A Property of Path Inverse Consistency
L eading to an Optimal PIC Algorithm

Romuald Debruyne!

Abstract. In constraint networks, the efficiency of a search ago-
rithm is strongly related to the local consistency maintained dur-
ing search. For a long time, it has been considered that forward
checking was the best compromise between the pruning effect and
the amount of overhead involved. But recent works, comparing the
search algorithms on a large range of networks, show that main-
taining arc consistency during search (MAC) outperforms forward
checking on large and hard problems. It is conceivable that on very
difficult instances, using an even more pruningful local consistency
may pay off. To know whichlocal consistency isthe most promising,
a study comparing both their pruning efficiency and the time needed
to achieve them has been done [4]. This work shows that PIC1, the
path inverse consistency algorithm presentedin [6], has very bad av-
erage and worst casetime complexities. In this paper, we give a prop-
erty of PIC and we propose and evaluate a PIC algorithm based on
this property that has an optimal worst case time complexity. Exper-
iments show that maintaining PIC during search outperforms MAC
on hard sparsesCNs.

1 Introduction

Finding a solution in a constraint network (CN), i.e. looking for an
assignment of values for the problem variables that satisfiesal the
constraints of the network, is NP-hard. A blind search often leads to
a combinatorial explosion, the algorithm thrashing because of some
local inconsistencies. Therefore, filtering techniques are essential to
remove once and for al some local inconsistenciesduring a prepro-
cessing step or to efficiently prune the search tree during search.
To solve small and “easy” problems, it is sufficient to maintain a
low level of local consistency, such as forward checking. The addi-
tional cost of maintaining amore pruningful local consistency cannot
be outweighed. But on large and hard problems, a more pruningful
filtering technique is essential to avoid combinatorial explosion. A
good illustration isthat MAC outperforms forward checking on hard
problems. The questionis, “Is there alocal consistency that outper-
forms arc consistency (AC) on very hard CNs?'. To give afirst an-
swer, some comparisons between the local consistenciesmore prun-
ingful than AC have been carried out [3][4] considering both prun-
ing and time efficiencies. From that work, retricted path consistency
(RPC, [1]) and Max-RPC seem be victorious. Path inverse consis-
tency was indeed more expensive than Max-RPC while not pruning
far more than RPC whichis weaker and cheaper. PIC1, the PIC algo-
rithm used for the comparisonisin O(en>d*) when RPC2 and M ax-
RPC1 (the Max-RPC algorithm proposedin [3]) arein O(ed? +cd*)?

1 Ecole des Mines de Nantes, 4, rue Alfred Kastler, La Chantrerie, 44307
Nantes cedex 03 - France, email: romual d.debruyne@emn.fr
2 ¢ isthe number of 3-cliquesin the network

and O(ed® + cd®) respectively. But PIC is a recent filtering tech-
nique and has not yet been much studied. PIC1 is the first and only
onealgorithm to achieveit. PIC1 has bad time performancesbecause
it does not store anything else than the deleted values. Therefore, it
has a linear worst case space complexity that would allow using it
on very large CNs but it is too time expensive for this use. In this
paper, we propose anew PIC agorithm, called PIC2, that has an op-
tima O(ed® + cd®) worst casetime complexity. Furthermore, PIC2
has an O(cd) worst case space complexity, but like RPC2 [3] and
Max-RPC1, its average space complexity is far from this limit. Ex-
periments show that PIC2 is far more efficient than PIC1 and that
maintaining PIC during search can lead to better time performances
than MAC on hard sparse CNs.

2 Dedfinitionsand notations

A network of binary constraint® = (X', D, C) is defined by a set

X={4,j4, ...} of nvariables each taking value in its respective
finite domain D;, D, ... elements of D, and a set C of e binary

congtraints. d is the size of the largest domain. A binary constraint
C; is asubset of the cartesian product D; x D; that denotes the
compatible pairs of values for i and 5. We note C';;(a, b) = true

to specify that ((7, a), (4, b)) € Cs;. Wethen say that (7, b) isasup-
portfor (¢, a) on C;;. With each CN we associateaconstraint graph
in which nodes represent variables and arcs connect pairs of vari-

ables which are constrained explicitly. ¢ is the number of 3-cliques
in the constraint graph. An instantiationof a set of variables S is
an indexed set of values{[;},es St. Vj € S I; € D;. An instanti-
ation I of S satisfiesa constraint C; if {v,5} € S or Ci5(1s, I5)

istrue. An instantiation is consistentf it satisfiesall the constraints.

