
A Property of Path Inverse Consistency
Leading to an Optimal PIC Algorithm

Romuald Debruyne1

Abstract. In constraint networks, the efficiency of a search algo-
rithm is strongly related to the local consistency maintained dur-
ing search. For a long time, it has been considered that forward
checking was the best compromise between the pruning effect and
the amount of overhead involved. But recent works, comparing the
search algorithms on a large range of networks, show that main-
taining arc consistency during search (MAC) outperforms forward
checking on large and hard problems. It is conceivable that on very
difficult instances, using an even more pruningful local consistency
may pay off. To know which local consistency is the most promising,
a study comparing both their pruning efficiency and the time needed
to achieve them has been done [4]. This work shows that PIC1, the
path inverse consistency algorithm presented in [6], has very bad av-
erage and worst case time complexities. In this paper, we give a prop-
erty of PIC and we propose and evaluate a PIC algorithm based on
this property that has an optimal worst case time complexity. Exper-
iments show that maintaining PIC during search outperforms MAC
on hard sparses CNs.

1 Introduction

Finding a solution in a constraint network (CN), i.e. looking for an
assignment of values for the problem variables that satisfies all the
constraints of the network, is NP-hard. A blind search often leads to
a combinatorial explosion, the algorithm thrashing because of some
local inconsistencies. Therefore, filtering techniques are essential to
remove once and for all some local inconsistencies during a prepro-
cessing step or to efficiently prune the search tree during search.
To solve small and “easy” problems, it is sufficient to maintain a
low level of local consistency, such as forward checking. The addi-
tional cost of maintaining a more pruningful local consistency cannot
be outweighed. But on large and hard problems, a more pruningful
filtering technique is essential to avoid combinatorial explosion. A
good illustration is that MAC outperforms forward checking on hard
problems. The question is, “Is there a local consistency that outper-
forms arc consistency (AC) on very hard CNs?”. To give a first an-
swer, some comparisons between the local consistencies more prun-
ingful than AC have been carried out [3][4] considering both prun-
ing and time efficiencies. From that work, retricted path consistency
(RPC, [1]) and Max-RPC seem be victorious. Path inverse consis-
tency was indeed more expensive than Max-RPC while not pruning
far more than RPC which is weaker and cheaper. PIC1, the PIC algo-
rithm used for the comparison is in O(en2d4) when RPC2 and Max-
RPC1 (the Max-RPC algorithm proposed in [3]) are inO(ed2+cd2)2

1 Ecole des Mines de Nantes, 4, rue Alfred Kastler, La Chantrerie, 44307
Nantes cedex 03 - France, email: romuald.debruyne@emn.fr

2 c is the number of 3-cliques in the network

and O(ed2 + cd3) respectively. But PIC is a recent filtering tech-
nique and has not yet been much studied. PIC1 is the first and only
one algorithm to achieve it. PIC1 has bad time performances because
it does not store anything else than the deleted values. Therefore, it
has a linear worst case space complexity that would allow using it
on very large CNs but it is too time expensive for this use. In this
paper, we propose a new PIC algorithm, called PIC2, that has an op-
timal O(ed2 + cd3) worst case time complexity. Furthermore, PIC2
has an O(cd) worst case space complexity, but like RPC2 [3] and
Max-RPC1, its average space complexity is far from this limit. Ex-
periments show that PIC2 is far more efficient than PIC1 and that
maintaining PIC during search can lead to better time performances
than MAC on hard sparse CNs.

