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Abstract. To offer a generic frame which groups together several
interval algebra generalizations, we simply define a generalized in-
terval as a tuple of intervals. After introducing the generalized rela-
tions we focus on the consistency problem of generalized constraint
networks and we present sets of generalized relations for which this
problem is tractable, in particular the set of the strongly-preconvex
relations.

1 Introduction

In many areas of Artificial Intelligence, Allen’s Interval Algebra (IA)
is used for temporal representation and reasoning [1]. Allen takes
intervals as primitive temporal entities and considers 13 atomic rela-
tions between these intervals (fig. 1). IA was generalized in numerous
ways and particularly at the level of the basic entities considered. No-
tably, many formalisms [11, 12, 6, 3, 5] consider tuples of intervals
satisfying particular atomic relations of IA as basic entities instead of
intervals. In the continuity of Balbiani et al. [2] who define a repre-
sentation subsuming all these formalisms by introducing generalized
intervals, we define a framework still more flexible. This representa-
tion enables us to reason with qualitative constraints on generalized
intervals still more “general”. In the following section we define the
generalized intervals and the relations we consider between these en-
tities. Then in section 3 we will remind the notion of convexity and
we will introduce the weak preconvexity in section 4 – both notions
introduced respectively by Nökel [9] and by Ligozat [7] for IA. Sec-
tion 5 will be devoted to the generalized constraint networks and to
the path-consistency and weak path-consistency methods. In sections
6 and 7 we will characterize sets of generalized relations for which
the consistency problem of a generalized network is a polynomial
problem. Finally we will show that these results of complexity sub-
sume the ones obtained in [2].

2 The Generalized Interval Algebra

2.1 The Generalized Intervals

We define a generalized interval X to dimension p (with p > 0),
called a p-interval, as a p-tuple of intervals x1; : : : ; xp of the real
line. This definition is very general and includes the definition of the
generalized intervals of Ladkin [11, 12], Ligozat [6], and the one
of the n-blocks [5], an extension to any dimension n of the Allen’s
intervals. In all these definitions a generalized interval is a tuple of
intervals satisfying specific constraints expressible with Allen’s rela-
tions (see fig. 1):
� for Ladkin a p-interval is a of p-tuple intervals x1; : : : ; xp of the
real line such that xi and xi+1 satisfy the atomic relation “precedes”.
As an example of Ladkin’s 3-interval we have:
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x1 x2 x3

� Ligozat defines a generalized p-interval as a tuple of p � 1 inter-
vals x1; : : : ; xp�1 such that xi satisfies with xi+1 the atomic relation
“meets”. Here is an example of a Ligozat ’s 4-interval:

x1 x2 x3

� The n-blocks are the blocks of the Euclidean space of dimension
n whose sides are parallel to the axe of some orthogonal base. A n-
block is characterized by its n projections onto the n axe. An example
of a 3-block follows:

x2

x1

X
x3

Although the projections of a n-block are on distinct axe, we can rep-
resent them on a same line. Hence, a n-block can be represented by a
n-tuple of intervals x1; : : : ; xn. Unlike the previous two cases, every
pair (xi; xj) can satisfy any IA atomic relation.
So our notion of generalized interval is very general since it sub-
sumes those previously cited. Moreover, we do not consider p-
intervals with a fixed p. Two generalized intervals can have two dif-
ferent number of sub-intervals (contrary to the generalized intervals
considered in [2]). Another difference with the generalized intervals
of [2] is that our generalized intervals do not have the same rigid
structure. In the next section we are going to present the relations
considered between the generalized intervals.

2.2 The generalized relations

In the sequel we will denote the set of matrices n � p on a set E by
M(E)n�p and the set of the 13 atomic relations of IA byAint.
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Figure 1. The atomic relations of IA: Aint.

The set of the atomic relations between a p-interval and a q-interval,



Ap;q , is defined by the set of the matrices p � q of the IA atomic
relations:

Ap;q = fA : A 2M(Aint)p�qg.

