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Abstract. This paper studies algorithms for the Disjunctive Tem-z —y < riVz —y < r2V...Vz —y < rg. A further gener-
poral Problem (DTP) a quite general temporal reasoning probleralization of the TCSP has been proposed in [12] where a problem is
introduced in [12]. This problem involves the satisfaction of a set ofdefined whose constraints have the farm—y; < r1 Vs —y2 <
constraints represented by disjunctive formulas of the fermy, < roV...Vxr —yr < 1. In[2] this last problem is referred to as
riVes—ys <r2V...Vx, —yr < rg. The paper starts sketching Disjunctive Temporal Problem (DTP) and we use this name in the
why DTPs are potentially very useful in plan management applicapaper.

tions, then analyzes the current solutions to DTP, and introduces a DTPs have been studied in two previous works: (a) in [12] sev-
constraint-satisfaction problem solving algorithm where different aseral constraint-based (CSP) algorithms (in the line of [10]) are de-
pects of current DTP’s literature are integrated. This basic algorithnfined and experimentally compared. One of them, basefdrovard

is then improved exploiting the quantitative temporal information inchecking [8], is shown to be the best; (b) in [2] DTP is modeled as a
the “distance graph”. Using this knowledge an incremental version opropositional satisfiability (SAT [4]) problem and solved with a state-
the forward checking is obtained and shown to be competitive wittof-the-art SAT-solver plus some additional processing. Experiments
current best results. The whole approach allows to understand prasow an improvement of up to two orders of magnitude with respect
and cons of the current algorithms for the DTP and suggests furtheo the results in [12].

future developments as discussed in the final part of the paper. Our starting point has been the observation of the sharp difference
between these two results. Some possible questions arise: does this
1 INTRODUCTION mean that the SAT-based approach is the best? Is it possible to im-

prove a CSP-based approach? Is it of any use the knowledge about
Reasoning about temporal constraints has always deserved major gémporal distances that is usually represented in a specialized tem-
tention in Al (e.g., [1]) due to its relevance for applications (e.g., poral constraint network?
planning, scheduling, diagnosis). Quantitative temporal constraints This paper follows a CSP-based approach and focus on using the
have been studied in [5] where a basic problem (called STP) and guantitative reasoning” that can come out from a temporal con-
disjunctive problem (called TCSP) have been defined. straint network representation. We basically observe that the effects
The STP is a constraint satisfaction problem where the generigf quantitative temporal information to improve global performance
temporal variables andy should Satisfy bounds on their distance of DTPs have not been exp|0red enough in previous works. Us-
of the kindz — y < r with r being a real value. No disjunction jng such knowledge we are able to produceramemental forward
is allowed among constraints and, as a consequence, checking c@ifrecking algorithm which has comparable performance (measured
sistency of an STP constraint network is polynomial. For such effias number of forward checks) with the best SAT-based version pro-
ciency reasons the STP is commonly used in several planning argbsed in [2]. Furthermore, the rationale behind incremental forward
scheduling algorithms (e.g., [7] and many others) where consistenehecking is quite general and can be exploited in other solvers that
checking of the temporal constraints is continuously performed durrely on “quantitative temporal reasoning”.
ing problem solving. The paper is structured as follows. Section 2 introduces the basic
In several recent applications the importance of more expressivgoncepts used in the paper. Section 3 gives a basic CSP algorithm
quantitative temporal reasoning is underscored. For example in CORyhich integrates results from both previous works. Incremental for-
tinual planning applications [6] a relevant capability is the continuousyard checking is introduced in Section 4 and an experimental eval-
management of “rich temporal plans” [9, 13]. To this purpose, theyation of the different approaches is given in Section 5. Section 6
representation of temporal disjunction allows a leverage of systemsnds the paper discussing some remarks from our experiences and
capability. For example, it avoids a too early commitment on actioryrawing some directions for future research.
orderings. In fact, when storing information of temporal plans that
should not immediately be executed, powerful features are: (a) stor-
ing plans with potentially multiple executions; (b) knowing that at2 PRELIMINARIES
least one temporally consistent scenario exists. o ] . .
One way to represent disjunction in quantitative temporal net-The Disjunctive Temporal Problem (DTP) involves a finite set of
works is the TCSP mentioned above. It allows constraints of the forn{€mporal variables:, y1, 2, y2 ...z, y» ranging over the reals
- - - — and a finite set of constraint§ = {ci,c2,...cn} oOf the form
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least one disjunct is satisfied. One way to check for consistency of @SP-DTP-SOLVER(dtp,S)
DTP consists of choosing one disjunct for each constraiand see 1. if CheckConsistency(p)
if the conjunction of the chosen disjuncts is consistent. It is worthp,  then if IsaSolutiongtp)

observing that this is equivalent to extracting a “particular” STP (thes, then return(S)