2 Definitions and notations

A network of binary constraintsP = (X ; D; C) is defined by a set
X =f i; j; : : : g of n variables, each taking value in its respective
finite domainDi; Dj; : : : elements of D, and a set C of e binary
constraints. d is the size of the largest domain. A binary constraint
Cij is a subset of the cartesian product D i � Dj that denotes the
compatible pairs of values for i and j. We note C ij(a; b) = true

to specify that ((i; a); (j; b))2Cij . We then say that (j; b) is a sup-
port for (i; a) on Cij . With each CN we associate a constraint graph
in which nodes represent variables and arcs connect pairs of vari-
ables which are constrained explicitly. c is the number of 3-cliques
in the constraint graph. An instantiationof a set of variables S is
an indexed set of values fI jgj2S s.t. 8j 2 S Ij2Dj . An instanti-
ation I of S satisfies a constraint Cij if fi; jg 6� S or Cij(Ii; Ij)
is true. An instantiation is consistentif it satisfies all the constraints.
A pair of values ((i; a); (j; b)) is path consistentif for all k 2 X
s.t. j6=k6= i6=j, this pair of values can be extended to a consistent in-
stantiation of fi; j; kg. (j; b) is a path consistent supportof (i; a) if
((i; a); (j; b)) is path consistent. A solutionof P = (X ; D; C) is a
consistent instantiation of X . A CN is consistentif it has at least one
solution.

3 Path Inverse Consistency

Before the presentation of PIC, let us recall what RPC and Max-RPC
are because there are some relations between PIC and these two local
consistencies.

The aim of Berlandier when he proposed RPC was to remove more
inconsistent values than AC while avoiding the drawbacks of path
consistency (PC). Indeed, a PC algorithm has to try to extend all the
pairs of values, even those between two independent variables, to
any third variable. This is very expensive and the best PC algorithm
[9] has an O(n3d3) worst case time complexity with an O(n3d2)

worst case space complexity. In addition, removing a pair of val-
ues can lead to the addition of a constraint in the network. To avoid
these drawbacks, a RPC algorithm only removes values, leaving un-
changed the set of constraints. Furthermore, to have a better worst
case time complexity, RPC checks the path consistency of a pair of
values only if it can directly lead to the deletion of a value. In ad-
dition to AC, an RPC algorithm checks the path consistency of the
pairs of values ((i; a); (j; b)) such that (j; b) is the only support of
(i; a) in Dj . If such a pair is path inconsistent, its deletion would
lead to the arc inconsistency of (i; a). So these few additional path
consistency checks allow detecting more inconsistent values than AC
without having to delete any pair of values. Furthermore, the number
of pairs that have to be checked is greatly reduced compared to PC,
and the worst case time complexity of RPC2 is O(ed2 + cd2).

Max-RPC is an extension of RPC. RPC checks the path consis-
tency of a support (j; b) only when it is the only support of a value
(i; a). We can remove more values by checking the existence of a
path consistent support for all the values on each constraint, what-
ever is the number of supports the value has. This is the base of Max-
RPC1 [3] which has an O(ed2 + cd3) worst case time complexity.

When they proposed inverse consistency in [6], the aim of Freuder
and Elfe was to achieve high order local consistencies with a good
space complexity. For a long time, the only studied local consisten-
cies were k-consistencies (i.e., (k-1, 1)-consistencies in the formal-
ism of [5]) which remove the consistent instantiations of length k-1
that cannot be extended to a consistent instantiation including any
additional kth variable. k-consistency has a time complexity polyno-
mial with the exponent dependent on k and requires O(n k�1dk�1)
space to store the deleted instantiations. So, only 2-consistency
(i.e., arc consistency) can be used in practice. Path consistency (3-
consistency) and higher levels of k-consistency are too expensive,
and change the structure of the network. Space requirements are no
longer a problem with k inverse consistency ((1, k-1)-consistency),
which removes the values that cannot be extended to a consistent
instantiation including any k-1 additional variables. It has a linear
space complexity. But the time complexity remains polynomial with
the exponent dependent on k. So, the inverse consistencies that can
be used in practice are path inverse consistency (k=3) and neigh-
borhood inverse consistency (which removes the values that cannot
be extended to a consistent instantiation including all the variables
linked to it) on sparse CNs. By definition, a PIC algorithm has to
remove the values (i; a) that cannot be extended to a consistent in-
stantiation including any 3-tuple of variables including i. In [6], the
authors remark that not all 3-tuples need to be checked. Only one of
the tuples (i; j; k) and (i; k; j) has to be checked and we do not
have to check the 3-tuples (i; j; k) such that i is linked to neither
j nor k. Indeed, in this last case, (i; a) can be removed only if PIC
has deleted all the values of j or k and so PIC would have already
detected the inconsistency of the network.