Let X be a p-interval, Y a q-interval and A 2 Ap;q , X and Y sat-
isfy A, denoted by X A Y , iff 8i 2 1; : : : ; p and 8j 2 1; : : : ; q,
xi Aij yj . A p-interval and a q-interval satisfy one, and only one,
atomic relation from Ap;q . These ones are complete and mutually
exclusive. As an illustration, in the following figure are represented
a 2-interval X = (x1; x2) and a 3-interval Y = (y1; y2; y3):

x1 y1 x2y2y3

We have X
�
b m oi

oi bi bi

�
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Let us remark that there exist generalized atomic relations which can
be never satisfy. For instance no pair of 2-intervals can satisfy the

atomic relation

�
b bi

bi b

�
. The set of relation considered between

a p-interval and a q-interval in the generalized interval algebra is
the power set of Ap;q , i.e. 2Ap;q . Given a relation R 2 2Ap;q , a
p-interval X and a q-interval Y , X and Y satisfy R iff there exists
A 2 R such that X AY . Let a matrix M 2 M(2Aint)p�q be given,
we will note

Q
M the relation of 2Ap;q defined by:

Y
M = fA 2 Ap;q : Aij 2Mij ; 1 � i � p and 1 � j � qg.

Let a relation R 2 2Ap;q be, R#ij , with 1 � i � p and 1 � j � q,
denotes the AI relation: R#ij = fA 2 Aint : 9B 2 R;Bij = Ag,
and R# is the matrixM(2Aint)p�q defined by (R#)ij = R#ij . We
can easily prove the following proposition:

Proposition 1 Let R; S 2 2Ap;q be. (a) R �
Q
R#, and (b) if

R � S then R#ij � S#ij , with 1 � i � p and 1 � j � q.

When R =
Q
R# is satisfied we will say that R is saturated.

2.3 The Fundamental Operations

The fundamental operations, intersection (\), union ([), composi-
tion (�) and inverse (�1) are defined on the set of the generalized
relations. The binary operations intersection and union are the usual
homonymous set operations. The operations inverse and composition
are defined from the ones of IA:

Definition 1

� Let A 2 Ap;q be, A�1 = B with B 2 Aq;p and Bji = A�1ij

where 1 � i � p and 1 � j � q. Let R 2 2Ap;q be, R�1 =
fA�1 : A 2 Rg.

� Let R 2 2Ap;q and S 2 2Aq;r be, R � S =
Q
M; with M 2

M(2Aint)p�r and 8i 2 1; : : : ; p and j 2 1; : : : ; r; Mij =T
1�k�q

fR#ik � S#kjg.

We can notice that for each atomic relation A and for each relation
R, (A�1)�1 = A and (R�1)�1 = R. The operation of composition
defined here is different from the one of [2]. Moreover these funda-
mental operations satisfy the following properties:
� X R�1 Y iff Y R X ,
� If 9 Z such that X R Z and Z S Y then X R � S Y .
Contrary to the composition in IA, the converse of the last implica-
tion is not true, for instance let R=f

�
b
�
g and S=f

�
b eq

�
g

be. By considering the two generalized intervals x = (x1) and y =

(y1; y2) from the following figure satisfying R � S = f
�
b b

�
g

X 1 Y 1

Y 2

it is easy to see that there does not exist a 1-interval z = (z1) satisfy-
ing with y the relation f

�
b eq

�
g since y1 and y2 are equal. We will

see in the sequel that it does not matter. For the saturated generalized
relations we can prove the following proposition:

Proposition 2 Let R; S 2 2Ap;q be two saturated relations.

(a) R�1 =
Q
M , with M 2 M(2Aint)q�p and 8i 2

1; : : : ; p and j 2 1; : : : ; q; Mji = (R#ij)
�1 ,

(b) R \ S =
Q
M , with M 2 M(2Aint)p�q and 8i 2

1; : : : ; p and j 2 1; : : : ; q; Mij = R#ij \ S#ij .

Proof (a) Let A 2 R�1 be. As A�1 2 R, 8i 2 1; : : : ; p and
8j 2 1; : : : ; q, (Aji)

�1 2 R#ij . Hence Aji 2 (R#ij)
�1 ; it follows

that A 2
Q
M . Let A 2

Q
M be. Aji 2 (R#ij)

�1 , therefore
(Aji)

�1 2 R#ij and (A�1)ij 2 R#ij . It follows that A�1 2
Q
R#.

Since R =
Q
R#, A�1 2 R and A 2 R�1 . (b) Let A 2 R \ S be.