A pair of values ((z, a), (j, b)) is path consistentif for al &k € X

st. yZk# 1#£7, this pair of values can be extended to a consistent in-

stantiation of {7, j, k}. (, b) isapath consistent suppoof (i, a) if

((4, a), (4, b)) ispath consistent. A solutionof P = (&X', D,C)isa
consistent instantiation of .Y'. A CN is consistentf it hasat |east one
solution.

3 Path Inverse Consistency

Before the presentation of PIC, let usrecall what RPC and Max-RPC
are becausethere are somerel ations between PIC and these two local
consistencies.

Theaim of Berlandier when he proposed RPC wasto remove more
inconsistent values than AC while avoiding the drawbacks of path
consistency (PC). Indeed, a PC algorithm hasto try to extend all the
pairs of values, even those between two independent variables, to
any third variable. Thisis very expensive and the best PC algorithm
[9] has an O(r®d®) worst case time complexity with an O(n®d?)

worst case space complexity. In addition, removing a pair of val-
ues can lead to the addition of a constraint in the network. To avoid
these drawbacks, a RPC algorithm only removes values, leaving un-
changed the set of constraints. Furthermore, to have a better worst
case time complexity, RPC checks the path consistency of a pair of
values only if it can directly lead to the deletion of a value. In ad-
dition to AC, an RPC agorithm checksthe path consistency of the
pairs of values((i, a), (4, b)) suchthat (4, b) isthe only support of
(4, @) in Dy. If such a pair is path inconsistent, its deletion would
lead to the arc inconsistency of (i,). So these few additional path
consistency checksallow detecting more inconsistent valuesthan AC
without having to delete any pair of values. Furthermore, the number
of pairsthat have to be checkedis greatly reduced compared to PC,
and the worst casetime complexity of RPC2is O(ed? + cd?).

Max-RPC is an extension of RPC. RPC checks the path consis-
tency of a support (7, b) only when it is the only support of a value
(¢, @). We can remove more values by checking the existence of a
path consistent support for all the values on each constraint, what-
ever isthe number of supportsthe value has. Thisisthe base of Max-
RPC1 [3] which hasan O(ed? + cd®) worst casetime complexity.

When they proposed inverse consistency in [6], the aim of Freuder
and Elfe was to achieve high order local consistencieswith a good
space complexity. For along time, the only studied local consisten-
cies were k-consistencies (i.e., (k-1, 1)-consistenciesin the formal-
ism of [5]) which remove the consistent instantiations of length k-1
that cannot be extended to a consistent instantiation including any
additional k** variable. k-consistency hasatime complexity polyno-
mial with the exponent dependent on & and requires O(n *~'d*~1)
space to store the deleted instantiations. So, only 2-consistency
(i.e., arc consistency) can be used in practice. Path consistency (3-
consistency) and higher levels of k-consistency are too expensive,
and change the structure of the network. Space requirements are no
longer a problem with & inverse consistency ((1, k-1)-consistency),
which removes the values that cannot be extended to a consistent
instantiation including any k-1 additional variables. It has a linear
space complexity. But the time complexity remains polynomial with
the exponent dependent on k. So, the inverse consistenciesthat can
be used in practice are path inverse consistency (k=3) and neigh-
borhood inverse consistency (which removes the values that cannot
be extended to a consistent instantiation including all the variables
linked to it) on sparse CNs. By definition, a PIC algorithm has to
remove the values (z, «) that cannot be extended to a consistent in-
stantiation including any 3-tuple of variablesincluding :. In [6], the
authors remark that not all 3-tuples need to be checked. Only one of
the tuples (¢, j, k) and (¢, k, 7) has to be checked and we do not
have to check the 3-tuples (¢, 7, k) such that : is linked to neither
j nor k. Indeed, in this last case, (¢,) can be removed only if PIC
has deleted al the values of j or k£ and so PIC would have already
detected the inconsistency of the network.

