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Abstract. This paper studies algorithms for the Disjunctive Tem-
poral Problem (DTP) a quite general temporal reasoning problem
introduced in [12]. This problem involves the satisfaction of a set of
constraints represented by disjunctive formulas of the formx1�y1 �
r1 _ x2 � y2 � r2 _ : : :_ xk � yk � rk. The paper starts sketching
why DTPs are potentially very useful in plan management applica-
tions, then analyzes the current solutions to DTP, and introduces a
constraint-satisfaction problem solving algorithm where different as-
pects of current DTP’s literature are integrated. This basic algorithm
is then improved exploiting the quantitative temporal information in
the “distance graph”. Using this knowledge an incremental version of
the forward checking is obtained and shown to be competitive with
current best results. The whole approach allows to understand pros
and cons of the current algorithms for the DTP and suggests further
future developments as discussed in the final part of the paper.

1 INTRODUCTION

Reasoning about temporal constraints has always deserved major at-
tention in AI (e.g., [1]) due to its relevance for applications (e.g.,
planning, scheduling, diagnosis). Quantitative temporal constraints
have been studied in [5] where a basic problem (called STP) and a
disjunctive problem (called TCSP) have been defined.

The STP is a constraint satisfaction problem where the generic
temporal variablesx andy should satisfy bounds on their distance
of the kindx � y � r with r being a real value. No disjunction
is allowed among constraints and, as a consequence, checking con-
sistency of an STP constraint network is polynomial. For such effi-
ciency reasons the STP is commonly used in several planning and
scheduling algorithms (e.g., [7] and many others) where consistency
checking of the temporal constraints is continuously performed dur-
ing problem solving.

In several recent applications the importance of more expressive
quantitative temporal reasoning is underscored. For example in con-
tinual planning applications [6] a relevant capability is the continuous
management of “rich temporal plans” [9, 13]. To this purpose, the
representation of temporal disjunction allows a leverage of systems’
capability. For example, it avoids a too early commitment on action
orderings. In fact, when storing information of temporal plans that
should not immediately be executed, powerful features are: (a) stor-
ing plans with potentially multiple executions; (b) knowing that at
least one temporally consistent scenario exists.

One way to represent disjunction in quantitative temporal net-
works is the TCSP mentioned above. It allows constraints of the form
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x � y � r1 _ x � y � r2 _ : : : _ x � y � rk. A further gener-
alization of the TCSP has been proposed in [12] where a problem is
defined whose constraints have the formx1 � y1 � r1 _ x2 � y2 �
r2 _ : : : _ xk � yk � rk. In [2] this last problem is referred to as
Disjunctive Temporal Problem (DTP) and we use this name in the
paper.

DTPs have been studied in two previous works: (a) in [12] sev-
eral constraint-based (CSP) algorithms (in the line of [10]) are de-
fined and experimentally compared. One of them, based onforward
checking [8], is shown to be the best; (b) in [2] DTP is modeled as a
propositional satisfiability (SAT [4]) problem and solved with a state-
of-the-art SAT-solver plus some additional processing. Experiments
show an improvement of up to two orders of magnitude with respect
to the results in [12].

Our starting point has been the observation of the sharp difference
between these two results. Some possible questions arise: does this
mean that the SAT-based approach is the best? Is it possible to im-
prove a CSP-based approach? Is it of any use the knowledge about
temporal distances that is usually represented in a specialized tem-
poral constraint network?

This paper follows a CSP-based approach and focus on using the
“quantitative reasoning” that can come out from a temporal con-
straint network representation. We basically observe that the effects
of quantitative temporal information to improve global performance
of DTPs have not been explored enough in previous works. Us-
ing such knowledge we are able to produce anincremental forward
checking algorithm which has comparable performance (measured
as number of forward checks) with the best SAT-based version pro-
posed in [2]. Furthermore, the rationale behind incremental forward
checking is quite general and can be exploited in other solvers that
rely on “quantitative temporal reasoning”.

The paper is structured as follows. Section 2 introduces the basic
concepts used in the paper. Section 3 gives a basic CSP algorithm
which integrates results from both previous works. Incremental for-
ward checking is introduced in Section 4 and an experimental eval-
uation of the different approaches is given in Section 5. Section 6
ends the paper discussing some remarks from our experiences and
drawing some directions for future research.