A 2 R and A 2 S, consequently Aij 2 R#ij \ S#ij . This implies
that A 2

Q
M . Let A 2

Q
M be. Aij 2 R#ij \ S#ij , therefore

Aij 2 R#ij and Aij 2 S#ij . Hence, A 2
Q
R# and A 2

Q
S# . As

R and S are saturated we deduce that A 2 R and A 2 S. �

3 The Convex Relations

In this section and the following one we will define two particular
subsets of generalized relations: the set of the convex relations and
the set of the preconvex relations. For this purpose we will extend
some notions introduced by Ligozat [7, 8] to redefine the convex
relations [9] and the ORD-Horn relations [10] (called preconvex re-
lations by Ligozat) of IA. Ligozat arranges the atomic relations of
Aint in a partial order which defines a lattice: the interval lattice (see
fig. 2). From this order we organize the atomic relations ofAp;q in a
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Figure 2. The interval lattice (Aint;�).

partial orderv: let A;B 2 Ap;q be,

A v B iff 8i 2 1; : : : ; p and 8j 2 1; : : : ; q; Aij � Bij .

(Ap;q ;v) defines a lattice too, called the generalized (p,q)-lattice.
Since (Ap;q ;v) is the product order of (Aint;�) each interval of
the (p,q)-lattice corresponds to a Cartesian product of p� q intervals
of the interval lattice:

Proposition 3 Let [A;B] be an interval of the (p,q)-lattice. We have:
[A;B] =

Q
M , with M 2 M(2Aint)p�q and 8i 2 1; : : : ; p and

j 2 1; : : : ; q, Mij = [Aij;Bij].

Now we extend the definition of convex closure in the following way:

Definition 2 Let R 2 2Ap;q . The convex closure of R, denoted by
I(R), is the relation of 2Ap;q corresponding to the smallest interval
of the generalized (p,q)-lattice containing R.



I(R) always exists because the intersection of two intervals of the
(p,q)-lattice is an interval too. We have the following properties:

Proposition 4 Let R; S 2 2Ap;q and T 2 2Aq;r be.

(a) R � I(R) and I(I(R)) = I(R),
(b) if R � S then I(R) � I(S),
(c) I(R) =

Q
M , with M 2 M(2Aint)p�q and 8i 2

1; : : : ; p and j 2 1; : : : ; q; Mij = I(R#ij),
(d) I(R�1) = I(R)�1 ,
(e) I(R � T ) � I(R) � I(T ),
(f) I(I(R) \ I(S)) = I(R) \ I(S),
(g) I(I(R) � I(T )) = I(R) � I(T ).

Proof
� (a) and (b) follows directly from the definition of the convex
closure.
�(c) : let us denote the interval I(R#ij) of the interval lattice by
[A0ij;B

0
ij ] with A0ij , B0ij 2 Aint. Let us denote by A and B the

atomic relations of Ap;q defined by Aij = A0ij and Bij = B0
ij .

From prop. 3
Q
M = [A;B]. As R#ij � I(R#ij) we deduce that

R �
Q
M . Consequently,

Q
M is an interval of the generalized

(p,q)-lattice containing R. Now, we must show that
Q
M is the

smallest interval containing R. Let a relation S = [C;D] 2 2Ap;q

be such that R � S. From prop. 1 (b), R#ij � S#ij . It follows that
I(R#ij) � I(S#ij), but I(S#ij) = S#ij because S#ij is an interval
of the interval lattice (prop. 3). Thus, I(R#ij) � S#ij , from it we
deduce that

Q
M �

Q
S. As S is a saturated relation (prop. 3) we

conclude that
Q
M � S.

�(d) follows from (c) and prop. 2.
�(e) : from (c) and def. 1 I(R � T ) =

Q
M , with

M 2 M(2Aint)p�r and Mij = I(
T
1�k�qfR#ik � T#kjg). Still

from (c) and def. 1, I(R) � I(T )=
Q
N , with N 2 M(2Aint)p�r

and Nij =
T
1�k�q

fI(R#ik) � I(T#kj)g. From (a), R#ik � T#kj �
I(R#ik � T#kj). It follows that

T
1�k�qfR#ik � T#kjg �T

1�k�q
I(R#ik � T#kj). From (b), I(

T
1�k�q

fR#ik � T#kjg) �
I(
T
1�k�q

I(R#ik � T#kj)). As the intersection of two in-
tervals of the interval lattice is an interval too, we have
I(
T
1�k�q

I(R#ik � T#kj))=
T
1�k�q

I(R#ik � T#kj). It fol-
lows that I(

T
1�k�q

fR#ik � T#kjg) �
T
1�k�q

I(R#ik � T#kj).
In IA the property is true, consequently we can conclude that
Mij � Nij therefore

Q
M �

Q
N .