Simple Temporal Problem defined in [5]) from the DTP and check-4, else begin

ing consistency of such a STP. If the STP is not consistent anotheg, ¢ + SelectVariable{tp)

one is selected, and so on. Both previous approaches to DTP [12, 8] § + ChooseValue(tp,c)

do this basic search step. 7. CSP-DTP-SOLVER{p,SU {d})

8. end
Previous Work. Both [12, 2] share a “two layered” algorithmic 9. esereturn(Fail)

structure. An upper layer of reasoning is responsible for guiding th‘ib.end

search that extracts the set of disjuncts, a lower layer represents the

quantitative information of the temporal reasoning problem. In [12] Figurel. A CSP solver for the DTP.

a general CSP formulation is used at the upper level while the quan-

titative information is managed by using the incremental directional

path consistency (IDPC) algorithm of [3]. In [2] at the upper level tance from the reference node to all the other ones (in particu-
the DTP is encoded as a SAT problem, a SAT-solver extracts afar d,,., = 0). For each edge; — y; < r; in G4 as it is well
STP to be checked, a simplified version of the Simplex algorithmknown valuegdy, », , dz; 25 - - - dz,z,, ) Must hold the Bellman’s in-

is used at the lower level to check for its consistency. Stergiou anéqualitiesid,, ., < dz,y; + 7i, thatisds,»;, — dz,y; < r;. Hence
Kubarakis define different backtracking algorithms for managing th€d,, ., , dz, 25, - - - dz, =, ) iS a solution for the DTP.

upper-level and experimentally verify that the version using forward This view of the consistency checking problem is used to define
checking is the best. Forward checking is used after each choice taur CSP approach and in particular is useful to understand our incre-
test which of the possible next choices are compatible with currentnental forward checking method.

partial STP. In the rest of the paper their best algorithm is called

SK. Armando, Castellini and Giunchiglia focus their attention on

the SAT encoding, each disjunct is a propositional formula, and usg’ A CSPALGORITHM FOR DTP

a state of the art SAT-solver that they enrich with a form of l‘orwardIn this work we mainly follow the CSP approach of Stergiu and

checking biased by the temporal information. Their basic version 'Kubarakis looking for improvements of a constraint satisfaction pro-

Ca”tecg‘;f‘flrﬁ an;:ihls Shg(\an ]Eo |tr:prove up to one orctier O;r%ﬁmttwecedure for DTP. A basic CSP algorithm for solving DTP instances is
WL - 'hen ey add a furiher preprocessing step ¢ a hown in Figure 1. The procedure starts from an empty solufion

:::'fnallj% ger?(gﬁJ essioi r:oor:gitiaf::?é?wiéz grnocp?:sl?t%::(t:r?;f:xlitsfsoidr%nd basically executes three steps: (a) the current partial solution is
. . . hecked for consisten 1 he functtireckConsi g
the temporal information, but were lost by the first standard encod(-: ecked for consistency (Step 1) by the func Consistency

ing. Their second algorithm callefiS ATy s furtherly improves up This function filters also the search space from inconsistent states.
. IS . . . . .

