting “ preconvex” generalized
relations—whichwewill call the saturated-preconvex rel ations— cor-
respond to the saturated generalized relations whose projections are
preconvex. Our notion of weakly-preconvexity subsumesthat one:

Proposition 6 Let R € 27 be. if R is saturated-preconvex then
R isweakly-preconvex.

Proof (sketch)Let R be a saturated-preconvex relation and let A €
I(R) be If A € Randdim(A) > dim(R) then from prop. 4 (c)
and prop. 5 it follows that a projection of R isnot preconvex. O

5 The Generalized Networks

Information between several generalized intervals is represented by
aspecial binary CSP: a network of generalized intervals. A network
of generalized intervals A is a structure (V, C') where V' is a set of
variables V1, ... , Vi (with I = |V|) ranging over generalized inter-
vals, and where C' is amapping from V' x V" onto the set of gener-
alized relations which correspondsto the binary constraints between
the generalizedintervals. In the sequel, we will denote sometimesby
C; therelation C(V;, V;). C issuch that:

e Vi,jel,. .. ,|V]|,Cy e 2ne, with Vi and V; being respec-
tively ap-interval and ag-interval.



o Vi,jel,...  |V],Cy=0C5t
e Viel,...,|V|,VA € Ci;, wehaveVk € 1,...
(with Ci; € 27w7),

Py Ak = eq

A network whose variables represent 1-intervalsis an Allen’sinter-
val network. With the help of the relation C;; we can constrain the
structure of the p-interval represented by V;. If we want a Ligozat's
generaized interval, we just need to take for C';; the following rela-
tion of 2777

eq m b ... b

mi eq '
Co={lwm . . . b |}

Co eq m

bt ... bt mi eq

To take into account a Ladkin’s generalized interval the relation C;

must be the following relati b ... b
bi .o
Ci={] " }
: . - b
bi ... bt eq

For a n-block, C;; will be the relation composed by all the atomic
relations of A, . having only the atomic relation eq onto their de-
scending diagonal. So, with the hel p of ageneralized network we can
express a constraint network of Ladkin's and Ligozat's generalized
intervals, aswell asn-block networks.

Definition 5 Let A" = (V, C') be a network.

¢ . issaid to be saturated (resp. convex, weakly-preconvex) iff all
its constraints are saturated (resp. convex, weakly-precornvex).

o A consistent instantiation m of A/ is a mapping which associates
to each variable V; € V representing a p-interval, a p-interval
noted m(V;) such that m(V;) Ci; m(V;), Vi,j € 1,...,|V].
The atomic relation satisfied between m (V) and m(V;) will be
denoted m(V5, Vj).

¢ A consistent instantiation m is maximal iff dim(m(Vi,V;)) =

dim(Cy;) foreveryi,j € 1,...,|V].

o N isconsstentiff it admits a consistent instantiation.

e N is path-consistent iff for every ¢, 7,k € 1,...,|V], Ci; C
Cir o Cyy and Ci; # {}

o N is weakly path-consistent iff for every ¢,5,k € 1,...,|V]|,

Ci; CI(Cik o Cry)and Cs; # {}.

Two networks ' = (V,C) and N/ = (V,C") are equivaent iff
they have the same consistent instantiations. Like in 1A, the prob-
lem to know whether a generalized network is consistent is a NP-
complete problem in the general case. Aswe will see in the follow-
ing section, by using only relations from some subsets of the gener-
alized algebra this problem becomes polynomial. Beforehand let us
do some reminders about the well-known path-consistency method
and the weak path-consistency method introduced in [4]. Given a
network A" = (V, C) the path-consistency method consists of trans-
forming A into an equivalent network, either being path-consistent
or having empty constraints, by iterating the triangulation opera-
tion: C;; « Ci; N (Cix o Cry) until afixed point is reached. This
method can be implemented by an algorithm of complexity O(|V|?)
in time. For the consistency problem this method is sound but not
complete: if the empty relation is a constraint of the resulting net-
work then the initial network is inconsistent, else we cannot assert
the consistency of the initial network because we are not sure that
all the unsatisfiable atomic relations have been removed. The weak
path-consistency method is a“wesak release” of the path-consistency

method. It consists in iterating the weak triangulation operation:
Ci; + Ci N I(Cir o Cyy) instead of the usual triangulation one.
The former (the weak one) removes less atomic relations than the
latter because R C I(R). It follows that the weak path-consistency
method is also sound and not complete. It can be implemented in
O(]V']?) too. After the weak path-consistency method application
we obtain an equivalent weakly path-consistent (or empty) network.