�(f) results from the fact that the intersection of two intervals of
the (p,q)-lattice is also an interval.
�(g) : let us show that I(R) � I(T ) is an interval of the (p,r)-lattice.
From (c) and def. 1, I(R)�I(T ) =

Q
M , with M 2M(2Aint)p�r

and Mij=
T
1�k�qfI(R#ik) � I(T#kj)g. Moreover we know that

the intersection and the composition of two relations corresponding
to two intervals of the interval lattice is also an interval of the
interval lattice. From this, we deduce that Mij=[A0ij;B

0
ij] with

A0ij ; B
0
ij 2 Aint. Let A;B 2 Ap;r be defined by Aij = A0ij and

Bij = B0
ij , from prop. 3

Q
M = [A;B]. ConsequentlyI(R)�I(T )

is an interval of the (p,r)-lattice. �

The convex relations of IA [7, 9] correspond to the intervals
of the lattice interval. In a natural way and like in [2], we define the
convex relations of 2Ap;q to be the relations of 2Ap;q corresponding
to the intervals of the generalized (p,q)-lattice. From prop. 3 we can
assert that each convex relation R is a saturated relation and for all
i 2 1; : : : ; p, j 2 1; : : : ; q, R#ij is a convex relation of 2Aint .
Obviously R 2 2Ap;q is convex iff I(R) = R. From this and prop.
4 we can prove the following theorem:

Theorem 1 The set of the convex relations of 2Ap;q is closed with
respect to the fundamental operations\, � and �1.

4 The Weakly-Preconvex Relations

Another important concept of IA is the dimension of a relation.
Ligozat represents an interval x = (x�; x+) in the real Eu-
clidean plane by a point of coordinates (x�; x+). Given a point
(x�0 ; x

+
0 ) representing a reference interval x0, an atomic relation

A of Aint is represented by the region: f(y�; y+) 2 R
2 :

(y�; y+) A (x�0 ; x
+

0 )g. The resulting regions are: a point (for eq),
some semi-lines (for m;mi; f; fi; s; si) and regions of dimension 2
(for b; bi; d; di; o; oi). The dimension of A, denoted by dim(A), is
the dimension of the region representing it (see fig. 1). Given a rela-
tion R 2 2Aint , dim(R) = maxfdim(A) : A 2 Rg. We define
the dimension of a generalized relation in the following way:

Definition 3 Let A 2 Ap;q and R 2 2Ap;q be. dim(A) =P
1�i�p;1�j�q dim(Aij), dim(R) = maxfdim(A) : A 2 Rg.

For a saturated generalized relation we have:

Proposition 5 Let R be a saturated relation of 2Ap;q . dim(R) =P
1�i�p;1�j�q dim(R#ij).

Now, it is time to extend the notion of preconvexity:

Definition 4 Let R 2 2Ap;q be. R is weakly-preconvex iff
dim(I(R) nR) < dim(R).

Intuitively, a relation is weakly-preconvex iff to compute its convex
closure, we only add its atomic relations of dimension strictly lower
than its own dimension. Let us notice that the weakly-preconvex
relations of 2A1;1 are the preconvex relations of IA. For example,

let R=f

�
m m

b b

�
;

�
o o

b b

�
g be. R is weakly-preconvex. because

I(R)= f

�
m m

b b

�
;

�
m o

b b

�
;

�
o m

b b

�
;

�
o o

b b

�
g, thus dim(R) =

8 and dim(I(R) n R) = 7.
We extended the concept of preconvexity to the generalized inter-
val algebra in a different way than the one proposed by Balbiani et
al. in [2]. With their extension the resulting “preconvex” generalized
relations – which we will call the saturated-preconvex relations – cor-
respond to the saturated generalized relations whose projections are
preconvex. Our notion of weakly-preconvexity subsumes that one:

Proposition 6 Let R 2 2Ap;q be. if R is saturated-preconvex then
R is weakly-preconvex.