‘ If the partial solution is a complete solution (Step 2) the algorithm
to one order of magnitude w.rf.SAT. P P (Step 2) g

exits. If the solution is still incomplete the following two steps are

DTP Consistency Checking asa M eta-CSP. Before introducing our ~ €Xécuted; (b) a (meta) variable (a constraints selected at Step 5
algorithm we underscore the possibility of seeing the consistenc%’y""V‘"‘”"jlble ordering heuristic; (c) a disjuagt—y; < r; is chosen
checking problem as meta-CSP problem, where each DTP con- Step 6) from the domain variabl®; and added '[95' (repre_sented at
strainte € C represents a (meta) variable and the set of disjunctd® lower level as &, graph). Hence the solver is recursively called
represents variable’s domain valubs = {01, 05, ...6;}. Ameta- O the partial updated solutidhu {4} _
CSP problem is consistent if exists at least an elensefgolution) | he CheckConsistency function is the core of the CSP algorithm,
of the setD; x Ds x ... x Dy, such that the corresponding set of it both updates the set of distanagés,; and the domain variables
disjunctsS = {81,ds, ...6.,} & € D; is temporally consistent. D; by forward checking. In particular it executes two main steps:
Each valued; € D; represents an inequality of the form — ) ] ] )
y: < r; and a solutionS can be represented as a labeled graphl€mporal propagation. every time a new inequality; — y; < i

G4(Vs, Es) called “distance graph” [5]. The set of nodgs coin- is added to t?‘gd graph, the set of distances, . is updated by
cides with the set of DTP variables, y1, 22,92 . .. T, y» and each a simpleO (n~) algorithm. _ _
disjunctz; — y; < r; is represented by a direct edgg, ;) from Forward checking. After the previous step, for each unassigned
y: to z; labeled withr,. A path from a noder; to y; on the graph meta-variable the domaib; is checked for consistency (forward
is a set of contiguous edgés;, y:), (v, yi1 ) (i1, yi2) - - - (wit, y;) checking). Given the current solution _represent_ed(hy each _
and the length of the path is the sum of the edges’ labels. The set of Valuézi —y; < r; belonging to an unassigned variable and which
disjunctsS corresponds to an STP.is a solution to theneta-CSP induces a negative cycles 6 is removed. In other words, each
problemiff G4 does not contain closed path with negative length ime avalued; = z; —y; < r; satisfies the test; + d..,,; <0,
(negative cycles) [5]. thend; is removed from the corresponding doméain In the case

From the grapiG, a numerical solution of the problem can be  that one domaiD; becomes empty, the functidbheckConsis-
extracted as follows. Lef,,,, be the shortest path distance Gg tency returnsfalse.

from the nodez; to y;, without loss of generality we can assume _ _ o o
a variablez; as reference point, for exampie, in this way the ~ The CheckConsistency step contributes to avoid investigation of
tuple (dayz;, deyas, - - doyz, ) iS @ solution of the original DTP ~ Seéarch states proved inconsistent in one of the two internal analy-

problem. In fact, the previous values represent the shortest di§€s- The other two steps (Steps 5 and 6 of Figure 1) are used to guide
the search according to heuristic estimators.



SelectVariable. It applies the simple and effective minimum re- 4 |NCREMENTAL FORWARD CHECKING

maining values heuristic. Hence, variables with the minimum he algorithms f i . i th . .
number of values are selected first. It is worth noting that the_T e algorithms for solving DTP introduced in the previous section

heuristic just ranks the possible choices deciding which one to d& based on theneta-CSP schema with some additional features. In

first but all the choices should be done (it is not a non deterministit?art'cqlar’ it uses the e.nrlched bacl_<track|ng schema caﬂedntlc_
search step). branching. In the experimental section we show that such algorithm

ChooseValue. This represents a non deterministic operator which!MProves the performance of the origin&ils' but is not comparable

starts a different computation for each domain values. Obviousl);0 bOthTSAT andTSATys.
in our implementation we usedepth-first search strategy, where To further improve the performance of the CSP approach we have

there is no particular values ordering heuristic. However, in theinvestigated aspects connected to the quantitative temporal informa-

case a constraint (variable) is always satisfied by the current partié'lo_n' Th'§ aspec_t has received less atte_nthr_1 in [12, 2]. In particular in
solutionsS,, that is, a constraint disjunet — y; < r; exists such this section we introduce a method to significantly decrease the num-

that holds the conditiod,., < r, no branching is created. In ber of forward checks by using the temporal information. Its general

fact, the current constraint is implicitly “contained” in the partial idea is relatively simple.

solution and it will be satisfied in all the solution created frém Rationale. When a new disjuncs is added to a partial solution

the algorithmCheckConsistency updates only a subset of the dis-
tancesd,,.; (usually a “small” subset). The forward checking test
on disjuncts is performed w.r.t. the distances in the distance graph
.. Itis of no use to perform a forward checking test of the form