2 PRELIMINARIES

The Disjunctive Temporal Problem (DTP) involves a finite set of
temporal variablesx1; y1; x2; y2 : : : xn; yn ranging over the reals
and a finite set of constraintsC = fc1; c2; : : : cmg of the form
x1 � y1 � r1 _ x2 � y2 � r2 _ : : : _ xk � yk � rk, whereri are
real numbers. A DTP is consistent if an assignment to the variables
exists such that in each constraints in the setC = fc1; c2; : : : cmg at



least one disjunct is satisfied. One way to check for consistency of a
DTP consists of choosing one disjunct for each constraintci and see
if the conjunction of the chosen disjuncts is consistent. It is worth
observing that this is equivalent to extracting a “particular” STP (the
Simple Temporal Problem defined in [5]) from the DTP and check-
ing consistency of such a STP. If the STP is not consistent another
one is selected, and so on. Both previous approaches to DTP [12, 2]
do this basic search step.

Previous Work. Both [12, 2] share a “two layered” algorithmic
structure. An upper layer of reasoning is responsible for guiding the
search that extracts the set of disjuncts, a lower layer represents the
quantitative information of the temporal reasoning problem. In [12]
a general CSP formulation is used at the upper level while the quan-
titative information is managed by using the incremental directional
path consistency (IDPC) algorithm of [3]. In [2] at the upper level
the DTP is encoded as a SAT problem, a SAT-solver extracts an
STP to be checked, a simplified version of the Simplex algorithm
is used at the lower level to check for its consistency. Stergiou and
Kubarakis define different backtracking algorithms for managing the
upper-level and experimentally verify that the version using forward
checking is the best. Forward checking is used after each choice to
test which of the possible next choices are compatible with current
partial STP. In the rest of the paper their best algorithm is called
SK. Armando, Castellini and Giunchiglia focus their attention on
the SAT encoding, each disjunct is a propositional formula, and use
a state of the art SAT-solver that they enrich with a form of forward
checking biased by the temporal information. Their basic version is
calledTSAT and is shown to improve up to one order of magnitude
w.r.t.SK. Then they add a further preprocessing step calledIS that
basically produces a more accurate SAT encoding because it codi-
fies mutual exclusion conditions between propositions that exists in
the temporal information, but were lost by the first standard encod-
ing. Their second algorithm calledTSATIS furtherly improves up
to one order of magnitude w.r.t.TSAT .

DTP Consistency Checking as a Meta-CSP. Before introducing our
algorithm we underscore the possibility of seeing the consistency
checking problem as ameta-CSP problem, where each DTP con-
straintc 2 C represents a (meta) variable and the set of disjuncts
represents variable’s domain valuesDc = fÆ1; Æ2; : : : Ækg. A meta-
CSP problem is consistent if exists at least an elementS (solution)
of the setD1 � D2 � : : : �Dm such that the corresponding set of
disjunctsS = fÆ1; Æ2; : : : Æmg Æi 2 Di is temporally consistent.

Each valueÆi 2 Di represents an inequality of the formxi �
yi � ri and a solutionS can be represented as a labeled graph
Gd(VS; ES) called “distance graph” [5]. The set of nodesVS coin-
cides with the set of DTP variablesx1; y1; x2; y2 : : : xn; yn and each
disjunctxi � yi � ri is represented by a direct edge(yi; xi) from
yi to xi labeled withri. A path from a nodexi to yj on the graph
is a set of contiguous edges(xi; yi); (yi; yi1)(yi1; yi2) : : : (xil; yj)
and the length of the path is the sum of the edges’ labels. The set of
disjunctsS corresponds to an STP.S is a solution to themeta-CSP
problemiff Gd does not contain closed path with negative length
(negative cycles) [5].