Proof (sketch)Let R be a saturated-preconvex relation and let A 2
I(R) be. If A 62 R and dim(A) � dim(R) then from prop. 4 (c)
and prop. 5 it follows that a projection of R is not preconvex. �

5 The Generalized Networks

Information between several generalized intervals is represented by
a special binary CSP: a network of generalized intervals. A network
of generalized intervals N is a structure (V;C) where V is a set of
variables V1; : : : ; Vl (with l = jV j) ranging over generalized inter-
vals, and where C is a mapping from V � V onto the set of gener-
alized relations which corresponds to the binary constraints between
the generalized intervals. In the sequel, we will denote sometimes by
Cij the relation C(Vi; Vj). C is such that:

� 8i; j 2 1; : : : ; jV j, Cij 2 2Ap;q , with Vi and Vj being respec-
tively a p-interval and a q-interval.



� 8i; j 2 1; : : : ; jV j, Cij = C
�1
ji .

� 8i 2 1; : : : ; jV j, 8A 2 Cii, we have 8k 2 1; : : : ; p, Akk = eq

(with Cii 2 2Ap;p).

A network whose variables represent 1-intervals is an Allen’s inter-
val network. With the help of the relation Cii we can constrain the
structure of the p-interval represented by Vi. If we want a Ligozat’s
generalized interval, we just need to take for Cii the following rela-
tion of 2Ap;p :

Cii = f

0
BBBBB@

eq m b : : : b

mi eq
. . .

. . .
...

bi
. . .

. . .
. . . b

...
. . .

. . . eq m
bi : : : bi mi eq

1
CCCCCA
g:

To take into account a Ladkin’s generalized interval the relation Cii

must be the following relation:

Cii = f

0
BB@
eq b : : : b

bi
. . .

. . .
...

...
. . .

. . . b
bi : : : bi eq

1
CCAg:

For a n-block, Cii will be the relation composed by all the atomic
relations of An;n having only the atomic relation eq onto their de-
scending diagonal. So, with the help of a generalized network we can
express a constraint network of Ladkin’s and Ligozat’s generalized
intervals, as well as n-block networks.

Definition 5 LetN = (V; C) be a network.

� N is said to be saturated (resp. convex, weakly-preconvex) iff all
its constraints are saturated (resp. convex, weakly-preconvex).

� A consistent instantiation m of N is a mapping which associates
to each variable Vi 2 V representing a p-interval, a p-interval
noted m(Vi) such that m(Vi) Cij m(Vj), 8i; j 2 1; : : : ; jV j.
The atomic relation satisfied between m(Vi) and m(Vj) will be
denoted m(Vi; Vj).

� A consistent instantiation m is maximal iff dim(m(Vi; Vj)) =
dim(Cij) for every i; j 2 1; : : : ; jV j.

� N is consistent iff it admits a consistent instantiation.
� N is path-consistent iff for every i; j; k 2 1; : : : ; jV j, Cij �
Cik � Ckj and Cij 6= fg.

� N is weakly path-consistent iff for every i; j; k 2 1; : : : ; jV j,
Cij � I(Cik �Ckj) and Cij 6= fg.

Two networks N = (V;C) and N 0 = (V;C 0) are equivalent iff
they have the same consistent instantiations. Like in IA, the prob-
lem to know whether a generalized network is consistent is a NP-
complete problem in the general case. As we will see in the follow-
ing section, by using only relations from some subsets of the gener-
alized algebra this problem becomes polynomial. Beforehand let us
do some reminders about the well-known path-consistency method
and the weak path-consistency method introduced in [4]. Given a
networkN = (V;C) the path-consistency method consists of trans-
forming N into an equivalent network, either being path-consistent
or having empty constraints, by iterating the triangulation opera-
tion: Cij  Cij \ (Cik � Ckj) until a fixed point is reached. This
method can be implemented by an algorithm of complexity O(jV j3)
in time. For the consistency problem this method is sound but not
complete: if the empty relation is a constraint of the resulting net-
work then the initial network is inconsistent, else we cannot assert
the consistency of the initial network because we are not sure that
all the unsatisfiable atomic relations have been removed. The weak
path-consistency method is a “weak release” of the path-consistency

method. It consists in iterating the weak triangulation operation:
Cij  Cij \ I(Cik � Ckj) instead of the usual triangulation one.
The former (the weak one) removes less atomic relations than the
latter because R � I(R). It follows that the weak path-consistency
method is also sound and not complete. It can be implemented in
O(jV j3) too. After the weak path-consistency method application
we obtain an equivalent weakly path-consistent (or empty) network.