On some of the 3-tuples we still have to check, PIC is nothing more
than AC. If the CN is arc consistent, any value (i; a) can be extended
to a 3-tuple (i; j; k) such that there is no constraint between j and k.
If AC holds, there is b2Dj and c2Dk s.t. Cij(a; b) and Cik(a; c),
and since j is not linked to k, ((i; a); (j; b); (k; c)) is consistent.
Furthermore, AC is a sufficient condition to prove that a value (i; a)
can be extended to (i; j; k) if there is no constraint between i and
k (resp. between i and j). If AC holds, (i; a) has a support b in D j

(resp. c in Dk) and this value being arc consistent too, it has a sup-
port c in Dk (resp. b in Dj). So ((i; a); (j; b); (k; c)) is consistent.
Consequently, if the constraint network is arc consistent, the only
3-tuples that have to be checked to achieve PIC correspond to the

� A binary CN is (i; j)-consistent iff 8i2 X , Di 6= ; and any consistent
instantiation of i variables can be extended to a consistent instantiation
including any j additional variables.

� A domain Di is arc consistent iff, 8a 2Di , 8j2X s.t. Cij 2 C, there
exists b2Dj s.t. Cij (a; b). A CN is arc consistent ((1, 1)-consistent) iff
8Di2D, Di 6= ; and Di is arc consistent.

� A pair of variables (i; j) is path consistent iff 8(a; b)2Cij , 8k 2 X ,
there exists c2Dk s.t. Cik(a; c) and Cjk(b; c). A CN is path consis-
tent ((2, 1)-consistent) iff 8i; j2X , (i; j) is path consistent.

� A binary CN is restricted path consistent iff
8i2X ,Di is a non empty arc consistent domain and,
8(i; a)2D, 8j2X s.t. (i; a) has only one support b in Dj ,
for all k2X linked to both i and j,
9c2Dk s.t. Cik(a; c) ^Cjk(b; c).

� A binary CN is max restricted path consistent iff
8i2X ,Di is a non empty arc consistent domain and,
8(i; a)2D, for all j2X linked to i,
9b2Dj s.t. Cij(a; b) and for all k2X linked to both i and j,
9c2Dk s.t. Cik(a; c) ^Cjk(b; c).

� A binary CN is path inverse consistent iff it is (1, 2)-consistent i.e.
8(i; a)2D 8j;k2X s.t. j6= i6=k6=j, 9(j; b)2D and (k; c)2D s.t.
Cij(a; b) ^ Cik(a; c) ^ Cjk(b; c)

Figure 1. The mentionned local consistencies

3-cliques of the constraint graph. Furthermore, the definition of PIC
shows that any constraint network involving less than three variables
is path inverse consistent, even though it is not arc consistent. These
remarks lead to the following property.

Property 1. A CN is path inverse consistent iff
� it involves less than three variables, or
� it is arc consistent and for each value (i; a) in D, for any

3-clique fi; j; kg, (i; a) can be extended to a consistent
instantiation of fi; j; kg.

This property highlights the relations between PIC, RPC and Max-
RPC. Let us consider a value (i; a), a constraint C ij and the set S
of the variables s s.t. fi; j; sg is a 3-clique. Obviously, if (i; a) is
not arc consistent, the three local consistencies delete it. If (i; a)
has only one support b in Dj , PIC, RPC and Max-RPC have the
same behavior. They delete (i; a) because of C ij if ((i; a); (j; b))
is path inconsistent. If (i; a) has at least two supports in D j , (i; a)
is restricted path consistent w.r.t. Cij but PIC can delete it if there is
s 2 S such that all the supports of (i; a) in Dj are path inconsistent
because of s. This explains that the pruning efficiency of PIC is close
to the one of RPC because it is infrequent that all the supports of
a value are path inconsistent because of the same third variable. A
Max-RPC algorithm removes much more values since it deletes a
value (i; a) because of C ij if it has no path consistent support in
Dj . In other words, (i; a) is deleted if all its supports in Dj are path
inconsistent, even if they are not path inconsistent because of the
same third variable.