On someof the 3-tupleswe still haveto check, PIC isnothing more
than AC. If the CN isarc consistent, any value (¢, a) can be extended
toa3-tuple(z, 7, k) suchthat thereisno constraint between j and .
If ACholds, thereisbe D; andc € Dy, st. Cij(a, b) and Cix(a, ¢),
and since j is not linked to &, ((z, a), (j, b), (k, ¢)) is consistent.
Furthermore, AC is asufficient condition to prove that avalue (¢, a)
can be extended to (¢, j, k) if there is no constraint between : and
k (resp. between : and j). If AC holds, (¢, a) hasasupport b in D
(resp. ¢ in D) and this value being arc consistent too, it has a sup-
port ¢ in Dy, (resp. bin D;). So ((3, a), (4, b), (k, ¢)) isconsistent.
Consequently, if the constraint network is arc consistent, the only
3-tuples that have to be checked to achieve PIC correspond to the

¢ Abinary CNis (z, j)-consistent iff Vi € X', D; # ¢ and any consistent
instantiation of ¢ variables can be extended to a consistent instantiation
including any ; additional variables.

¢ Adomain D; isarc consistent iff, Va € D;, Vj€ X st. C;; € C, there
existsb € D; st. C;;(a, b). ACNisarc consistent ((1, 1)-consistent) iff
VD;eD,D; # ¢ and D, isarc consistent.

o A pair of variables (i, j) is path consistent iff V(a, b) € Cy;, Vk € X,
there exists ¢ € Dy, st. Cix(a, ¢) and C;i (b, ¢). A CNis path consis-
tent ((2, 1)-consistent) iff Vi, j € X, (¢, j) ispath consistent.

¢ Abinary CNisrestricted path consistent iff
Vi€ X, D; isanonempty arc consistent domain and,

V(i, a) € D,Vj€e X st (i, a) hasonly onesupportb in D;,
forall k € & linked to both ¢ and 7,
de € Dy st. Cix(a, ¢) AC (b, ¢).

¢ A binary CN ismax restricted path consistent iff

Vi€ X, D; isanonempty arc consistent domain and,

VY (i, a) € D, foral j € X linked to ¢,

Abe D; st Ci;(a,b) andforal k € X linked to both s and 5,
de € Dy st. Cix(a, ¢) AC (b, ¢).

¢ A binary CN is path inverse consistent iff it is (1,2)-consistent i.e.
Y(i, a)eD Vj,k€X st j#i#k#j, 3(j, b)ED and (k, c)ED st.
Ciji(a, b) A Cir(a, ¢) A Cjr(b, ¢)

Figurel. Thementionnedlocal consistencies

3-cligues of the constraint graph. Furthermore, the definition of PIC
showsthat any constraint network involving less than three variables
is path inverse consistent, even though it is not arc consistent. These
remarks lead to the following property.

Property 1. A CN is path inverse consistent iff
e itinvolveslessthan three variables, or
e itisarcconsistent andfor eachvalue(:, a) in D, for any
3-clique {i, j,k}, (1, a) can be extended to a consistent
instantiation of {z, 7,%}.

Thisproperty highlightstherelations between PIC, RPC and Max-
RPC. Let us consider avalue (i, a), a constraint C';; and the set S
of the variables s st. {i, j, s} is a 3-clique. Obviously, if (¢, a) is
not arc consistent, the three local consistencies delete it. If (4, a)
has only one support b in D ;, PIC, RPC and Max-RPC have the
same behavior. They delete (¢, a) because of C';; if ((¢, a), (4, b))
is path inconsistent. If (¢, a) has at least two supportsin D ;, (¢, a)
isrestricted path consistent w.r.t. C;; but PIC can deleteit if thereis
s € S such that all the supports of (i, @) in D ; are path inconsistent
becauseof s. Thisexplainsthat the pruning efficiency of PIC isclose
to the one of RPC becauseit is infrequent that all the supports of
a value are path inconsistent because of the same third variable. A
Max-RPC algorithm removes much more values since it deletes a
value (i, a) because of C';; if it has no path consistent support in
Dj. Inother words, (i, a) isdeletedif all its supportsin D, are path
inconsistent, even if they are not path inconsistent because of the
samethird variable.

