
Solving Permutation Constraint Satisfaction Problems
with Artificial Ants

Christine Solnon1

Abstract. We describe in this paper Ant-P-solver, a generic con-
straint solver based on the Ant Colony Optimization (ACO) meta-
heuristic. The ACO metaheuristic takes inspiration on the observa-
tion of real ants collective foraging behaviour. The idea is to model
the problem as the search of a best path in a graph. Artificial ants
walk trough this graph, in a stochastic and incomplete way, search-
ing for good paths. Artificial ants communicate in a local and indirect
way, by laying a pheromone trail on the edges of the graph.

Ant-P-solver has been designed to solve a general class of combi-
natorial problems, i.e., permutation constraint satisfaction problems,
the goal of which is to find a permutation of n known values, to
be assigned to n variables, under some constraints. Many constraint
satisfaction problems involve such global permutation constraints.
Ant-P-solver capabilities are illustrated, and compared with other
approaches, on three of these problems, i.e., the n-queens, the all-
interval series and the car sequencing problems.

1 Introduction

Real ants are able to collectively find solutions to complex problems,
such as searching the shortest path between two points. Moreover,
they can dynamically take into account changes in their environment,
like the sudden appearance of an unexpected obstacle. This collective
behaviour is possible thanks to a local and indirect communication
mean, i.e., pheromone trails. Pheromone is a volatile hormone. While
walking, ants deposit a certain amount of pheromone, thus forming a
pheromone trail. When looking for their way, they probabilistically
prefer to follow a trail rich in pheromone rather than a poorer one.
The collective capability of ants to find short paths mainly comes
from the fact that the shorter the path, the quicker ants come back to
the nest along this path and deposit pheromone upon it, and the more
ants further choose this path, in an autocatalytic process.

The ant colony optimization metaheuristic

This behaviour, that allows ants to collectively solve hard problems,
gave rise to artificial ant algorithms. These algorithms were first pro-
posed in [6, 10] as a multi-agent approach to solve hard combina-
torial optimization problems. The idea is to model the problem as
the search of a best path in a graph. Artificial ants walk through the
graph, looking for good paths.

Some features of the behaviour of artificial ants are inspired from
real ants. In particular, artificial ants lay pheromone on the edges they
follow. They choose their way to go in a probabilistic way, depend-
ing on the amount of pheromone previously left on edges. In order to

1 LISI, University Lyon 1 and INSA de Lyon, bât. 710, 69622 Villeurbanne
cedex, France, e-mail: csolnon@bat710.univ-lyon1.fr

avoid premature convergence, the amount of pheromone is progres-
sively decreased, simulating some kind of evaporation.

Artificial ants also have some extra-capabilities which do not find
their counterpart in real ants. In particular, artificial ants can be as-
sociated with data structures which contain the memory of their pre-
vious actions. In most cases, pheromone trails are only updated af-
ter having generated a complete path, and not during the walk. The
amount of pheromone left is usually a function of the quality of the
path, whereas real ants nearly always deposit the same amount of
pheromone. Finally, the probability for an artificial ant to choose an
edge usually not only depends on pheromone trails but also on some
problem-specific local visibility.

These main features of artificial ants behaviour are introduced as
the “Ant Colony Optimization (ACO) metaheuristic” in [7, 8], and
have inspired different ant algorithms, that allowed solving hard op-
timization problems such as the traveling salesman problem [9], the
quadratic assignment problem [11] or the vehicle routing problem
[2].

Motivations

To solve a new optimization problem within the ACO metaheuristic,
one mainly has to model the problem as the search of a best path
through a graph. A key point is to define the graph and the stochas-
tic transition rule that is locally used by ants to choose their path. In
particular, one has to take into account the constraints of the prob-
lem in order to ensure that ants only perform consistent paths with
respect to these constraints. Actually, for hard-constrained problems,
this modeling phase becomes a challenge.