4 PIC2
4.1 Bases of the algorithm

PIC2 uses Property 1. To remove the arc inconsistent values, PIC2
uses AC7 [2], the most efficient AC algorithm. As soon as AC holds,
achieving PIC is only checking whether the values can be extended
to any 3-clique involving their variable. This greatly reduces the set
of 3-tuples that have to be checked, especially on sparse CNs.

This enhancement is not sufficient. The reason why PIC1 has an
O(en2d4) worst case time complexity is that it stores nothing else

than the deleted values. If PIC1 has found that (i; a) can be ex-
tended to ((i; a); (j; b); (k; c)) it does not store this information.
Therefore, if a value (j; b) is deleted, PIC1 does not know which
values may be no longer path inverse consistent because of this dele-
tion. It can only overestimate this set by the values of all the variables
linked to j. To avoid this drawback, when PIC2 finds that (i; a) can
be extended to ((i; a); (j; b); (k; c)) it stores that the path inverse
consistency of (i; a) depends on (j; b) and (k; c). While b2D j and
c2Dk , PIC holds for (i; a) w.r.t. fi; j; kg. PIC2 will try to extend
(i; a) to fi; j; kg again only if (j; b) or (k; c) is deleted. Storing
this information has another advantage. When PIC2 looks for a pair
(b; c) 2Dj � Dk consistent with (i; a), it uses a lexicographic or-
der. So, if (i; a) is supported by a pair ((j; b); (k; c)) we are sure
that this is the first pair compatible with (i; a) according to this or-
der. If (j; b) or (k; c) is deleted, we have to look for another pair of
values in Dj � Dk supporting (i; a) but it is useless to check the
pairs ((j; b0); (k; c0)) such that b0 < b or ((b0 = b) and (c0 � c)).
Therefore, in the worst case PIC2 checks each pair of D j �Dk only
once to check the path inverse consistency of a value (i; a) w.r.t.
fi; j; kg.

4.2 The Algorithm
The data structures of PIC2 are:
� each initial domain is considered as the integer range 1..jD ij. The

current domain is represented by a table of booleans. We use the
following constant time functions and procedures:

– first(Di) returns the smallest value of Di if Di 6= ; and 1
otherwise.

– last(Di) returns the greatest value of Di if Di 6= ; and nil

otherwise.

– if a2Dinlast(Di), next(Di; a) returns the smallest value in
Di greater than a. next(Di; nil) returns the smallest value of
Di if Di 6= ; and 1 otherwise.

– remove(Di; a) removes the value a from Di.

� SAC is the array of lists of supported values of AC7. A value a is
in SACjb [i] if (j; b) is currently supporting (i; a). If a value (j; b)
is deleted, PIC2 has to check whether the values (i; a) in S AC

jb are
still arc consistent w.r.t. Cij .

� Like in AC7, Lija is the last value of Dj checked to find a support
for (i; a) i.e. 8b 2Dj s.t. b � Lija , Cij(a; b) has already been
checked.

