
On the Limit of Branching Rules
for Hard Random Unsatisfiable 3-SAT

Chu Min Li1 and Sylvain Gérard1

Abstract. We study the limit of branching rules in Davis-Putnam
(DP) procedure for hard random unsatisfiable 3-SAT and try to an-
swer the question: what would be the search tree size if every branch-
ing variable were the best possible? The issue is of practical interest
because many efforts have been spent for designing better branch-
ing rules. Our experimental results suggest that the branching rules
used in the current state-of-the-art DP procedures are already close
to the optimal for hard random unsatisfiable 3-SAT, and in partic-
ular, that the first of the ten challenges for propositional reasoning
and search formulated by Selman et al. in [14], namely, proving a
hard 700 variable random 3-SAT formula is unsatisfiable, probably
cannot be answered by DP procedure unless something significantly
different from branching can be made effective for hard random un-
satisfiable 3-SAT.

1 Introduction

Consider a propositional formula F in Conjunctive Normal Form
(CNF) on a set of Boolean variables fx1; x2; :::; xng, the satisfiabil-
ity problem (SAT) consists in testing whether clauses in F can all be
satisfied by some consistent assignment of truth values (1 or 0) to the
variables. If each clause exactly contains r literals, the sub-problem
is called r-SAT. 3-SAT is the smallest NP-complete sub-problem of
SAT.

SAT is fundamental in many fields of computer science, electrical
engineering and mathematics. The Davis-Putnam procedure (DP) [3]
is the best complete method to solve SAT, which is roughly sketched
in Figure 1.

DP procedure essentially constructs a binary search tree through
the space of possible truth assignments until it either finds a satis-
fying truth assignment or concludes that no such assignment exists,
each recursive call constituting a node of the tree. It is well known
that the search tree size is generally exponential as a function of the
problem size, and the branching variable selected at a node is crucial
for the size of the subtree rooting at the node, since a wrong choice
may cause an exponential increase of the subtree size.

Many researches on DP procedure concentrate on finding a heuris-
tic to select the branching variable to minimize the search tree size.
In this paper, we empirically approximate the minimal search tree
size of DP procedure for hard random unsatisfiable 3-SAT in case
the best branching variable is selected at every node. We restrict our-
selves on unsatisfiable formulas, since the truth value assigned to a
branching variable has no importance to the search tree size for a
unsatisfiable formula and more importantly the minimal search tree

1 LaRIA, Université de Picardie Jules Verne, 5 Rue du Moulin Neuf, 80000
Amiens, France, email: fcli, gerardg@laria.u-picardie.fr

for a satisfiable formula is simply a literal chain if the truth value is
appropriately assigned to the branching variables.

procedure DP(F)
Begin
if F is empty, return "satisfiable";
F:=UnitPropagation(F);
if F contains an empty clause, return
"unsatisfiable";

/* branching rule */
select a variable x in F according to a
heuristic H,
if the calling of DP(F [ fxg) returns
"satisfiable", return "satisfiable",
otherwise return the result of calling
DP(F [ f�xg);
End

procedure UnitPropagation(F)
Begin
while there is no empty clause and a unit
clause l exists in F, satisfy l and simplify
F;
return F;
End

Figure 1. DP Procedure

We study the limit of branching rules for hard random unsatisfiable
3-SAT, because branching actually is the only effective technique to
solve this problem. Since our major objective is to study the limit of
branching rules, it is natural to focus on it to isolate the impact of
branching rules.

The experiments are very time consuming and take more than 5
months on 6 PCs with 300 Mhz pentium CPU under Linux.

Our results suggest that a DP procedure, even with an optimal
branching rule able to select the best branching variable at every
node, probably would not be substantially better than the current
state-of-the-art ones for hard random unsatisfiable 3-SAT. In par-
ticular, we feel that the first of the ten challenges for propositional
reasoning and search formulated by Selman et al. in [14], namely,
proving a hard 700 variable random 3-SAT formula is unsatisfiable,
probably cannot be answered by a DP procedure unless something
significantly different from branching can be made effective for hard
random unsatisfiable 3-SAT.

The paper is organized as follows. Section 2 presents Satz, the
fastest DP procedure of which we are aware for random 3-SAT. Sec-
tion 3 presents our approach based on Satz to approximate the min-

c
 2000 C.M. Li and S. Gérard
ECAI 2000. 14th European Conference on Artificial Intelligence
Edited by Werner Horn
Published in 2000 by IOS Press



imal search tree size of DP procedure for hard random unsatisfiable
3-SAT. The experimental results are also presented. In section 4 we
try to validate the approach by comparing the approximate value with
the computed real mean minimal search tree size of DP procedure for
small hard random unsatisfiable 3-SAT. Section 5 discusses related
work and section 6 concludes.