4 PIC2
4.1 Basesof thealgorithm

PIC2 uses Property 1. To remove the arc inconsistent values, PIC2
uses AC7[2], the most efficient AC agorithm. As soonas AC holds,
achieving PIC is only checking whether the values can be extended
to any 3-clique involving their variable. This greatly reduces the set
of 3-tuplesthat haveto be checked, especially on sparse CNs.

This enhancement is not sufficient. The reason why PIC1 has an
O(en’d*) worst case time complexity is that it stores nothing else

than the deleted values. If PIC1 has found that (i, «) can be ex-
tended to ((z, a), (7, b), (k, c)) it does not store this information.
Therefore, if a value (j, b) is deleted, PIC1 does not know which
values may be no longer path inverse consistent because of this dele-
tion. It can only overestimate this set by the valuesof all the variables
linked to 5. To avoid this drawback, when PIC2 findsthat (i, «) can
be extended to ((¢, a), (g, b), (k, ¢)) it stores that the path inverse
consistency of (2, a) dependson (j, b) and (k, ¢). Whilebe D ; and
¢ € Dy, PICholdsfor (i, a) w.rt. {3, j, k}. PIC2 will try to extend
(1, @) to {4, 4, k} againonly if (j, b) or (k, c) is deleted. Storing
this information has another advantage. When PIC2 |ooks for a pair
(b, ¢) € D; x Dy, consistent with (2, a), it usesalexicographic or-
der. So, if (¢, a) is supported by a pair ((j, b), (k, c¢)) we are sure
that this is the first pair compatible with (i,) according to this or-
der. If (4, b) or (k, ¢) is deleted, we have to look for another pair of
valuesin D; x Dy supporting (i,) but it is uselessto check the
pairs ((7, b'), (k, ¢')) suchthat b’ < b or (' = b) and (¢’ < ¢)).
Therefore, in the worst case PIC2 checkseach pair of 1D ; x Dy, only
once to check the path inverse consistency of a value (¢, a) w.rt.

{3, 5, k}.

4.2 TheAlgorithm

The data structures of PIC2 are:

e eachinitial domainis considered astheinteger range 1..| D ;|. The
current domain is represented by a table of booleans. We use the
following constant time functions and procedures:

— first(D;) returns the smallest value of D; if D; # 0 and oo
otherwise.

— last(D;) returns the greatest value of D; if D; # 0 and nil
otherwise.

— if a € Di\last(Dy), next(D;, a) returnsthe smallest valuein
D; greater than a. next(D;, nil) returns the smallest value of
D; if D; # 0 and co otherwise.

— remove(D;, a) removesthevaluea from D;.

o S54¢ isthearray of lists of supported valuesof AC7. A vauea is
in S5, [1] if (5, b) is currently supporting (i, a). If avalue (5, b)
isdeleted, PIC2 hasto check whether thevalues (i, a) in S /3~ are
still arc consistent w.r.t. Cs;.

o LikeinAC7, L;;. isthelast valueof D ; checkedto find asupport
for (¢, a) i.e. Vb € Dj st. b < Lija, Cis(a, b) hasaready been
checked.