� The list SPICjb is used to know the values for which the path in-
verse consistency depends on (j; b). ((i; a); (k; c)) 2 S PIC

jb if
((j; b); (k; c)) is the current “pic support” of (i; a). In other
words, if (j < k) (resp. k < j) and (i; a), (j; b), and (k; c)
are in D, (b; c) (resp. (c; b)) is the first allowed pair of Dj �Dk

(resp. Dk � Dj) w.r.t. the lexicographic order that is consistent
with (i; a). As long as b 2Dj and c2Dk , (i; a) is path inverse
consistent w.r.t. fi; j; kg. If (j; b) (or (k; c)) is deleted, another
pair of Dj�Dk supporting (i; a) has to be found but since (b; c)
was the first in Dj � Dk , only the pairs greater than (b; c) have
to be checked. If a pair ((i; a); (k; c))2SPIC

jb , ((i; a); (j; b)) is
in SPICkc since the path inverse consistency of (i; a) depends on
(k; c) too. These two elements must be linked to allow performing
the line 9 of PropagDeletion in constant time.

� An arc-value pair [(i; j); a] is in InitACList if PIC2 has not
checked the arc consistency of (i; a) w.r.t. C ij . [(i; a); j; k] is
in InitPICList if PIC2 has not checked the path inverse con-
sistency of (i; a) w.r.t. the clique fi; j; kg. A value (j; b) is in

DeletionList if b has been removed from Dj but this deletion
has not been propagated yet.

For each arc-value pair [(i; j); a] PIC2 uses the function
SeekACSupport to know whether (i; a) is arc consistent w.r.t. Cij .
This function has the behavior of AC7. First, it tries to infer a support
looking for an undeleted value in SAC

ia [j], i.e. the list of the values
supported by (i; a) on Cij . If no support can be inferred, PIC2 goes
on with its search looking for the smallest support in Dj . The ar-
ray L is used to never perform a constraint check twice during AC
achievement. Only the values greater than L ija have to be checked.
Furthermore, it is useless to check Cij(a; b) if Ljib � a since in
such a case PIC2 has already checked whether (i; a) is a support of
(j; b), and if it is a compatible value SeekACSupport would have
found b in SAC

ia [j].
In addition to AC, PIC2 tries to extend each value (i; a) to any

3-clique fi; j; kg using SeekPIC-Support(i; a; j; b; k; c). This
function looks for the first pair in Dj�Dk according to the lexico-
graphic order that is consistent with (i; a) and greater than (b; c).
If this pair of values exists, SeekPICSupport uses SPIC to store
(line 22) that the path inverse consistency of (i; a) depends on this
pair.

If a value (j; b) is deleted, PropagDeletion checks whether the
values in SAC

jb (the values currently supported by (j; b)) still have a
support in Dj . Furthermore, for each pair of values ((i; a); (k; c))2
SPICjb , PropagDeletion usesSeekPICSupport to know whether
(i; a) is still path inverse consistent w.r.t. fi; j; kg.

5 Complexity
A PIC algorithm has to remove all the arc inconsistent values and
since the optimal worst case time complexity of achieving arc con-
sistency is O(ed2), O(ed2) is a lower bound time complexity for
PIC. Furthermore, for each value (i; a) and each 3-clique fi; j; kg,
a PIC algorithm has to check whether (i; a) can be extended to a
consistent instantiation including j and k. In the worst case, all the
pairs of values of Dj�Dk have to be checked to know whether (i; a)
is path inverse consistent w.r.t. fi; j; kg. So, O(ed2+cd3) is a lower
bound for the worst case time complexity of any PIC algorithm.

Since SeekACSupport removes from SAC
ia [j] the values that are

no longer in Dj , the test of line 3 is performed at most O(d) times
for each arc-value pair. Furthermore, Lija is bounded above by d and
Lija increases at each step of the second loop of SeekACSupport.
Thus, the cost of this loop is O(d) for each arc-value pair and the
complexity due to the calls to SeekACSupport is O(ed2). If PIC2
has to check the path inverse consistency of (i; a) w.r.t. fi; j; kg
(with j < k), it checks only the pairs of values of Dj�Dk it has
not already checked, i.e. those greater (w.r.t. the lexicographic order)
than the pair currently supporting (i; a). So, a pair of Dj�Dk is
checked at most once to check the path inverse consistency of a value
(i; a) w.r.t. fi; j; kg. Thus, in the worst case SeekPICSupport

checks O(cd3) times whether a pair of values is consistent with a
third value and PIC2 has an optimal O(ed2 + cd3) worst case time
complexity. Since there is at most O(en) 3-cliques in the network,
O(end3) is an upper bound time complexity for PIC2. However this
is a rough upper bound since there can be much less than O(en)
3-cliques, especially on sparse CNs.