2 About Satz

Satz is a DP procedure with a powerful branching rule which selects
the variable allowing to generate more and stronger constraints. The
strategy is motivated as follows. All leaves (except one for a satis-
fiable formula) of a DP search tree represent a dead end where an
empty clause is found. In order to minimize the search tree, a DP
procedure should try to reach the dead end as early as possible.

Let w(l) measure the constraints introduced in F when satisfying
the literal l. w(l) is obtained by running UnitPropagation(F [ flg)
and roughly corresponds to the number of new binary clauses in
F when branching on l. Satz branches on the variable x such that
w(�x)�w(x)�1024+w(�x)+w(x) is the greatest. So the branching
rule is “two-sided”, i.e. w(�x) and w(x) are balanced for a branching
variable x. Two exceptions are treated in Satz:

1. if w(l) counts an empty clause, DP procedure should branch next
on l then immediately backtrack and satisfy �l;

2. if w(l) � w(�l), l generally is not selected as branching vari-
able since l and �l are not balanced. However if w(l) is very large,
F would have many new strong constraints after branching on l,
which probably implies a contradiction in F . If the contradiction
can be easily discovered by further unit propagations, DP proce-
dure should branch next on l then immediately backtrack and sat-
isfy �l.

The two cases are not treated as branching points in Satz, but as a
simplification of F by directly satisfying �l, which considerably re-
duces the search tree size, since the search tree for F [f�lg is at most
as large as that for F . For our convenience in this paper, we call the
simplification subprocedure of Satz FurtherSimplification(F) and
use it in our approach, since any formula F will be simplified by the
subprocedure before branching. For more details about the branching
rule of Satz, see [11, 10].

The original version of Satz as presented in [11] was already the
fastest procedure for hard random 3-SAT. Recall that random 3-SAT
formulas are hard if m=n � 4:25 [13, 2], where m is the number
of clauses, and n the number of variables. Table 1 taken from [11]
compared Satz with 3 other state-of-the-art DP procedures: C-SAT
[4], Tableau [2], and Posit [5] on hard random 3-SAT (including sat-
isfiable formulas).

Constant effort is made to improve Satz. Table 2 extracted from
[10] displays the performance of the newest version of Satz com-
pared with an older version which was already improved from the
original one reported in table 1.

Considering the amount of effort spent for designing better
branching rules, our question now is: can Satz be still substantially
improved by just improving its branching rule? Or more generally,
assuming every branching variable in a search tree is the best possi-
ble, is the search tree size substantially smaller than that of Satz? We
try to answer this question for hard random unsatisfiable 3-SAT in
the next section.

Table 1. Mean run time (in second on SUN Sparc 20 with 125 Mhz CPU)
and mean number of backtrackings (t size) of C-SAT, Tableau, Posit and

Satz for hard random 3-SAT (m=n = 4:25)

300 vars 350 vars 400 vars
300 problems 250 problems 100 problems

System time t size time t size time t size
C-SAT 77 49567 512 275303 3818 1624869
Tableau 79 43041 558 253366 4544 1524551

Posit 57 61797 474 400588 3592 2751611
Satz 34 32780 203 174337 1207 916569

Table 2. Mean run time (in second on a Macintosh G3 300 Mhz under
PPCLinux system) and mean number of backtrackings (t size) of Satz and
the improved version for hard random 3-SAT (m=n = 4:25). The gain of

the new version is given in the last line

350 vars 400 vars 450 vars
500 problems 300 problems 200 problems

time t size time t size time t size
Satz 77.64 119248 486 636526 2631 2993061

New Satz 52.02 39908 304 207822 1550 918533
gain 49% 199% 60% 206% 70% 226%

3 Approximating the Minimal Search Tree Size for
Hard Random Unsatisfiable 3-SAT

We use Satz to approximate the minimal search tree size for hard
random unsatisfiable 3-SAT because its tree size is by far the small-
est compared with other DP procedures. See tables 1 and 2. At a
branching point, we compare all possible branching variables by run-
ning Satz with each of them as the branching variable. After the
first forced branching variable, i.e., below the branching point, Satz
works under the normal conditions. Then we collect the k best vari-
ables and respectively branch on them. The same procedure is recur-
sively called for the two children of the branching point. The smallest
search tree size among the k trees rooting at the branching point is
returned. We call the procedure ApproximateMinSize and sketch it in
Figure 2.