6 Tractable Cases

Now we define the projection of a generalized network:

Definition 6 Let N = (V;C) be a generalized network. N# is the
interval network (V 0; C 0) such that:

� for each variable Vi 2 V representing a p-interval, p variables
V 1
i ; : : : ; V

p
i belong to V 0. V j

i is the variable which represents
the jth subinterval of Vi ;

� let V k
i and V l

j 2 V
0 be. The constraintC 0(V k

i ; V
l
j ) is the relation

(Cij)#kl of the interval algebra.

We can prove the following proposition:

Proposition 7 Let N = (V; C) be a generalized network. If N is
path-consistent thenN# is path-consistent.

Proof Let i; j; k 2 1; : : : ; jV j. Let us now suppose that
Cik 2 2Ap;q , Ckj 2 2Aq;r and let m 2 1; : : : ; p and n 2 1; : : : ; r
be. As Cij � Cik � Ckj , from prop. 1 (b) we can deduce
that: (Cij)#mn � (Cik � Ckj)#mn . From def. 1, it follows that
(Cij)#mn �

T
1�l�q

f(Cik)#ml �(Ckj)#lng. Consequently we have
(Cij)#mn � (Cik)#ml � (Ckj)#ln. HenceN# is path-consistent. �

Concerning the saturated generalized networks we have:

Proposition 8 Let N be a saturated generalized network. For each
(maximal) consistent instantiation m ofN we can build a (maximal)
consistent instantiation of N# and reciprocally.

Proof LetN = (V;C) andN# = (V 0; C 0) be.
� Let m be a consistent instantiation of N . Let us denote
m(Vi)

k the kth interval of m(Vi) associated to the kth

subinterval of the p-interval represented by Vi 2 V (with
1 � k � p). Let m0 be the instantiation of N# which as-
sociates to each variable V k

i 2 V 0 the interval m(Vi)
k . Let

V k
i and V l

j 2 V 0 be. Since m(Vi; Vj) 2 Cij we deduce that
m0(V k

i ; V
l
j ) = (m(Vi; Vj))kl 2 (Cij)#kl, m0 is a consistent

instantiation of N#. Moreover, if dim(m(Vi; Vj)) = dim(Cij), as
Cij is saturated we have dim((m(Vi; Vj))kl) = dim((Cij)#kl).
Consequently, if m is maximal then m0 is maximal too.
� Let m0 be a consistent instantiation of N# . Let m be the in-
stantiation of N defined by: let Vi 2 V represent a p-interval,
m(Vi)k = m0(V k

i ) with k 2 1; : : : ; p and V k
i 2 V 0. Let

Vi , Vj 2 V represent respectively a p-interval and a q-interval.
Let A 2 2Ap;q be defined by Akl = m0(V k

i ; V
l
j ). We have

m(Vi; Vj) = A. Since m0(V k
i ; V

l
j ) 2 (Cij)#kl and Cij is saturated,

A 2 Cij . Thus m is a consistent instantiation of N . Now let
us suppose that dim(m0(V k

i ; V
l
j )) =dim((Cij)#kl). As Cij is

saturated we deduce that dim(A) = dim(Cij). �

Ligozat proved that each convex path-consistent network of IA
admits a maximal consistent instantiation. From this we deduce:

Theorem 2 Let N be a convex generalized network. If N is path-
consistent thenN admits a maximal consistent instantiation.



Proof From prop. 3 we deduce thatN is saturated andN# is convex.
If N is path-consistent then N# is path-consistent (prop. 7). Hence
N# owns a maximal consistent instantiation. From prop. 8, we
conclude thatN admits also a maximal consistent instantiation. �

We extend the convex closure to the generalized networks:

Definition 7 LetN be a generalized network. The convex closure of
N , denoted by I(N ), is the generalized network (V 0; C 0) defined by
V 0 = V and C 0ij = I(Cij).