From the graphGd a numerical solution of the problem can be
extracted as follows. Letdxiyi be the shortest path distance onGd

from the nodexi to yi, without loss of generality we can assume
a variablexi as reference point, for examplex1, in this way the
tuple (dx1x1 ; dx1x2 ; : : : dx1xn) is a solution of the original DTP
problem. In fact, the previous values represent the shortest dis-

CSP-DTP-SOLVER(dtp,S)
1. if CheckConsistency(dtp)
2. then if IsaSolution(dtp)
3. then return(S)
4. else begin
5. c SelectVariable(dtp)
6. Æ  ChooseValue(dtp,c)
7. CSP-DTP-SOLVER(dtp,S [ fÆg)
8. end
9. else return(Fail)
10.end

Figure 1. A CSP solver for the DTP.

tance from the reference nodex1 to all the other ones (in particu-
lar dx1x1 = 0). For each edgexi � yi � ri in Gd as it is well
known values(dx1x1 ; dx1x2 ; : : : dx1xn) must hold the Bellman’s in-
equalities:dx1xi � dx1yi + ri, that isdx1xi � dx1yi � ri. Hence
(dx1x1 ; dx1x2 ; : : : dx1xn) is a solution for the DTP.

This view of the consistency checking problem is used to define
our CSP approach and in particular is useful to understand our incre-
mental forward checking method.

3 A CSP ALGORITHM FOR DTP

In this work we mainly follow the CSP approach of Stergiu and
Kubarakis looking for improvements of a constraint satisfaction pro-
cedure for DTP. A basic CSP algorithm for solving DTP instances is
shown in Figure 1. The procedure starts from an empty solutionS
and basically executes three steps: (a) the current partial solution is
checked for consistency (Step 1) by the functionCheckConsistency.
This function filters also the search space from inconsistent states.
If the partial solution is a complete solution (Step 2) the algorithm
exits. If the solution is still incomplete the following two steps are
executed; (b) a (meta) variable (a constraintci) is selected at Step 5
by a variable ordering heuristic; (c) a disjunctxi� yi � ri is chosen
(Step 6) from the domain variableDi and added toS (represented at
the lower level as aGd graph). Hence the solver is recursively called
on the partial updated solutionS [ fÆg.

TheCheckConsistency function is the core of the CSP algorithm,
it both updates the set of distancesdxiyj and the domain variables
Di by forward checking. In particular it executes two main steps:

Temporal propagation. every time a new inequalityxi � yi � ri
is added to theGd graph, the set of distancesdxixj is updated by
a simpleO(n2) algorithm.

Forward checking. After the previous step, for each unassigned
meta-variable the domainDi is checked for consistency (forward
checking). Given the current solution represented byGd, each
valuexi�yi � ri belonging to an unassigned variable and which
induces a negative cycles onGd is removed. In other words, each
time a valueÆi � xi � yi � ri satisfies the testri + dxiyi < 0,
thenÆi is removed from the corresponding domainDi. In the case
that one domainDi becomes empty, the functionCheckConsis-
tency returnsfalse.

The CheckConsistency step contributes to avoid investigation of
search states proved inconsistent in one of the two internal analy-
ses. The other two steps (Steps 5 and 6 of Figure 1) are used to guide
the search according to heuristic estimators.



SelectVariable. It applies the simple and effective minimum re-
maining values heuristic. Hence, variables with the minimum
number of values are selected first. It is worth noting that the
heuristic just ranks the possible choices deciding which one to do
first but all the choices should be done (it is not a non deterministic
search step).

ChooseValue. This represents a non deterministic operator which
starts a different computation for each domain values. Obviously
in our implementation we use adepth-first search strategy, where
there is no particular values ordering heuristic. However, in the
case a constraint (variable) is always satisfied by the current partial
solutionSp, that is, a constraint disjunctxi � yi � ri exists such
that holds the conditiondyixi < ri, no branching is created. In
fact, the current constraint is implicitly “contained” in the partial
solution and it will be satisfied in all the solution created fromSp.

Analyzing the SAT approach. In [12] the exact implementation of
SK is not given but it is likely to be close to the algorithm described
till here 3. The current version of our CSP solver integrates also the
so-calledsemantic branching [2]. This is a feature that in the SAT
approach comes for free and that in the CSP temporal representation
is to be explicitly inserted. It avoids to test again certain conditions
previously proved inconsistent. The idea behind semantic branching
is the following, let us suppose that the algorithm builds a partial
solutionSp = fÆ1; Æ2; : : : Æpg and an unassigned meta variable is
selected which has a disjunct set of two elementsfÆ

0

; Æ
00

g. Let us
suppose that the disjunctÆ

0

is selected first and no feasible solution
exists from the partial solutionSp[fÆ

0

g. In other words, each search
path from the nodeSp[fÆ

0

g arrives to an infeasible state. In this case
the depth-first search process removes the decisionÆ