In this paper, we investigate the ACO metaheuristic capabilities
for solving constraint satisfaction problems: the goal is no longer to
optimize an objective function, under some constraints, but to find an
assignment which actually satisfies all the constraints (or maximizes
the number of satisfied constraints). A main motivation underlying
this work is to provide a generic tool which can be used to solve
a whole set of problems. We more particularly focus in this paper
on the class of permutation constraint satisfaction problems, called
PermutCSPs.

Definition of PermutCSPs

A PermutCSP consists of finding a permutation of n known values,
to be assigned to n variables, under some constraints. Many con-
straint satisfaction problems involve such permutation constraints,
also called cycling or sequencing constraints.

Definition of a CSP: A constraint satisfaction problem (CSP)[20]
is defined by a triple (X;D; C) such that X = fX1; X2; :::; Xng is

a finite set of n variables, D is a function which maps every variable
Xi 2 X to its domain D(Xi), and C is a set of constraints.
A solution of a CSP (X;D; C) is an assignment for all the variables
in X which satisfies all the constraints in C.

Definition of a PermutCSP: A PermutCSP is a particular CSP,
such that all the solutions of the CSP are permutations of a given
tuple. Such a problem will be defined by a quadruple (X;D; C; P)
such that (X;D; C) is a CSP and P =< v1; v2; : : : ; vn > is a tuple
of jXj = n values.
A solution of a PermutCSP is a complete assignment

A = fX1 r1; X2 r2; :::; Xn rng

which is a solution of (X;D;C) and such that < r1; r2; : : : ; rn >
is a permutation of P .

For example, the 4-queens problem, the goal of which is to place
4 queens on a 4�4 chessboard so that no queen can be attacked, can
be defined by the following PermutCSP

X = fX1; X2; X3; X4g
D(Xi) = f1; 2; 3; 4g 8Xi 2 X
C = fj Xi �Xj j6=j i� j j : (Xi; Xj) 2 X2; i 6= jg
P = < 1; 2; 3; 4 >

A solution to this problem is the permutation < 2; 4; 1; 3 > of P ,
such that the first queen, on row 1, is on column 2, the queen on row
2 is on column 4, the queen on row 3 is on column 1 and the queen
on row 4 is on column 3.

2 Description of Ant-P-solver

In this section, we define Ant-P-solver, an incomplete and stochastic
solver based on the ACO metaheuristic of [7] and which can be used
to solve any PermutCSP in a generic way. The idea is to associate
a graph —called the PermutGraph— with the PermutCSP to solve.
A colony of artificial ants walk through this PermutGraph, searching
for “good” paths, corresponding to solutions of the PermutCSP.

PermutGraph associated with a PermutCSP: The PermutGraph
associates a vertex with each value of the tuple P to be permuted.
There is an extra vertex corresponding to the nest, from which ants
will start their paths. Hence, the PermutGraph associated with a Per-
mutCSP (X;D; C; P) where P =< v1; v2; : : : ; vn > is the com-
plete oriented graph G = (V;E) such that:

V = fnest; v1; v2; : : : ; vng
E = f(vi; vj) 2 V 2g

Ants deposit pheromone on edges of the PermutGraph; the amount
of pheromone laying on an edge (vi; vj) is noted �(vi; vj).

Definition of a path: A path in a PermutGraph G = (V;E) is a
sequence of vertices of V . We only consider elementary paths, that
do not contain cycles. A path starting from a vertex vi and arriving
to a vertex vj is noted � = vi ; vj .

Paths are built by ants: ants start from the nest, and successively
visit each of the n other vertices of the graph, building thus a hamilto-
nian path. The path built by an ant corresponds to a complete assign-
ment: the value associated with the ith vertex of the path is assigned
to the ith variable of the PermutCSP.

Evaluation of a path: The goal of Ant-P-solver is to find a
complete assignment which minimizes the number of violated con-
straints. Therefore, the fewer constraints are violated in a path, the
better it is. Hence, the evaluation of a path �, denoted by eval(�),
is the number of constraints that are not satisfied in the assignment
corresponding to the path �. A complete path which evaluates to 0 is
a solution of the PermutCSP.