Analyzing the SAT approach. In [12] the exact implementation of
SK is not given but itis likely to be close to the algorithm described
till here ®. The current version of our CSP solver integrates also th
so-calledsemantic branching [2]. This is a feature that in the SAT _ o o : - :
approach comes for free and that in the CSP temporal representatiélﬁiyi :aglno<t t())e(;rr: ih(ﬁ];:;tj\; rl? S:LC;Z?ITOTSVZ?;?: the distance
is to be explicitly inserted. It avoids to test again certain conditions ¥’ o '
previously proved inconsistent. The idea behind semantic branchinghis basic observation can be nicely integrate@i$iP with the ad-

is the following, let us suppose that the algorithm builds a partialgitional cost of a static preprocessing needed to create for each pair
solution S, = {d1,d2,...0,} and an unassigned Ime:lta variable is of nodes(z;, y,) the set ofaffected meta values AMV (x;, ;).

selected which has a disjunct set of two elemditsd }. Let us

suppose that the disjunét is selected first and no feasible solution Affected meta-valuesw.rt. a pair (z, y;). Given a distancé.,,,

exists from the partial solutioﬂpU{J' }. In other words, each search g_n _Gd the set of?ﬁ&t;dbMa val(ljjes dlscrlmTlr':ates:{j/r]U[ch subset of
path from the nod&,U{é'} arrives to an infeasible state. In this case isjuncts are affected by an updatedf,,. The se Vi ;)

. . associated to the distandg,,; (or the pair(z;, y;)) is defined as
the depth-first search process removes the decisifrom the cur- o gat of disjuncts: — y < r whose temporal variables and y

rent solution an_d tries the other o_n% I However, even if the pre-  respectively coincide with the variablgsandx; (AMV (z;,y;) =
vious computation is not able to find a solution, it demonstrates that, _ < . ¢ = y; y = 2,}).

with regard to the partial solutiofi, no solution can contain the dis-
juncts’. Ifwe simply trys" we lose the previous information, hence, Given a DTP, the set of itsl A/ V's is computed once for all with a
before tryings , we add the conditiomé’ (thatisz —y > r;)to  Preprocessing step with a space complexiyn + »°) and a time
the partial solution. It is worth nothing that in this case it is impor- complexity O(n® Inn). The information stored in thelMV's can
tant to make explicit the semantic branching by adding the negatioRe used in a new version 'SP we call “incremental forward
because the values in the domaldsare not self-exclusive. In other checking”C'SPsi). It requires a modification of th€heckConsis-
cases, for example a scheduling problem, where branching is do@ncy function. The new incremental version of tkiheckConsis-
with regard to the temporal ordering of pairs of activitiésand B, ~ tency works in two main steps:
semantic branching is not useful. In fact whée fore B is chosen
the caseB be fore A is implicitly excluded. ;
A further observation concerns [2]. Their best performance is ob- b(_aen changed is collected. . )
tained when at propositional level thes preprocessing is added. 2- 9Iven such set, for eachl.,,, in it the corresponding
This function adds to the original disjunction —which represents AM_V(m“yj) is taken, and its values are forward ch_ecked_. In
the problem constraints— a set of binary propositional relations (up Particular, allthe sed A1V (z;, y;) are represented as a list of dis-
to a quadratic number of propositional relations in the number of 1UNCts sorted according to the valuercind the forward checking
disjuncts) which represents mutual exclusions between pairs of dis- testd,y; +r <0 1S performed from the d|_5]unct W'th_the small-
juncts belonging to different constraints. It is possible to verify that €St value ofr. In this way, when a test fails on the list element
in our CSP approach it is not useful to add the latter set of new con- 4, it will fail also on the rest of the list and the forward checking
straints because we work directly on a quantitative representation of procedure can stop ad MV (zi, y;).

the problem where this mutual exclusive information is implicitly In the next section we experimentally show that the new algorithm
encode_d. . . . . . CSPi strongly improves with respect to the bagitSP and be-

In this section we hav_e descnbed_ our basic algorithm that InteE:omes competitive with the best results available in the literature.
grates some of the previous analysis in a meta-CSP search frame-
work. From now on we call this algorith@SP and it is the base
for the description of the incremental forward checking of the next EXPERIMENTAL EVALUATION

section.