0

from the cur-
rent solution and tries the other one (Æ

00

). However, even if the pre-
vious computation is not able to find a solution, it demonstrates that
with regard to the partial solutionSp no solution can contain the dis-
junctÆ

0

. If we simply tryÆ
00

we lose the previous information, hence,
before tryingÆ

00

, we add the condition:Æ
0

(that isx
0

� y
0

> ri) to
the partial solution. It is worth nothing that in this case it is impor-
tant to make explicit the semantic branching by adding the negation
because the values in the domainsDi are not self-exclusive. In other
cases, for example a scheduling problem, where branching is done
with regard to the temporal ordering of pairs of activitiesA andB,
semantic branching is not useful. In fact whenA before B is chosen
the caseB before A is implicitly excluded.

A further observation concerns [2]. Their best performance is ob-
tained when at propositional level theIS preprocessing is added.
This function adds to the original disjunction —which represents
the problem constraints— a set of binary propositional relations (up
to a quadratic number of propositional relations in the number of
disjuncts) which represents mutual exclusions between pairs of dis-
juncts belonging to different constraints. It is possible to verify that
in our CSP approach it is not useful to add the latter set of new con-
straints because we work directly on a quantitative representation of
the problem where this mutual exclusive information is implicitly
encoded.

In this section we have described our basic algorithm that inte-
grates some of the previous analysis in a meta-CSP search frame-
work. From now on we call this algorithmCSP and it is the base
for the description of the incremental forward checking of the next
section.

3 Stergiou and Koubarakis use also backjumping together with standard for-
ward checking but the results did not show major differences [11]

4 INCREMENTAL FORWARD CHECKING

The algorithms for solving DTP introduced in the previous section
is based on themeta-CSP schema with some additional features. In
particular, it uses the enriched backtracking schema calledsemantic
branching. In the experimental section we show that such algorithm
improves the performance of the originalKS but is not comparable
to bothTSAT andTSATIS.

To further improve the performance of the CSP approach we have
investigated aspects connected to the quantitative temporal informa-
tion. This aspect has received less attention in [12, 2]. In particular in
this section we introduce a method to significantly decrease the num-
ber of forward checks by using the temporal information. Its general
idea is relatively simple.

Rationale. When a new disjunctÆ is added to a partial solution,
the algorithmCheckConsistency updates only a subset of the dis-
tancesdxixj (usually a “small” subset). The forward checking test
on disjuncts is performed w.r.t. the distances in the distance graph
Gd. It is of no use to perform a forward checking test of the form
dxiyi + ri < 0 on a disjunctÆi in all cases in which the distance
dxiyi has not been changed w.r.t. the previous state.

This basic observation can be nicely integrated inCSP with the ad-
ditional cost of a static preprocessing needed to create for each pair
of nodeshxi; yji the set ofaffected meta values AMV (xi; yj).

Affected meta-values w.r.t. a pair hxi; yji. Given a distancedxiyj
onGd the set ofaffected meta values discriminates which subset of
disjuncts are affected by an update ofdxiyj . The setAMV (xi; yj)
associated to the distancedxiyj (or the pairhxi; yji) is defined as
the set of disjunctsx � y � r whose temporal variablesx andy
respectively coincide with the variablesyj andxi (AMV (xi; yj)

:
=

fx� y � r : x = yj ; y = xig).

Given a DTP, the set of itsAMV s is computed once for all with a
preprocessing step with a space complexityO(m + n2) and a time
complexityO(n3 lnn). The information stored in theAMV s can
be used in a new version ofCSP we call “incremental forward
checking”(CSPi). It requires a modification of theCheckConsis-
tency function. The new incremental version of theCheckConsis-
tency works in two main steps:

1. The distancesdxiyj are updated and the set of distances that have
been changed is collected.

2. given such set, for eachdxiyj in it the corresponding
AMV (xi; yj) is taken, and its values are forward checked. In
particular, all the setAMV (xi; yj) are represented as a list of dis-
juncts sorted according to the value ofr and the forward checking
testdxiyj + r < 0 is performed from the disjunct with the small-
est value ofr. In this way, when a test fails on the list element
Æ, it will fail also on the rest of the list and the forward checking
procedure can stop onAMV (xi; yj).