6 Tractable Cases
Now we define the projection of a generalized network:

Definition 6 Let A" = (V, C') be a generalized network. NV, is the
interval network (V', C') such that:

o for each variable V; € V representing a p-interval, p variables
Vi, ..., V¥ belong to V'. V/ is the variable which represents
the 5t subinterval of V; ;

o let V¥ andV/ € V' be Thecongtraint ' (V;*, V') istherelation
(Cij)1m Of theinterval algebra.

We can prove the following proposition:

Proposition 7 Let A" = (V, C') be a generalized network. If A/ is
path-consistent then V| is path-consistent.

Proof Let i,5,k € 1,...,|V]. Let us now suppose that
Ci € 2“41’"1,0;” c2arandletmel,... ,pandnel,... r
be. As C;; C Cix o Ciy, from prop. 1 (b) we can deduce
that: (Ci])l,mn - (Clk e} Ck])l,mn- From def. 1, it follows that
(Cig)amn C (<1< {(Cir ) 1mi 0 (Cry) 1in }. Consequently wehave
(Cij)imn € (Cik)imi © (Crj)1in. Hence Ny is path-consistent. O

Concerning the saturated generalized networks we have:

Proposition 8 Let A" be a saturated generalized network. For each
(maximal) consistent instantiation m of A we can build a (maximal)
consistent instantiation of A/, and reciprocally.

Proof Let V' = (V,C)and NV, = (V',C’) be.

— Let m be a consistent instantiation of A/, Let us denote
m(Vi)* the k'™ interva of m(V;) associated to the k'
subinterval of the p-interval represented by V; € V' (with
1 < k < p). Let m' be the instantiation of N, which as-
sociates to each varigble V/* € V' the interval m(V;)*. Let
V¥ and V! € V' be Since m(V;,V;) € Ci; we deduce that
m' (VF V) = (m(Vi, V) € (Cij)m, m' is a consistent
instantiation of A,. Moreover, if dim(m(V;,V;)) = dim(Ci;), as
Ci] is saturated we have dzm((m(%, V]))kl) = dim((c,‘])l’kl).
Consequently, if m is maximal thenm’ is maximal too.

— Let m’ be a condistent instantiation of A,. Let m be the in-
stantiation of N defined by: let V; € V represent a p-interval,
m(Vi)F m'(VFy with & € 1,...,pand V¥ € V', Let
Vi, V; € V represent respectively a p-interval and a g-interval.
Let A € 2%»< be defined by Ay = m/(V¥,V}). We have
m(V;,V;) = A. Sincem’(V*,V}) € (Cij)yr and Cy; is saturated,
A € Cyj. Thus m is a consistent instantiation of A”. Now let
us suppose that dim(m'(V*,V})) =dim((Ci;)ir). As Ciy is
saturated we deducethat dim (A) = dim(Cij). a

Ligozat proved that each convex path-consistent network of A
admits amaximal consistent instantiation. From this we deduce:

Theorem 2 Let N be a convex generalized network. If A/ is path-
consistent then A admits a maximal consistent instantiation.



Proof From prop. 3 we deducethat V' is saturated and V| isconvex.
If AV is path-consistent then .V, is path-consistent (prop. 7). Hence
N, owns a maximal consistent instantiation. From prop. 8, we
concludethat V" admits also amaximal consistent instantiation. O

We extend the convex closure to the generalized networks:

Definition 7 Let A be a generalized network. The convex closure of
N, denoted by 7(N), isthe generalized network (V/, C) defined by
V' =VandC} = I(Cyy).