1. The distancesd.,,; are updated and the set of distances that have

We adopt the same evaluation procedure used in [12, 2] and use the

3 Stergiou and Koubarakis use also backjumping together with standard fof@ndom DTP generator defined by Stergiou. DTP instances are gener-
ward checking but the results did not show major differences [11] ated according to the parametéksn, m, L) (k: number of disjuncts




per clausen: number of variablesn: number of disjunction (tem-
poral constraints)L: a positive integer such that all the constants
are sampled in the interva+ L, L]).

As in the works [12, 2] experimental sets are generated hvith2 We are currently following two different directions: (a) we are
and L = 100. As done in these works, the domainfis on in- exploring more sophisticated filtering algorithms (generally applied
tegers not on reals as in the general definition of DTP. This help# solving discrete CSP problems). In particular we are working at
us to implement the negation usedsemantic branching. Experi-  an incremental version of 2-consistency (arc consistency) and 3-
mental results are plotted for € {10, 12,15, 20, 25}, where each  consistency filtering algorithms. Our goal is to analyze the tradeoffs
curve represents the number of consistency checks versus the raimong number of forward checks, number of search nodes explored,
p = m/n. The median number of checks over 100 random sampleand CPU time; (b) we are also developing algorithms to compute
for different values ofp is plotted in Figures 2(a)-2(e). Figure 2(f) upper bounds of the shortest distandgs,; useful to improve per-
plots the percentage of problems solvabley Pi on differentn. formance by the execution in advance of a forward checking test of
The algorithm is implemented in Allegro Common Lisp and the re-the formd,,.; + r: < 0.
ported results are obtained on a SUN UltraSparc 30 (266MHz). All
:ihnier.esults are obtained setting a timeout of 1000 seconds of CPH\CKNOWLEDGEM ENTS
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the implicit information encoded in the temporal constraints is actu-
ally exploited. Ours is a first result in this direction but more issues
still deserve investigation.

region narrows; (b) the median number of forward checks show that
C'SPi significantly improves ove€'SP. This fact: (1) shows that
the incremental forward checking implemented usingAid Vs is
very effective. This is confirmed by the fact that the CPU time spent [1]
by CSPi is half the time spent by’ SP; (2) indirectly confirms 2]
that there could be further space for investigating improvements oI[
the CSP approach; (c) th&SPi compares very well with the pre-
existing approaches; (d) indirectly our results confirm the goodness
of the results obtained in [2]. Further work will be needed to clearly (3]
outperformT’'SAT;s on alln. In particularT’'S ATt s turns out to be

very good for the values at the transition phase of the problem. Seeyy;
ing the other part of the coin, this confirm th@s Pi contains good
ideas becaus®&SATs uses one of the best SAT-solvers available;
(e) finally, very important is the fact, confirmed in all the figures, [5]
that for lower values of the ratip = m/n (< 5) the CSPi is sig-
nificantly better with respect to all the others. It is worth reminding [6]
that the ratigp represents the number of disjunctive constraints w.r.t.
the number of temporal events. This means that when the disjunctive7
constraints are “not so many” the principle of “locality of computa- 7l
tion” implemented by thed M V's is rather useful. It is to be noted
also that in many practical applications the conditiog 5 is likely
to be verified.

(8]

9]
6 CONCLUSIONS

This paper has extended the CSP approach, initially introduced O]
[12], to solving the DTP temporal problem. The DTP is going to be-[ll]
come very relevant in many planning application (see the short dig12]
cussion in the introduction). Our algorithm integrates a new method
to perform incremental forward checking based on the use of qua?ia]
titative temporal information with additional features based on [2].
In particular, the use of the semantic branching schema allows our
CSP to constantly outperforn K but is not enough for compet-
ing with the SAT-based approaches. The incremental forward check-
ing schema improves performance up to a further order of magni-
tude allowing competition with the best SAT approach. An interest-
ing area where”'SPi constantly outperforms all other approaches
(whenp < 5) emerges from an experimental evaluation.

Going back to our original motivating questions we say that the
CSP approach may compete with the SAT-based one provided that
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