Only the deleted values for which the deletion has not yet been
propagated are in DeletionList. So, there is at most O(nd) val-
ues in DeletionList. The line 5 of the function PIC2 adds all the
arc-value pairs in InitACList. Since after this initialization phase
no arc-value pair is added in InitACList, the size of this list is

function PIC2() : boolean; function SeekACSupport(i; a; j) : boolean;
1 DeletionList ;; InitACList ;; InitPICList ;; 1 while SACia [j] 6= ; do

,2 forall (i; a) 2 D do 2 b first(SACia [j]);
3 SPICia ;; SACia ;; 3 if b 62 Dj then delete b from SACia [j]
4 forall Cij 2 C do 4 else SACjb [i] SACjb [i] [fag; return true;
5 InitACList InitACList[f[(i; j); a)]g; Lija nil; 5 while Lija � last(Dj) do
6 forall Cjk 2 C s.t. (k > j andCik 2 C) do 6 b next(Dj; Lija);
7 InitPICList InitPICList[f[(i; a); j; k]g; 7 Lija b;
8 while InitACList 6= ; or InitPICList 6= ; or 8 if Ljib < a then

DeletionList 6= ; do 9 if Cij(a; b) then
9 if DeletionList 6= ; then 10 SACjb [i] SACjb [i] [fag;
10 choose and delete (i; a) from DeletionList; 11 return true;
11 if not PropagDeletion(i; a; DeletionList) then 12 return false;
12 return false
13 else if InitACList 6= ; then functionSeekPICSupport(i; a; j; b; k; c) : boolean;
14 choose and delete [(i; j); a] from InitACList; 1 if b 62 Dj then
15 if a 2 Di and not SeekACSupport(i;a; j) then 2 b max(Lija; next(Dj; b));
16 remove(Di; a); 3 if b 62 Dj then b next(Dj; b);
17 if Di = ; then return false; 4 while b 6= 1 and (Ljib > a or not Cij(a; b)) do
18 DeletionList DeletionList[f(i; a)g; 5 b next(Dj; b);
19 else choose and delete [(i; a); j; k] from InitPICList; 6 if b 6= 1 then
20 if a 2 Di and not 7 c max(Lika; Ljkb; first(Dk));

SeekPICSupport(i; a; j; nil; k; nil) then 8 if c 62 Dk then c next(Dk; c);
21 remove(Di; a); 9 else
22 if Di = ; then return false; 10 c max(Lika; Ljkb; next(Dk; c));
23 DeletionList DeletionList[f(i; a)g; 11 if c 62 Dk then c next(Dk; c);
24 return true; 12 while b 6= 1 and (c = 1 or Lkjc > b or Lkic > a or

not Cik(a; c) or not Cjk(b; c)) do
function PropagDeletion(j; b; in out DeletionList) : boolean; 13 c next(Dk; c);
1 while SACjb 6= ; do 14 if c = 1 then
2 choose and delete (i; a) from SACjb ; 15 b next(Dj; b);
3 if a 2 Di and not SeekACSupport(i;a; j) then 16 while b 6= 1 and (Ljib > a or not Cij (a; b)) do
4 remove(Di; a); 17 b next(Dj; b);
5 if Di = ; then return false; 18 if b 6= 1 then
6 DeletionList DeletionList[f(i; a)g; 19 c max(Lika; Ljkb ; first(Dk));
7 while SPICjb 6= ; do 20 if c 62 Dk then c next(Dk; c);
8 choose and delete ((i; a); (k; c)) from SPICkc ; 21 if b 6= 1 then
9 remove ((i; a); (j; b)) from SPICkc ; 22 add ((i; a); (k; c)) in SPICjb , ((i; a); (j; b)) in SPICkc

10 if a 2 Di and ((j < k and not SeekPICSupport(i; a; j; b; k; c)) and link them
or (j > k and not SeekPICSupport(i;a; k; c; j; b))) then 23 return true;

11 remove(Di; a); 24 return false;
12 if Di = ; then return false;
13 DeletionList DeletionList[f(i; a)g;

Figure 2. PIC2.