e Thelist S),'“ is used to know the values for which the path in-
verse consistency dependson (5, b). (1, a), (k, c¢)) € S,/ if
((4, b), (k, ¢)) is the current “pic support” of (¢, «). In other
words, if (5 < k) (resp. k& < j) and (s, a), (j, b), and (k, ¢)
arein D, (b, ¢) (resp. (¢, b)) isthefirst allowed pair of D; x Dy
(resp. Di x Dj) w.r.t. the lexicographic order that is consistent
with (i, a). Aslongasb € D; and ¢ € Dy, (4, a) is pathinverse
consistent w.r.t. {i, j, k}. If (4, b) (or (k, ¢)) is deleted, another
pair of D; x Dy supporting (i, a) hasto befoundbut since (b, c)
wasthe firstin D; x Dy, only the pairs greater than (b, ¢) have
to be checked. If apair ((i, a), (k, ¢))€5},', ((i,), (j, b)) is
in S§1¢ since the path inverse consistency of (i, @) depends on
(k, c) too. Thesetwo elements must belinked to allow performing
theline 9 of PropagDeletion in constant time.

e An arc-value pair [(i, j), a] isin InitAC List if PIC2 has not
checked the arc consistency of (i, a) w.rt. Ci;. [(z, @), 7, k] is
in InitPIC List if PIC2 has not checked the path inverse con-
sistency of (i, a) w.r.t. the clique {¢, j, k}. A value (4, b) isin

DeletionList if b has been removed from D; but this deletion
has not been propagated yet.

For each arc-value pair [(, j), a] PIC2 uses the function
Seek AC Support to know whether (i, a) isarc consistentw.r.t. C;;.
Thisfunction hasthe behavior of AC7. First, it triesto infer asupport
looking for an undeleted value in SA°[], i.e. the list of the values
supported by (i, a) on C;;. If no support can beinferred, PIC2 goes
on with its search looking for the smallest support in I2;. The ar-
ray L is used to never perform a constraint check twice during AC
achievement. Only the values greater than L ;. have to be checked.
Furthermore, it is useless to check C';(a, b) if Lz > a sincein
such a case PIC2 has already checked whether (¢, a) is asupport of
(4, b), andif it is a compatible value Seek AC Support would have
found b in SA°[5].

In addition to AC, PIC2 tries to extend each value (i, a) to any
3-clique {z, j, k} using Seek PIC-Support(i, a, j, b, k, ¢). This
function looks for the first pair in D; x Dy, according to the lexico-
graphic order that is consistent with (i, a) and greater than (b, c).
If this pair of values exists, Seek PTC Support uses S F1¢ to store
(line 22) that the path inverse consistency of (z, a) dependson this
pair.

If avalue (7, b) isdeleted, PropagDeletion checkswhether the
valuesin S5, (the values currently supported by (7, b)) still havea
supportin ;. Furthermore, for each pair of vaues((s, «), (k, c¢)) €
S]ijc, PropagDeletion uses Seek PIC Support to know whether
(¢, a) isdtill path inverseconsistent w.r.t. {¢, j, k}.

5 Complexity

A PIC algorithm has to remove al the arc inconsistent values and
since the optimal worst case time complexity of achieving arc con-
sistency is O(ed?), O(ed?) is alower bound time complexity for
PIC. Furthermore, for each value (:, a) and each 3-clique {¢, j, k},
a PIC agorithm has to check whether (:,) can be extended to a
consistent instantiation including 7 and k. In the worst case, dl the
pairsof valuesof D ;x Dy haveto be checkedto know whether (¢, a)
ispathinverse consistent w.r.t. {i, j, k}. S0, O(ed® +cd”) isalower
bound for the worst case time complexity of any PIC algorithm.

Since Seck AC Support removesfrom 52 [4] thevaluesthat are
no longer in D, the test of line 3 is performed at most O(d) times
for each arc-valuepair. Furthermore, L, isbounded above by d and
L;;q increasesat each step of the second loop of Seek AC Support.
Thus, the cost of this loop is O(d) for each arc-value pair and the
complexity dueto the callsto Seek AC Support is O(ed?). If PIC2
has to check the path inverse consistency of (i, a) w.rt. {, 7, k}
(with j < k), it checks only the pairs of values of D; x Dy, it has
not already checked, i.e. those greater (w.r.t. the lexicographic order)
than the pair currently supporting (¢,). So, a pair of D; x Dy, is
checkedat most onceto check the path inverse consistency of avalue
(¢, a) w.rt. {¢, 7, k}. Thus, in the worst case Seck P1C Support
checks O(ed?) times whether a pair of values is consistent with a
third value and PIC2 has an optimal O(ed? + ¢d®) worst casetime
complexity. Since there is at most O(en) 3-cliques in the network,
O(end®) isan upper bound time complexity for PIC2. However this
is a rough upper bound since there can be much less than O(en)
3-cliques, especially on sparse CNs.