Procedure ApproximateMinSize(F)
Begin
min:=-1; F:=UnitPropagation(F);
F:=FurtherSimplification(F);
if F contains an empty clause return 0;
for every free variable x in F

run Satz(F [ fxg) and Satz(F [ f�xg);
let S be the set of the k best variables for
Satz;
for every variable x in S do

begin
sizepos:=ApproximateMinSize(F [ fxg);
sizeneg:=ApproximateMinSize(F [ f�xg);
if ((min=-1) or (min > sizeneg + sizepos + 1))

min := sizeneg + sizepos + 1;
end

return min;
End

Figure 2. Approximating the minimal search tree size

Constraint Reasoning 99 C.M. Li and S. Gérard



Note that the same simplification subprocedure
FurtherSimplification(F) as in Satz is used to simplify F before
branching, which considerably reduces the size of the constructed
seach trees by fixing some variables in F .

When k is equal to the number of all free variables, we have the
exact minimal search tree rooting at the branching point, since the
procedure has compared all possible trees. Otherwise the search trees
whose branching variables at the branching point are not in the set of
the k variables are eliminated. Since the k variables are selected by
comparing the real search trees of Satz rooting at the branching point,
we believe that the eliminated search trees are likely larger and the
“heavy-tailed distribution” phenomenon (if any) as combatted in [6]
is avoided.

We conduct three experiments by varying k. The larger k is, the
fewer search trees ApproximateMinSize procedure eliminates. In this
case, the approximate minimal search tree size obtained by Approx-
imateMinSize is more exact. Unfortunately, the experiments would
take too much time for large k. We first study the case k = 1. For
larger k, we concentrate on the tree root and its two children since
the branching variables there are the most crucial for the search tree
size.

3.1 k = 1: The approximate minimal search tree
size

We say x1 is better for Satz than x2 if the sum of the two tree sizes
for Satz(F [ fx1g) and Satz(F [ f�x1g) is smaller than that for
Satz(F[fx2g) and Satz(F[f�x2g). When k = 1, ApproximateMin-
Size becomes a DP procedure using Satz to measure the impact of
branching next on a variable x. At every node, the best variable x for
Satz is selected to branch on. The obtained search tree is obviously
smaller than the tree constructed by Satz. We run ApproximateMin-
Size procedure (k = 1) on random unsatisfiable 3-SAT formulas
with m=n = 4:25 and vary n from 100 to 300 incrementing by 20.
For each n, we solve 300 formulas and give the average tree size.
Figure 3 compares the tree size of ApproximateMinSize (k = 1)
with the newest Satz for 100 to 300 variable formulas.

0

2000

4000

6000

8000

10000

12000

100 120 140 160 180 200 220 240 260 280 300

N
um

be
r 

of
 n

od
es

Number of variables

Satz
ApproximateMinSize (K=1)

Figure 3. Approximate minimal search tree size and search tree size of
Satz

We do not notice a substantial tree size difference between
Satz and ApproximateMinSize. The tree size complexity of Satz

is O(2(n=21:14)�1), while the tree size complexity of Approxi-
mateMinSize is O(2(n=22:18)�1:4).

Assuming the complexities displayed in figure 3 can be extended
to 700 variables, the tree size of Satz would be O(232:11) for hard
700 variable random unsatisfiable 3-SAT, while the tree size of Ap-
proximateMinSize would be O(230:16). In other words, other things
being equal, ApproximateMinSize would be only roughly 4 times
faster than Satz.

We run Satz for solving a likely unsatisfiable hard 700 variable
random 3-SAT formula (which the stochastic method W-SAT [15]
does not find satisfiable), Satz does not return after 100 hours of run
time on a 300 Mhz pentium CPU under Linux. A DP procedure with
the same search tree size complexity as ApproximateMinSize is un-
likely to be able to solve this formula in reasonable time.

3.2 k � 1: Evidences for ApproximateMinSize
procedure

The fact that x1 is better for Satz than x2 does not mean that the
minimal tree rooting at x1 is certainly smaller than the minimal tree
rooting at x2. However, we believe that it is often the case for hard
random unsatisfiable 3-SAT, and that if the minimal search tree root-
ing at x2 is smaller, the difference should not be significant, i.e. if
a DP procedure branches on other variables than the best one for
Satz, it probably would not give a significantly smaller tree. Below
we provide some evidence for our belief.