For example, let us consider again the 4-queens problem. The
vertices of the associated PermutGraph are V = fnest; 1; 2; 3; 4g.
Let us now consider an ant that, starting from the nest, successively
goes to vertices 2, 3, 1 and 4. The corresponding path is:

� =< nest; 2; 3; 1; 4 >

This path corresponds to the complete assignment:

A = fX1 2; X2 3; X3 1; X4 4g

This complete assignment violates one constraint, so that the path �
is evaluated to eval(�) = 1.

Definition of transition probabilities: While searching for a path,
an artificial ant chooses the next vertex to visit among the set of ver-
tices it has not yet visited, in a stochastic way with respect to tran-
sition probabilities. The probability for an ant that has already per-
formed a path � to go to a vertex vj is defined proportionally to the
attraction capability A�(vj) of the vertex vj :

p�(vj) =
A�(vj)P

vk2V
A�(vk)

The attraction capability of a vertex both depends on the pheromone
previously layed on the edge leading to this vertex, and on the “local
visibility” of the ant. Hence, the attraction capability A�(vj) of ver-
tex vj for an ant that has already performed the path � = nest; vi,
is defined by:

A�(vj) = 0 if vj 2 �

A�(vj) = � (vi; vj) � (local eval(�; vj))
� if vj 62 �

where � is a parameter which controls the relative weight of local
visibility with respect to the pheromone trail. The local visibility
evaluates the goodness of the next vertex vj and is inversely propor-
tional to the number of new unsatisfied constraints when assigning
the value vj to the next variable, i.e.,

local eval(�; vj) =
1

1 + eval(�: < vj >)� eval(�)

Path function: The function “path(G)” which computes a com-
plete path starting from the nest in a graph G is:

function path(G = (V; E)) returns a path
begin

� < nest >
Candidates V � fnestg
While Candidates 6= ; do

choose vj 2 Candidates with probability p�(vj)
add vj at the end of the path �
remove vj from Candidates

return(�)
end

Ant-P-solver function: The function “Ant-P-Solver(G; �)”,
which returns the best path found by artificial ants within the graph
G is described below. The parameter � controls the pheromone evap-
oration rate. At each cycle of this algorithm, each ant ai computes
a path �i. If this path is better than best�, the best path found so
far since the beginning of the search, then best� is updated. At the
end of each cycle, a pheromone trail is left on the edges of the best
path � found during this cycle. The amount of deposited pheromone
is proportional to the goodness of this path, i.e., it is inversely pro-
portional to eval(�), the number of violated constraints in �. Finally,
pheromone is uniformly decreased on all edges of the graph. The
algorithm stops cycling either when an ant has found a solution, or
when a maximum number of cycles have been performed.

function Ant-P-Solver(G = (V;E); �) returns a path
nbCycles 0
min 1
for any pair of vertices (vi; vj) 2 V 2 do �(vi; vj) 1
while nbCycles < nbMaxCycles and min > 0 do

nbCycles nbCycles + 1
/* Each ant ai computes a path �i */
for each ant ai do

�i path(G)
if eval(�i) <min then min eval(�i)

best� �i
/* The best ant of the current cycle leaves pheromone */
let � be the best path found during the current cycle
for each edge (vi; vj) of the path � do

�(vi; vj) �(vi; vj) +min=eval(�)
/* Pheromone evaporates */
for any pair (vi; vj) 2 V 2 do � (vi; vj) �(vi; vj) � �

return(best �)

Parameter values: Ant-P-solver is parameterized by the local vis-
ibility weight �, the evaporation rate � and the number of ants. These
parameters have been fixed in an experimental way, by running Ant-
P-solver with different parameter values, on different PermutCSPs,
and selecting the parameter values which gave the best average re-
sults. One should notice that we used the same parameter values for
solving all the problems detailed in the next section.
� has been fixed to 10. With smaller values, ants globally find

worse paths, so that it takes longer to reach the optimal solution,
whereas with greater values, ants are not enough sensitive to the
pheromone trails, and are not able to improve the resolution process.