O(ed). For each value (i; a) and each 3-clique fi; j; kg (j < k),
[(i; a); j; k] is added in InitPICList exactly once. Therefore,
InitPICList has an O(cd) worst case space complexity. For each
arc-value pair [(i; j); a] there is a counter Lija and the size of the L
data structure is O(ed). A value (i; a) has at most one current sup-
port on each constraint Cij and the size of the SAC

jb lists is O(ed).
((i; a); (k; c)) 2 SPICjb only if ((j; b); (k; c)) is the current “PIC
support” of (i; a) on fi; j; kg and no pair of value ((i; a); (k; �))
is added in SPIC

j� as long as ((i; a); (k; c)) is in SPIC
jb . So, the size

of the SPIC data structure is O(cd) and the worst case space com-
plexity of PIC2 is O(ed+ cd).

6 Experimental Evaluation

We used the CN generator of [7]. It involves four parameters : n the
number of variables, d the common size of the initial domains, p1
the proportion of constraints in the network (the density p1=1 cor-
responds to the complete graph) and p2 the proportion of forbidden
pairs of values in a constraint (the tightness). Fig. 3 shows the effi-
ciency of AC7, RPC2, PIC1, PIC2 and Max-RPC1 on complete CNs
having 60 variables and 10 values in each initial domain. For each
tightness, 300 instances were generated and Fig. 3 presents mean
values. These experiments on small complete CNs show the compu-
tational advantage of using bidirectionality and storing information
to enhance deleted values propagation. Indeed, since these networks
are complete, the number of 3-cliques is maximal and PIC2 has to try
to extend each value to any two additional variables like PIC1. When
no value is deleted, PIC1 is about twice as fast as PIC2 but as soon as

some value deletions occur, the advantage of an efficient propagation
becomes significant and PIC2 is about seven times as fast as PIC1 for
tightness 0.40. So even on small and complete CNs, PIC2 has better
behavior than PIC1.

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0

2 0

4 0

6 0

8 0

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

CPU time (seconds)

Percentage of deleted values

n=60, d=10 and density=1.

Tightness

Tightness

A C 7
RPC2
PIC1
PIC2
Max-RPC1

1E+3

Figure 3. Experimental evaluation on complete CNs with n=60 and d=10.

The advantage of using PIC2 instead of PIC1 becomes obvious on
sparse and large CNs. Fig. 4 shows the results on CNs having 250
variables, 30 values in each initial domain and a 5 percents density.

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0

2 0

4 0

6 0

8 0

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

A C 7

R P C 2

PIC1
PIC2

Max-RPC1

CPU time (seconds) n=250, d=30 and density=0.05

TightnessPercentage of deleted values

Tightness

Figure 4. Experimental evaluation on CNs with n=250, d=30 and
density=0.05.

1E-3

1E-2

1E-1

1E+0

1E+1

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

MAC7ps
FC
MPIC

CPU time (seconds) n=60, d=10 and density=0.1

Tightness

Figure 5. Experimental evaluation on CNs with n=60, d=10 and
density=0.1.

There is much more 3-tuples checkedby PIC1 than 3-cliques in these
relatively sparse CNs (each variable is linked to 12.5 variables in av-
erage). PIC2 has better CPU time performances than PIC1 whatever
the tightness is. When no value is deleted, PIC2 is already seventy
times as fast as PIC1 and obviously PIC2 overcomes even more PIC1
when the number of deleted values increases. At tightness 0.80, PIC2
is more than 1750 times faster than PIC1.