We run ApproximateMinSize (k � 1) to take into account the
branching variables other than the best for Satz and study three cases:
(i) k = 4 at the root and k = 1 at other nodes; (ii) k = 2 at the
root and the two children of the root and k = 1 at other nodes; (iii)
k = 8 at the root and k = 1 at other nodes. Note that in case (i), 4
search trees are compared and in cases (ii) and (iii) 8 search trees are
compared.

We run ApproximateMinSize procedure in the three cases for the
same random unsatisfiable 3-SAT formulas as in the case k = 1,
but limit the execution to n = 240 (200 for the case (iii)). Figure 4
compares the approximate minimal tree size obtained in case k = 1
with the three cases k � 1.

0

100

200

300

400

500

600

700

800

100 120 140 160 180 200 220 240

N
um

be
r 

of
 n

od
es

Number of variables

ApproximateMinSize (K=1)
ApproximateMinSize (K=4 at the root, K=1 elsewhere)

ApproximateMinSize (K=2 at the root and the two children of the root, K=1 elsewhere)
ApproximateMinSize (K=8 at the root, K=1 elsewhere)

Figure 4. Approximate minimal search tree sizes in cases k=1 everywhere,
k=4 at the tree root and 1 elsewhere, k=2 in the first two levels and 1

elsewhere, k=8 at the tree root and 1 elsewhere,

Constraint Reasoning 100 C.M. Li and S. Gérard



As is expected the three cases k � 1 give better results, but
the difference is not significant. ApproximateMinSize procedure has
the same tree size complexity O(2(n=22:18)�1:5) in the three cases
k � 1, which is to be compared with the tree size complexity
O(2(n=22:18)�1:4) in case k = 1.

Figure 4 enforces our belief that branching variables other than
the best one for Satz probably would not do significantly better for
reducing the search tree size and the approximate minimal search tree
size obtained by ApproximateMinSize in case k = 1 is close to the
real minimal search tree size for hard random unsatisfiable 3-SAT.

4 More Evidences for ApproximateMinSize
Procedure

Finding the best branching variable at a node of a DP search tree has
been proven both NP-Hard and Co-NP-hard [12], so it is unlikely
to obtain the exact minimal search tree size when solving a formula
of reasonable size. Nevertheless, we can empirically get the mini-
mal tree size for small random unsatisfiable 3-SAT and measure how
close is the approximate minimal search tree size to the exact one.

Given a SAT formula F , the procedure GetMinSize sketched in
figure 5 compares all possible search trees and returns the mini-
mal search tree size. To make the comparison with Satz and Ap-
proximateMinSize procedures meaningful, we use the same subpro-
cedure FurtherSimplification(F) to simplify F before branching by
fixing some free variables inF using experimental unit propagations,
which considerably reduces the reported minimal search tree size and
makes GetMinSize able to treat larger formulas.

Procedure GetMinSize(F)
Begin

return OptimizedGetMinSize(F,
ApproximateMinSize(F));

End

Procedure OptimizedGetMinSize(F ,MinSize)
Begin
F:=UnitPropagation(F);
F:=FurtherSimplification(F);
if F contains an empty clause, return 0;
if (MinSize � 0) return -1;
ApproxMin := ApproximateMinSize(F);
if (ApproxMin < MinSize) MinSize := ApproxMin;
for every free variable x in F do

begin
sizepos:=OptimizedGetMinSize(F [ fxg,

MinSize� 1);
if (sizepos <> �1)

sizeneg:=OptimizedGetMinSize(F [ f�xg,
Minsize� sizepos � 1);

if ((sizepos <> �1 and sizeneg <> �1)
and (MinSize > sizeneg + sizepos + 1))

MinSize := sizeneg + sizepos + 1;
end

return MinSize;
End

Figure 5. Computing the real minimal search tree size

The parameter MinSize in the procedure OptimizedGetMinSize
specifies the largest size of a search tree that a DP procedure is
allowed to construct to solve the formula F . The construction is
stopped when MinSize is reached. MinSize is initialized by the
approximate minimal search tree size for the same formula, then it is

modified every time a smaller search tree is obtained. Note that the
procedure ApproximateMinSize gives the size of a real search tree,
so the minimal search tree cannot be larger than it, which allows to
stop the construction of many trees.