In the next section we experimentally show that the new algorithm
CSPi strongly improves with respect to the basicCSP and be-
comes competitive with the best results available in the literature.

5 EXPERIMENTAL EVALUATION

We adopt the same evaluation procedure used in [12, 2] and use the
random DTP generator defined by Stergiou. DTP instances are gener-
ated according to the parametershk; n;m;Li (k: number of disjuncts



per clause,n: number of variables,m: number of disjunction (tem-
poral constraints);L: a positive integer such that all the constantsri
are sampled in the interval[�L; L]).

As in the works [12, 2] experimental sets are generated withk = 2
andL = 100. As done in these works, the domain ofri is on in-
tegers not on reals as in the general definition of DTP. This helps
us to implement the negation used insemantic branching. Experi-
mental results are plotted forn 2 f10; 12; 15; 20; 25g, where each
curve represents the number of consistency checks versus the ratio
� = m=n. The median number of checks over 100 random samples
for different values of� is plotted in Figures 2(a)-2(e). Figure 2(f)
plots the percentage of problems solvable byCSPi on differentn.
The algorithm is implemented in Allegro Common Lisp and the re-
ported results are obtained on a SUN UltraSparc 30 (266MHz). All
the results are obtained setting a timeout of 1000 seconds of CPU
time.

Several comments are worth doing: (a) first of all, all the curves of
theCSP andCSPi algorithms have the same behavior of the previ-
ous results. It is confirmed that the harder instances are obtained for
� 2 f6; 7g and for such values the percentage of solvable problems
becomes< 10%. When the number of variables increases the hardest
region narrows; (b) the median number of forward checks show that
CSPi significantly improves overCSP . This fact: (1) shows that
the incremental forward checking implemented using theAMV s is
very effective. This is confirmed by the fact that the CPU time spent
by CSPi is half the time spent byCSP ; (2) indirectly confirms
that there could be further space for investigating improvements of
the CSP approach; (c) theCSPi compares very well with the pre-
existing approaches; (d) indirectly our results confirm the goodness
of the results obtained in [2]. Further work will be needed to clearly
outperformTSATIS on alln. In particularTSATIS turns out to be
very good for the values at the transition phase of the problem. See-
ing the other part of the coin, this confirm thatCSPi contains good
ideas becauseTSATIS uses one of the best SAT-solvers available;
(e) finally, very important is the fact, confirmed in all the figures,
that for lower values of the ratio� = m=n (� 5) theCSPi is sig-
nificantly better with respect to all the others. It is worth reminding
that the ratio� represents the number of disjunctive constraints w.r.t.
the number of temporal events. This means that when the disjunctive
constraints are “not so many” the principle of “locality of computa-
tion” implemented by theAMV s is rather useful. It is to be noted
also that in many practical applications the condition� � 5 is likely
to be verified.

6 CONCLUSIONS

This paper has extended the CSP approach, initially introduced in
[12], to solving the DTP temporal problem. The DTP is going to be-
come very relevant in many planning application (see the short dis-
cussion in the introduction). Our algorithm integrates a new method
to perform incremental forward checking based on the use of quan-
titative temporal information with additional features based on [2].
In particular, the use of the semantic branching schema allows our
CSP to constantly outperformSK but is not enough for compet-
ing with the SAT-based approaches. The incremental forward check-
ing schema improves performance up to a further order of magni-
tude allowing competition with the best SAT approach. An interest-
ing area whereCSPi constantly outperforms all other approaches
(when� � 5) emerges from an experimental evaluation.

Going back to our original motivating questions we say that the
CSP approach may compete with the SAT-based one provided that

the implicit information encoded in the temporal constraints is actu-
ally exploited. Ours is a first result in this direction but more issues
still deserve investigation.

We are currently following two different directions: (a) we are
exploring more sophisticated filtering algorithms (generally applied
in solving discrete CSP problems). In particular we are working at
an incremental version of 2-consistency (arc consistency) and 3-
consistency filtering algorithms. Our goal is to analyze the tradeoffs
among number of forward checks, number of search nodes explored,
and CPU time; (b) we are also developing algorithms to compute
upper bounds of the shortest distancesdyixi useful to improve per-
formance by the execution in advance of a forward checking test of
the formdyixi + ri < 0.
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Figure 2. Experimental results.