The number of ants has been fixed to 8. With smaller values, the
best path found at each cycle is not good enough, so that the algo-
rithm converges more quickly, but on hard problems it converges to-
wards a sub-optimal path. On the other hand, with a greater number
of ants, the best path found at each cycle is not much better than the
one found with 8 ants, and therefore, the collective resolution is not
greatly enhanced, whereas each cycle is longer to perform.

Finally, the evaporation rate has been fixed to � = 0:99, so that if
the pheromone trail laying on an edge is equal to 1, and if no more
ants go trough this edge, then the pheromone trail becomes insignif-
icant in a few hundred cycles.

3 Solving PermutCSPs with Ant-P-solver

Ant-P-solver has been implemented in C++. To solve a new Per-
mutCSP with Ant-P-solver, one only has to implement a C++ class
which actually describes the problem to be solved. This class mainly

specifies the initial tuple P of values to permute, and the function
“local eval(�; vj)” which returns the number of new unsatisfied con-
straints when assigning the value vj to the next variable, with respect
to the partial assignment corresponding to path �.

In this section, we illustrate our approach on three PermutCSPs,
and we compare it with Ilog solver, a state of the art tree-search based
solver. In the next section, we compare Ant-P-solver with some other
related approaches.

All experiments, for both Ant-P-solver and Ilog solver, have been
performed on the same machine, i.e., a HP 715/100 station. Ant-P-
solver has been run ten times on each problem instance, and the re-
sults displayed are an average of these ten runs.

3.1 The n-queens problem

Results obtained for solving the n-queens problem, from 50 to 200
queens, are displayed in figure 1. These results illustrate the feasabil-
ity of our approach, but they are not very interesting: on small in-
stances, Ilog-solver is much faster, whereas on larger instances, re-
sults are comparable. Actually, the n-queens problem is very often
used to illustrate CSP solvers, mainly because it is easy to specify
and implement. However, as pointed out in [20], benchmarks on this
problem must be interpreted with caution, as it has very specific fea-
tures. In particular, each value assignment for every variable conflicts
with at most three values of each other variable, whatever the num-
ber of queens is. Therefore, constraints get looser as the number of
queens grows larger.

3.2 The all-interval series problem

This problem is described as prob007 in [13]. The goal is to find a
permutation of the first n integer numbers, so that the absolute dif-
ferences of any consecutive pairs of numbers are all different. Tree-
search based solvers, like Ilog-solver or CHIP, that use global con-
straints can find without search a first solution to this problem [18],
corresponding to the following regular sequence:
< 0; (n� 1); 1; (n� 2); 2; (n� 3); : : : >
However, even with state of the art tree-search solvers, finding an-
other solution remains a challenge for values of n greater than 16.

The results obtained for solving instances of the all-interval series
problem, from 10 to 24 variables, are displayed in figure 1. For the
Ilog program, we used the IlcDistribute global constraint to
express that both the n variables, and the interval values, must be
all different, and we searched for a second solution, as the first solu-
tion is always found without search. On this problem, Ant-P-solver is
clearly much more efficient than Ilog-solver. These results show that
a stochastic incomplete approach, provided that it can handle global
constraints, is more suitable than a complete approach for solving
this problem.

3.3 The car sequencing problem

The car-sequencing problem, described as prob001 in [13], consists
of scheduling cars along an assembly line: there are n cars to be pro-
duced, that are grouped into k car types. All the cars within a same
car type require the same set of options. Each option i is associated
with a capacity constraint, represented as a ratio pi=qi, which speci-
fies that for any sequence of qi consecutive cars in the assembly line,
at most pi of them may require that option. The goal is to find a
permutation of the n cars which satisfies all the capacity constraints.