In spite of the high optimization, GetMinSize procedure cannot
give the minimal search tree size for some 75 variable formulas in
reasonable time. We then restrict ourselves on search trees whose
branching variables occur in binary clauses, assuming these variables
are almost always better. The restriction allows GetMinSize proce-
dure to give the minimal search tree size for 80 variable formulas.

We run Satz, ApproximateMinSize procedure (k = 1 and k = 4
at the root) and GetMinSize procedure for random unsatisfiable 3-
SAT formulas with m=n = 4:25 and vary n from 50 to 80 (70 for
unrestricted GetMinSize) incrementing by 5. For each n, we solve
300 formulas and give the average tree size. Figure 6 compares the
results.

1

2

3

4

5

6

7

8

9

50 55 60 65 70 75 80

N
um

be
r 

of
 n

od
es

Number of variables

Satz
ApproxiamateMinSize (K=1)

ApproximateMinSize (K=4 at the root, K=1 elsewhere)
Restricted GetMinSize

Unrestricted GetMinSize

Figure 6. Real mean minimal search tree size versus approximate search
tree size

We do not notice a large difference between the results of Ap-
proximateMinSize procedure and GetMinSize procedure, especially
compared with the search tree size of Satz. The restricted GetMin-
Size and ApproximateMinSize (k = 4) even give almost the same
result. These results give an empirical evidence for the pertinence
of ApproximateMinSize procedure. Note that if GetMinSize did not
use FurtherSimplification(F), it would give a much larger minimal
search tree size for F .

From figures 4 and 6, we could predict a probable proportionally
smaller difference between the real minimal tree size and the approx-
imated one for larger formulas. Intuitively, the variables in a small
formula have very close ties so that there could be a “key” branching
variable making the minimal search tree clearly smaller than all other
trees. On the other hand, the ties between variables are much weaker
in a large formula and there could be a lot of search trees only slightly
larger than the minimal one, so that ApproximateMinSize procedure
has more chance to approach the minimal search tree size for large
formulas.

5 Related Work

Branching rules are a key factor in the success of DP procedure to
solve SAT. There are many papers in the literature that focus on the
heuristics for branching used in DP algorithm, either proposing new
heuristics or analysing properties of existing ones.

Constraint Reasoning 101 C.M. Li and S. Gérard



A common basis of many effective heuristics is MOM’s heuris-
tic which involves branching next on the variable having Maximum
Occurrences in clauses of Minimal Size [4, 5, 2, 8]. The heuristic
used in Satz is a combination of MOM’s heuristics with unit propa-
gation and is called UP heuristic. UP heuristics substantially improve
MOM’s ones. They go back to C-SAT which tries to discover con-
tradictions at a node near the bottom of a tree by experimental unit
propagations. The first uses of UP heuristics are due to Freeman in
Posit [5] and Crawford and Auton in Tableau [2].

Analyses of existing heuristics often lead to introduce new ones.
Li and Anbulagan have made a systematic empirical study of UP
heuristics in [11] and proposed the optimal UP heuristic used in
Satz. Hooker and Vinay [7] performed a probabilistic and experi-
mental analysis of several heuristics and proposed a positive two-
sided jeroslow-Wang rule. They also proposed a simplification hy-
pothesis providing motivations for a class of heuristics. Although the
researches on branching rules are rather empirical, a theoretical study
can be found in [9] for some foundations of branching heuristics.

Besides the effort spent for designing better branching rules, Lib-
eratore has shown that it is unlikely to obtain a branching rule able
to select the best branching variable to obtain a minimal search tree,
since the problem is both NP-hard and Co-NP-hard [12]. Our results
suggest that even if there existed such a branching rule, it probably
couldnot make a DP procedure substantially better than Satz for ran-
dom unsatisfiable 3-SAT.

Beame et al. [1] have established a lower bound 2
(n=�
4+") for

any DP search tree size for random unsatisfiable 3-SAT with � =
m=n. The lower bound (2n=326:2539 for � = 4:25) is far from the
empirical approximate minimal search tree size 2n=22:18 obtained
in our experiments. We believe it is also far from the real minimal
search tree size.

Selman et al. [14] formulated ten IJCAI challenges in proposi-
tional reasoning and search. The first challenge is to develop a way
to prove that a hard 700 variable random 3-SAT formula is unsat-
isfiable. Our results suggest that the challenge probably cannot be
answered by DP procedure unless something significantly different
from branching can be made effective.