We can easily note that the convex closure of a network is aways a
convex network. Moreover, we have the following property:

Proposition 9 Let A bea generalized network. If A isweakly path-
consistent then 7(\/) is path-consistent.

Proof If A is weakly path-consistent then Cs; € I(Cix o Ciy).
From prop. 4 (b) and (a) wehave I (C;;) C I(Cix o Cy;y). It follows
that 7(Ci;) C I(Cir) o I(Chy) (prop. 4 (€)). O

From this result we can prove the following proposition:

Proposition 10 Each weakly-preconvex and weakly path-consistent
generalized network " admits a maximal consistent instantiation.

Proof From prop. 9, 7(N) is path-consistent, and consequently
admits a maximal consistent instantiation m (th. 2). We have
dim(m,;) = dim(1(Cy;)). Since Cy; isweakly path-consistent we
deducethat m,; € C;; and dim(m;) = dim(Cij). O

From all this we can prove the following theorem:

Theorem 3 Let £ bea set of weakly-preconvexgeneralizedrelations
such that for each relation R € 2%« belonging to £ and for each
convex relation S € 247« wehave R N S € £. The weak path-
consistency method is complete for the consistency problem of the
generalized networkswhose constraints belong to £.

Proof Let AV be a generalized network having its constraints in £.
By applying the weak path-consistency method to A we obtain a
network A If A/ contains the empty relation then A/ is inconsis-
tent, else A/’ isweakly path-consistent and its constraints belong to
£ because £ is stable for the intersection with the convex relations.
From prop. 10 we deducethat A" and A are consistent. O

In this theorem we can replace the weak path-consistency method by
the path-consistency method. Indeed, we can prove that by applying
the path-consistency method to a network whose constraints belong
to such aset £, we obtain a subnetwork of aweakly path-consistent
(or empty) and weakly-preconvex network which is moreover
equivalent to the initial network. Using this last theorem we are able
to defineatractable set larger than the set of the saturated-preconvex
relations: the set of the strongly-preconvex relations.

7 The strongly-preconvex relations

Thedefinition of astrongly-preconvex generalizedrelationisdirectly
inspired by theorem 3 :

Definition 8 Let R € 2**#:¢ be R is strongly-preconvexiff for each
convexrelation $ € 27« RN S isaweakly-preconvex relation.

Wewill denoteby S the set of the strongly-preconvex relations. Now,
let us prove that S satisfiesthe requirements of theorem 3.

Proposition 11 Let R be a strongly-preconvexrelation of 2 4.

(a) R isaweakly-preconvexrelation, (b) RN.S € S for each convex
relation S of 274,

Proof

— Thetotal relation 27« is convex. Hence, R N 274 = Risa
weakly-preconvex relation.

— Let S beaconvexrelation of 247« Wemust provethat RnS € S.
Let T be a convex relation of 277, (RN S)NT=R N (SNT).
From th. 1 we can deduce that S N 7" is also a convex relation of
24r.9, As R is strongly-preconvex it followsthat R N (SN T) isa
weakly-preconvex relation. Hence R N .S is strongly-preconvex. O

Hence, by applying theorem 3, the consistency problem of strongly-
preconvex networks is polynomial. It is easy to see that S is the
largest set to which we can apply this theorem.

8 Conclusion

We defined a very generic framework which subsumes several pre-

vious formalisms extending |A. By extending some conceptslike di-

mension and convex closure we characterized a tractable set: the set

of the strongly-preconvex relations. Several questions remain open:

is the set of the strongly-preconvex generalized relations maximal

tractable ? Are there larger tractable sets (containing the atomic re-
lations) ? Recently, we proved that the set of the weakly-preconvex
relations of 2*'#:¢ (with p,q < 2) is not tractable. For that purpose
we exhibited a polynomial reduction from the 3-coloring graph prob-
lem to the consistency problem of the weakly-preconvex generalized

networks. It is abeginning of an answer to the former question. The
path-consistency method and the weak path-consistency method are

complete for the set of the strongly-preconvex generalized networks.

Currently, we study the advantagesand drawbacks of these methods,

onew.r.t. the other.

We would like to thank the referees and Nathalie Chetcuti for their
comments which helped improve this paper.
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