We can easily note that the convex closure of a network is always a
convex network. Moreover, we have the following property:

Proposition 9 LetN be a generalized network. IfN is weakly path-
consistent then I(N ) is path-consistent.

Proof If N is weakly path-consistent then Cij � I(Cik � Ckj).
From prop. 4 (b) and (a) we have I(Cij) � I(Cik �Ckj). It follows
that I(Cij) � I(Cik) � I(Ckj) (prop. 4 (e)). �

From this result we can prove the following proposition:

Proposition 10 Each weakly-preconvex and weakly path-consistent
generalized networkN admits a maximal consistent instantiation.

Proof From prop. 9, I(N ) is path-consistent, and consequently
admits a maximal consistent instantiation m (th. 2). We have
dim(mij) = dim(I(Cij)). Since Cij is weakly path-consistent we
deduce that mij 2 Cij and dim(mij) = dim(Cij). �

From all this we can prove the following theorem:

Theorem 3 Let E be a set of weakly-preconvexgeneralized relations
such that for each relation R 2 2Ap;q belonging to E and for each
convex relation S 2 2Ap;q we have R \ S 2 E . The weak path-
consistency method is complete for the consistency problem of the
generalized networks whose constraints belong to E .

Proof Let N be a generalized network having its constraints in E .
By applying the weak path-consistency method to N we obtain a
network N 0. If N 0 contains the empty relation then N is inconsis-
tent, else N 0 is weakly path-consistent and its constraints belong to
E because E is stable for the intersection with the convex relations.
From prop. 10 we deduce thatN 0 andN are consistent. �

In this theorem we can replace the weak path-consistency method by
the path-consistency method. Indeed, we can prove that by applying
the path-consistency method to a network whose constraints belong
to such a set E , we obtain a subnetwork of a weakly path-consistent
(or empty) and weakly-preconvex network which is moreover
equivalent to the initial network. Using this last theorem we are able
to define a tractable set larger than the set of the saturated-preconvex
relations: the set of the strongly-preconvex relations.

7 The strongly-preconvex relations

The definition of a strongly-preconvex generalized relation is directly
inspired by theorem 3 :

Definition 8 Let R 2 2Ap;q be. R is strongly-preconvex iff for each
convex relation S 2 2Ap;q , R \ S is a weakly-preconvex relation.

We will denote by S the set of the strongly-preconvex relations. Now,
let us prove that S satisfies the requirements of theorem 3.

Proposition 11 Let R be a strongly-preconvex relation of 2Ap;q .
(a) R is a weakly-preconvex relation, (b) R\S 2 S for each convex
relation S of 2Ap;q .
Proof
� The total relation 2Ap;q is convex. Hence, R \ 2Ap;q = R is a
weakly-preconvex relation.
� Let S be a convex relation of 2Ap;q . We must prove that R\S 2 S .
Let T be a convex relation of 2Ap;q , (R \ S) \ T=R \ (S \ T ).
From th. 1 we can deduce that S \ T is also a convex relation of
2Ap;q . As R is strongly-preconvex it follows that R \ (S \ T ) is a
weakly-preconvex relation. Hence R \ S is strongly-preconvex. �

Hence, by applying theorem 3, the consistency problem of strongly-
preconvex networks is polynomial. It is easy to see that S is the
largest set to which we can apply this theorem.

8 Conclusion

We defined a very generic framework which subsumes several pre-
vious formalisms extending IA. By extending some concepts like di-
mension and convex closure we characterized a tractable set: the set
of the strongly-preconvex relations. Several questions remain open:
is the set of the strongly-preconvex generalized relations maximal
tractable ? Are there larger tractable sets (containing the atomic re-
lations) ? Recently, we proved that the set of the weakly-preconvex
relations of 2Ap;q (with p; q � 2) is not tractable. For that purpose
we exhibited a polynomial reduction from the 3-coloring graph prob-
lem to the consistency problem of the weakly-preconvex generalized
networks. It is a beginning of an answer to the former question. The
path-consistency method and the weak path-consistency method are
complete for the set of the strongly-preconvex generalized networks.
Currently, we study the advantages and drawbacks of these methods,
one w.r.t. the other.
We would like to thank the referees and Nathalie Chetcuti for their
comments which helped improve this paper.
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