Methods other than DP are obviously encouraged. In fact, the two
other challenges in [14] for systematic search (thus for proving un-
satisfiability) are to demonstrate that a propositional proof system
more powerful than resolution as well as integer programming can be
made practical for SAT. The answers to these two challenges would
probably imply an answer to the first.

6 Conclusion

We use a special DP-like procedure called ApproximateMinSize to
approximate the minimal DP search tree size for hard random un-
satisfiable 3-SAT under the hypothesis that every branching variable
is the best possible. ApproximateMinSize uses Satz, the fastest DP
procedure for random 3-SAT of which we are aware, to select the
branching variables. We provide evidence in two aspects for our ap-
proach.

First, ApproximateMinSize uses Satz to select several branching
variables at the root and the two children of the root, constructs a dif-
ferent search tree for each of them, and compares these trees to give
the smallest search tree size. The experimental results do not show a
significant difference from the case where ApproximateMinSize al-
ways branches next on the best variable for Satz, meaning that other
branching variables probably would not do significantly better.

Second, we compute the real mean minimal search tree size of

DP procedure for small hard random unsatisfiable 3-SAT and com-
pare the real value with the approximate value obtained by Approx-
imateMinSize. There is only a very small difference. We predict a
probable proportionally even smaller difference for larger formulas.

Our experimental results suggest that the branching rules used in
the current state-of-the-art DP procedures are already close to the
optimal for hard random unsatisfiable 3-SAT, and in particular, that
the first of the ten IJCAI-97 challenges for propositional reasoning
and search, namely, proving a hard 700 variable random 3-SAT
formula is unsatisfiable, probably cannot be answered by a DP
procedure unless something significantly different from branching
can be made effective for hard random unsatisfiable 3-SAT.

Acknowledgements

We would like to thank the referees for their comments which
helped improve this paper and Henry Kautz for informing us the
work of Beame et al [1].

REFERENCES
[1] Beame P., Karp R., Pitassi T., Saks M., On the Complexity of Unsatisfi-

ability Proofs for Random k-CNF Formulas, STOC98.
[2] Crawford J.M., Auton L.D., Experimental Results on the Crossover

Point in Random 3-SAT,Artificial Intelligence, no. 81, 1996.
[3] Davis M., Logemann G., Loveland D., A Machine Program for Theo-

rem Proving, In Commun. ACM 5, 1962, pp. 394-397.
[4] Dubois O., Andre P., Boufkhad Y., Carlier J., SAT Versus UNSAT. Sec-

ond DIMACS Challenge: Cliques, Coloring and Satisfiability. Rutgers
University, NJ, 1993.

[5] Freeman J.W., Improvements to Propositional Satisfiability Search Al-
gorithms, Ph.D. Thesis, University of Pennsylvania, 1995.

[6] Gomes C.P., Selman B., Kautz H. Boosting Combinatorial Search
Through Randomization, In proceedings of AAAI’98, 1998.

[7] Hooker J.N., Vinay V. Branching rules for satisfiability, Journal of Au-
tomated Reasoning, 15:359-383, 1995.

[8] Jeroslow R., Wang J. Solving propositional satisfiability problems, An-
nals of Mathematics and AI 1(1990), pp. 167-187.

[9] Kullmann O, Heuristics for SAT algorithms: Searching for some foun-
dations, submitted to Discrete Applied Mathematics, 23 Pages.

[10] Li C.M., A constraint-based approach to narrow search trees for satis-
fiability, Information Processing Letters 71 (1999) 75-80.

[11] Li C.M., Anbulagan, Heuristics Based on Unit Propagation for Satisfi-
ability Problems, In Proceedings of IJCAI-97, Page 366-371, Nagoya,
Japan, August 1997.

[12] Liberatore P., On the complexity of choosing the branching literal in
DPLL, Artificial Intelligence, Vol 116, Issue 1-2, Pages 315-326, 2000.

[13] Mitchell D., Selman B., Levesque H., Hard and Easy Distributions of
SAT Problems, In Proceedings of AAAI-92, San Jose, CA, July 1992,
pp. 459-465.

[14] B. Selman, H. Kautz, D. McAllester Ten Challenges in Propositional
Reasoning and Search, in proceedings of IJCAI-97, Nagoya, Aichi,
Japan, August 1997.

[15] Selman, B., Kautz H., Cohen B., Noise strategies for local search, In
Proc. of AAAI-94, pp. 337-343. AAAI Press/The MIT Press, 1994.

Constraint Reasoning 102 C.M. Li and S. Gérard