Only the deleted values for which the deletion has not yet been
propagated are in DeletionList. So, there is a most O(nd) val-
uesin DeletionList. Theline5 of the function P/C2 addsall the
arc-value pairsin I'nit AC List. Since after this initialization phase
no arc-value pair is added in Init AC List, the size of this list is

function PIC2() : boolean;
1 DeletionList « 0;InitACList + O; InitPICList + 0,

2, forall (i, a) € D do
3 SPIC 0; 82C 0
4 forall C;; € C do
5 InitACList «+ InitACListU {[(1, j), @)]}; Lija + nil;
6 forall C;r € Cst. (k> jandCy, € C) do
7 InitPICList « InitPICList U{[(3, a), j, k]};
8 whileInitACList # @ or InitPICList # (¢ or

DeletionList # ¢ do
9 if DeletionList # (0 then
10 choose and delete (¢, a) from DeletionList;
11 if not PropagDeletion(i, a, DeletionList)then
12 return false
13 dseif InitACList # ¢ then
14 chooseand delete [(¢, j), a] from Init AC List;
15 if a € D; and not SeekACSupport(z a,j) then
16 removeéD ,a);
17 if D; = @ thenreturn false;
18 DeletionList + DeletionList U {(7, a)};
19 else chooseand delete [(¢, a), 7, k] from Init PIC List;
20 if a € D; and not

SeekPICSupport(z a, j,nil, k,nil) then

21 remove&D ,a);
22 if D; = @thenreturn false;
23 DeletionList + DeletionList U {(¢,a)};

24 return true;

function Seek AC Support (i, a, j)
1 while S{2C[j] # 0 do

b+ first(SAC[D;

if b ¢ D; then delete & from S;2[5]

elseSAC[]« S53°lT U {a); return true;
whlleL,]a < last(Dy) do

b+ next(D],L,]a),

Lija < b}

if Lj;, < athen

if Cij(a, b)then

10 SA°0] « S v {a);
11 return true,
12return false;

: boolean;

Vooo~NoOUIh WN

function Seek PIC Support(i, a, j, b, k, ¢) : boolean;

1 ifbg D, then

2 b+ maz(Ljq, next(D

3 ithg D, thenb<—nem(D],)i

4 whileb ;é oo and (L ;5 > aor not C;;(a, b)) do
5 b+ next(Dj,bj;

6 if b # oo then

7 ¢ + maz(Liga, Ljgy, first(Dg));
8 if ¢ € Dy then¢ « next(Dy, c);

9 dse

10 ¢ + maz(Lika, Ljks, next(Dy,c));
11 ifc ¢ Dy thenc + next(Dyg, ¢);

12 whileb # oo and (¢ = oo O Lyjc > bor Liic > aor
not C;x(a,¢)or not C;r(b,c)) do

function PropagDeletion(j, b, inout DeletionList) : boolean; 13 ¢ + next(Dy,c);
1 while 55, # 6 do 14 if ¢ = oo then
2 chooseand delete (i,a) from S5, 15 b« next(D;,b);
3 if « € D; andnot Seek AC Support(i,a, j) then 16 whileb # oo and (L j;, > a or not C;;(a, b)) do
4 removeéD ,a); 17 b+ next(D;, b;;
5 if D; = @ thenreturn false; 18 if b # oo then
6 DeletionList + DeletionList U {(¢,a)}; 19 ¢ + maz(Lika, Ljks, first(Dr));
7 while S5TC # ¢ do 20 if c @ Dy thenc « neat(Dy,c);
8 chooseand delete ((4, a), (k, }2) from S, 21 ifb # oo then
9 remove((i,a), (4,))fromS 22 add ((i, @), (k,¢)) in S5TC, ((5,a), (5,0)) in SEC
10 ifa € D;and((j < k andnot SeekPICSupport(,a,7,bk,¢)) and link them

or(j > % and not Seek PIC Support(i,a, ,b))) then 23 return true;
11 remove&D a); 24 return false;
12 if D; = @thenreturn false;
13 DeletionList « DeletionList U {(i,a)};