N-queens problem
n Ant-P Ilog

50 2.7s 0.6s
75 6.8s 3.1s
100 18.1s 0.4s
125 87.6s 0.8s
150 144.5s 555.1s
175 256.0s >3 600.0s
200 282.6s 256.6s

All-interval series problem
n Ant-P Ilog

10 0.0s 0.1s
12 0.1s 1.1s
14 0.5s 29.3s
16 2.0s 882.4s
18 3.7s >3 600.0s
20 10.4s >3 600.0s
22 20.6s >3 600.0s
24 65.0s >3 600.0s

Car sequencing problem
Ant-P-solver Ilog solver

Instances Success Time Success Time
car-60 100% 1.7s 40% 17.7s
car-70 100% 2.5s 20% 17.8s
car-80 100% 4.4s 60% 19.0s
car-85 98% 33.1s 50% 23.5s
car-90 57% 119.8s 80% 229.7s

Figure 1. Experimentations report

Utilization percentages and ordering heuristics: The hardness
of a car sequencing problem instance depends on the number n of
cars to be produced and the number k of car types, but also on the
utilization percentage of the different options. The utilization per-
centage of an option i corresponds to the ratio of the number mi

of cars requiring option i with respect to the maximum number of
cars in a sequence which could have option i while satisfying the
capacity constraint on i (i.e., 100 � mi � qi=(n � pi)) [5]. A high
utilization percentage indicates that the demand is very close to the
capacity. Hence, [19] and [17] introduced value ordering heuristics:
the idea is to assign first the cars requiring options with high uti-
lization percentages, corresponding to “critical” options. Such value
ordering heuristics have been incorporated in Ant-P-solver in a very
straightforward way, by increasing the attraction capabilities of the
vertices corresponding to cars which require “critical” options, i.e.,
proportionally to their associated utilization percentages.

Experimentations report: We consider fifty problem instances
(provided by J. Lee [15]), grouped into five sets of ten instances each
(respectively called car-60, car-70, car-80, car-85 and car-90), with
respect to their mean utilization percentages (respectively of 60 %,
70%, 80%, 85% and 90%). All these instances are feasible, and have
200 cars to permute, 5 options, and from 17 to 30 different car types.
Figure 1 displays the results obtained with Ant-P-solver and Ilog
solver. Ant-P-solver has been limited to 5000 cycles (correspond-
ing roughly to 1000 seconds of cpu time), whereas Ilog-solver has
been limited to 3600 seconds of cpu time. Within these limits, the
solvers were not always able to find a solution. Hence, we report for
each solver, along with the cpu-time, the percentage of successful
runs. For the Ilog program, we used the IlcSequence global con-
straint, which is dedicated to this kind of sequencing problem, and
we used ordering heuristics, as described in [17]. For Ant-P-solver,
we used similar value ordering heuristics.

On “easy” instances of this problem, with utilization percentages
ranging between 60% and 80%, one can remark that Ant-P-solver is
more efficient, and much more successfull: Ant-P-solver never failed,

whereas Ilog-solver failed on more than half of the problems. Indeed,
these instances are not enough constrained to allow the filtering al-
gorithm used by Ilog-solver to reduce the search space. In this case,
an incomplete stochastic approach is clearly more appropriate. As a
counterpart, for the harder instances of car-90, the filtering algorithm
becomes more effective, and Ilog-solver is more successful than Ant-
P-solver, whereas the cpu time becomes comparable.

Infeasible instances: Ant-P-solver explores the search space in
a stochastic and incomplete way. Therefore, it cannot be used to
prove inconsistency of infeasible instances. However, it can be used
to search for a complete assignment which minimizes the number
of violated constraints. In a more general way, Ant-P-solver can be
used to solve “max-CSPs”, i.e., over-constrained problems, the goal
of which is to find an assignment which maximizes the number of
satisfied constraints. Let us consider for example instance pb19/71
of the car sequencing problem extracted from [13]. The feasibility of
this instance remained open in [17], i.e., Ilog solver can neither find
a solution, nor prove infeasibility, on this particular instance within
a reasonable amount of time. [12] proves that this instance is actu-
ally infeasible, and that any complete assignment violates at least two
capacity constraints. On this instance, Ant-P-solver has found an as-
signment that violates 2 capacity constraints, in 81s cpu time. This
assignment is actually optimal, even though Ant-P-solver cannot be
used to prove this optimality.