If we consider the other local consistencies, Fig. 3 shows that PIC
has bad performances, PIC2 being more expensive than Max-RPC1
while removing few additional values compared to RPC. However on
the CNs of Fig. 4 PIC2 has better behavior. Considering the pruning
efficiency, PIC is halfway between RPC and Max-RPC while PIC2
requires few additional cpu time compared to RPC2.

Local consistencies can be used during a preprocessing step but
it is even more advantageous to use them during search. However,
the time required to achieve them must not be prohibitive w.r.t. their
pruning efficiency. To know whether it can be advantageous to main-
tain PIC during search (MPIC), we have compared a search algo-
rithm maintaining PIC based on PIC2 with forward checking and
MAC3 on CNs having 60 variables with 10 values in each initial

3 We used the MAC7ps version of MAC [8].

1E-3

1E-2

1E-1

1E+0

1E+2

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

MAC7ps
FC
MPIC

CPU time (seconds) n=60, d=10 and density=0.15

Tightness

1E+1

Figure 6. Experimental evaluation on CNs with n=60, d=10 and
density=0.15.

domain. The same generator has been used. For each tightness 300
instances were generated and Fig. 5 presents the mean value for den-
sity .10. Obvisouly, on easy CNs forward checking has the best cpu
time performances but for tightness 0.5 were most of the hard CNs
are, maintaining PIC is more time efficient than FC and MAC. Addi-
tional experiments show that this advantage is even more important
on CNs involving more variables. Fig. 6 shows the results for den-
sity .15. The number of 3-cliques in these CNs is more important and
maintaining PIC becomes more costly. At this density, maintaining
PIC still has better cpu time performances than FC on the hard CNs
but MAC is more efficient. Maintaining PIC must therefore be used
only when there is few 3-cliques in the constraint graph.

7 Conclusion

In this paper we gave a property of path inverse consistency, which
highlights the relations between PIC, RPC and Max-RPC, and which
shows the reason why PIC removes only few additional values com-
pared to RPC while Max-RPC is far more pruningful. We proposed
an optimal PIC algorithm, called PIC2, based on this property. An
experimental evaluation shows that it is far more efficient than PIC1.
Furthermore, maintaining PIC during search using PIC2 leads to bet-
ter cpu time performances than FC and MAC on hard sparse CNs.

REFERENCES
[1] P. Berlandier, Improving Domain Filtering using Restricted Path Consis-

tency, In IEEE CAIA-95, Los Angeles CA, 1995.
[2] C. Bessière, E.C. Freuder, and J.C. Régin, Using inference to reduce

arc-consistency computation, 592–598, In IJCAI-95, Montréal, Canada,
1995.

[3] R. Debruyne and C. Bessière, From Restricted Path Consistency to Max-
Restricted Path Consistency, 312–326, In CP-97, Linz, Austria, 1997.

[4] R. Debruyne and C. Bessière, Some Practicable Filtering Techniques
for the Constraint Satisfaction Problem, 412–417, In IJCAI-97, Nagoya,
Japan, 1997.

[5] E. Freuder, ‘A sufficient condition for backtrack-bounded search’, Jour-
nal of the ACM, 32(4), 755–761, (1985).

[6] E. Freuder and D.C. Elfe, NeighboroodInverse Consistency Preprocess-
ing, 202–208, In AAAI-96, Portland OR, 1996.

[7] D. Frost, C. Bessière, R. Dechter, and J.C. Régin, Random Uniform CSP
Generators, http://www.ics.uci.edu/ d̃frost/csp/generator.html, 1996.

[8] J.-C. Régin, Développement d’outils algorithmiques pour l’intelligence
artificielle. Applicationà la chimie organique., Thèse de doctorat, Uni-
versité de Montpellier II. In French., 1995.

[9] M. Singh, Path Consistency Revisited, In ICTAI-95, Washington D.C.,
1995.