Figure2. PIC2

O(ed). For each value (¢, a) and each 3-clique{s, j, k} (j < k),
[(z, @), j, k] is added in InitPIC List exactly once. Therefore,
InitPIC List hasan O(cd) worst case space complexity. For each
arc-valuepair [(, 7), a] thereisacounter L,;, and thesize of the L
data structure is O(ed). A value (¢, a) has at most one current sup-
port on each constraint C;; and the size of the S;;° lists is O(ed).
((i, a), (k, c)) € S;;'“ only if ((5, b), (k, c)) isthe current “PIC
support” of (¢, a) on {i, 7, k} and no pair of value ((¢, a), (k, *))
isaddedin 5,/ aslongas((i, a), (k, ¢))isin S;,'“. So, thesize
of the ST1¢ data structure is O(cd) and the worst case space com-
plexity of PIC2is O(ed + cd).

6 Experimental Evaluation

We used the CN generator of [7]. It involves four parameters: n the
number of variables, d the common size of the initial domains, p1
the proportion of constraints in the network (the density p1=1 cor-
responds to the complete graph) and p2 the proportion of forbidden
pairs of valuesin a constraint (the tightness). Fig. 3 shows the effi-
ciency of AC7, RPC2, PIC1, PIC2 and Max-RPC1 on complete CNs
having 60 variables and 10 values in each initial domain. For each
tightness, 300 instances were generated and Fig. 3 presents mean
values. These experiments on small complete CNs show the compu-
tational advantage of using bidirectionality and storing information
to enhance del eted val ues propagation. Indeed, since these networks
are complete, the number of 3-cliquesismaximal and PIC2 hasto try
to extend each valueto any two additional variableslike PIC1. When
no valueisdeleted, PIC1 isabout twice asfast asPIC2 but as soon as

some value del etions occur, the advantage of an efficient propagation
becomessignificant and PIC2 is about seventimes asfast asPIC1 for
tightness 0.40. So even on small and complete CNs, PIC2 has better
behavior than PIC1.

CPU time (seconds) n=60, d=10 and density=1.
E+3

—m—AC7
—e—RPC2
—4&—PIC1
—~—PIC2
—e— Max-RPC1

1E4 +————————+—+—F—+—+—+—+—+—+—+—+
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
100 Percentage of deleted values Tightness

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Tightness

Figure3. Experimental evaluation on complete CNs with n=60 and ¢=10.

The advantage of using PIC2 instead of PIC1 becomesobviouson
sparse and large CNs. Fig. 4 shows the results on CNs having 250
variables, 30 valuesin each initial domain and a 5 percents density.

CPU time (seconds)

n=250, d=30 and density=0.05

—&— Max-RPC1

1E-3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Percentage of deleted values Tightness
100 . = ma
80 +
60 +
404
20 +

0 +—+
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Tightness

Figure4. Experimental evaluation on CNswith =250, d=30 and
density=0.05.

CPU time (seconds) n=60, d=10 and density=0.1

1E+1

—m— MACT7ps
—e—FC
—A— MPIC

1E+0 +

1E-3

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
Tightness

Figure5. Experimental evaluation on CNs with n=60, d=10 and
density=0.1.

Thereis much more 3-tuples checkedby PIC1 than 3-cliquesin these
relatively sparse CNs (each variableislinked to 12.5 variablesin av-
erage). PIC2 has better CPU time performances than PIC1 whatever
the tightness is. When no value is deleted, PIC2 is aready seventy
times asfast asPIC1 and obviously PIC2 overcomeseven more PIC1
when the number of deleted valuesincreases. At tightness 0.80, PIC2
is more than 1750 times faster than PIC1.

If we consider the other local consistencies, Fig. 3 showsthat PIC
has bad performances, PIC2 being more expensive than Max-RPC1
while removing few additional valuescomparedto RPC. However on
the CNs of Fig. 4 PIC2 has better behavior. Considering the pruning
efficiency, PIC is halfway between RPC and Max-RPC while PIC2
requires few additional cpu time compared to RPC2.

Local consistencies can be used during a preprocessing step but
it is even more advantageous to use them during search. However,
the time required to achieve them must not be prohibitive w.r.t. their
pruning efficiency. To know whether it can be advantageousto main-
tain PIC during search (MPIC), we have compared a search algo-
rithm maintaining PIC based on PIC2 with forward checking and
MAC® on CNs having 60 variables with 10 values in each initial

3 We used the MAC7psversion of MAC [8].

CPU time (seconds) n=60, d=10 and density=0.15

1E+2

—=— MACTps
—e—FC

1E+1 —&— MPIC

1E+0

1E-1

1E-2

1E-3

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
Tightness

Figure6. Experimental evaluation on CNs with n=60, d=10 and
density=0.15.

domain. The same generator has been used. For each tightness 300
instanceswere generated and Fig. 5 presentsthe mean value for den-
sity .10. Obvisouly, on easy CNs forward checking has the best cpu
time performances but for tightness 0.5 were most of the hard CNs
are, maintaining PIC is more time efficient than FC and MAC. Addi-
tional experiments show that this advantage is even more important
on CNs involving more variables. Fig. 6 shows the results for den-
sity .15. Thenumber of 3-cliquesin these CNsis moreimportant and
maintaining PIC becomes more costly. At this density, maintaining
PIC still has better cpu time performances than FC on the hard CNs
but MAC is more efficient. Maintaining PIC must therefore be used
only when thereis few 3-cliquesin the constraint graph.

7 Conclusion

In this paper we gave a property of path inverse consistency, which
highlights the rel ations between PIC, RPC and Max-RPC, and which
shows the reason why PIC removes only few additional values com-
pared to RPC while Max-RPC is far more pruningful. We proposed
an optimal PIC algorithm, called PIC2, based on this property. An
experimental evaluation showsthat it isfar more efficient than PIC1.
Furthermore, maintaining PIC during search using PIC2 |eadsto bet-
ter cpu time performances than FC and MAC on hard sparse CNs.

REFERENCES

[1] P Berlandier, Improving Domain Filtering using Restricted Path Consis-
tency In |EEE CAIA-95, Los Angeles CA, 1995.

[2] C. Bessiere, E.C. Freuder, and J.C. Régin, Using inference to reduce
arc-consistency computatip892-598, In 1JCAI-95, Montréal, Canada,
1995.

[3] R.Debruyneand C. Bessiere, From Restricted Path Consistency to Max-
Restricted Path Consisten@12-326, In CP-97, Linz, Austria, 1997.

[4] R. Debruyne and C. Bessiere, Some Practicable Filtering Techniques
for the Constraint Satisfaction Probledll2-417, In 1JCAI-97, Nagoya,
Japan, 1997.

[5] E. Freuder, ‘A sufficient condition for backtrack-bounded search’, Jour-
nal of the ACM 32(4), 755761, (1985).

[6] E. Freuder and D.C. Elfe, Neighborood Inverse Consistency Preprocess-
ing, 202-208, In AAAI-96, Portland OR, 1996.

[7] D.Frost, C. Bessiere, R. Dechter, and J.C. Régin, Random Uniform CSP
Generatorshttp://www.ics.uci.edu/df rost/csp/generator.ntml, 1996.

[8] J.-C. Régin, Développement d’outils algorithmiques pour l'intelligence
artificielle. Applicationa la chimie organique.Thése de doctorat, Uni-
versitede Montpellier I1. In French., 1995.

[9] M. Singh, Path Consistency Revisiteth ICTAI-95, Washington D.C.,
1995.