4 Related works

Global vs local constraints: Generally speaking, to solve a CSP
that contains permutation constraints, one had better to use a global
constraint which usually handles it more efficiently. Indeed, [5]
shows that using such global constraints always reduces the search
space, even though it can be slower to actually solve the problem
(this case usually happens on easy instances).

The advantage of using global constraints is well illustrated by the
all-interval series problem. Indeed, [14] describes the formulation of
the all-interval series problem as a SAT problem, and then uses it to
compare different local search algorithms. The results show that the
instance with 12 variables causes great difficulties even for the very
best local search methods for SAT. Actually, the difficulty probably
does not come from the kind of approach considered, but from the
fact that the global permutation constraints are lost by the SAT en-
coding, so that the search space to be explored becomes much larger.

Hence, many constraint satisfaction solvers introduced global con-
straints. The way of tackling these global constraints depends on the
kind of approach considered, i.e., complete tree-search, incomplete
repair-based or genetic approaches.

In complete tree search approaches, the search space is explored
in an exhaustive way, until either a solution is found, or the problem
is proved to have no solution. In order to reduce the search space,
some propagation techniques are usually applied. The idea is to ver-
ify, at each node of the search, that the problem satisfies some partial
consistency (e.g., arc-consistency). This pruning is performed by a
filtering algorithm which removes inconsistent values from variables
domains, with respect to the considered partial consistency [20].

Dedicated filtering algorithms have been defined for handling
global permutation constraints, e.g., the IlcDistribute and
IlcSequence constraints of Ilog solver [17] and the cycle con-
straint of CHIP [1]. In the previous section, we showed that such fil-
tering algorithms are actually effective to solve the more difficult in-

stances of the car sequencing problem. However, on less constrained
problems, like the all-interval series problem or easier instances of
the car-sequencing problem, the search space is not sufficiently re-
duced by the filtering algorithms and remains too large to be explored
in a complete way. In this case, an incomplete approach, like Ant-P-
solver, is more suitable.

Repair-based approaches are incomplete and (usually) stochastic
approaches which work on complete inconsistent assignments, and
repair them gradually towards a consistent solution. On hard com-
binatorial problems, they usually find an approximately optimal so-
lution in fairly quick time. As a counterpart, they do not guarantee
finding the optimal solution, nor can they prove inconsistency.

GENET [4] is a repair-based approach which uses a variation of
the min-conflicts heuristic: it escapes from local minima by increas-
ing the weight of the violated constraints. The idea behind this is to
“learn” critical constraints that are hard to satisfy, by making them
prioritary. Two extensions of GENET have been proposed that allow
to handle global permutation constraints:

� In SWAPGENET [5], the idea is to select possible moves from
a “swap” neighbourhood, so that the considered complete assign-
ments always satisfy the permutation constraint in an a priori way.
SWAPGENET has been illustrated on the car-sequencing prob-
lem. The given cpu-times are comparable to the one obtained with
Ant-P-solver. Nothing is reported about the percentage of success-
ful runs.

� In E-GENET [15], the idea is to work on tuples of values and to
associate penalty values to tuples with respect to constraint sat-
isfaction. Experimentations of E-GENET on the car-sequencing
problem show that it is less successful than Ant-P-solver (73% of
successful runs for car-80, nothing is reported about car-90). Cpu-
times are not reported.

Genetic algorithms are incomplete and stochastic approaches
which take inspiration from natural evolution. Exploration of the
search space is achieved through selection, cross-over and mutation
operators upon a population (which represent candidate solutions).

GAcSP [21] is a solver which combines a genetic algorithm with
local repair-based technics to solve the car-sequencing problem. In
this approach, global permutation constraints are handled by a greedy
repair function, which ensures that offsprings created at each gen-
eration (by cross-over operations) actually satisfy permutation con-
straints. After repair, each offspring is hill-climbed by a swap func-
tion (similar to the one used in [5]). Experiments show that this ap-
proach actually allows to solve “easy” instances of the car sequenc-
ing problem, with low utilization percentages. However, with higher
utilization percentages, the number of successful runs is severely de-
creased: on instances with 200 cars and with an utilization percentage
of 80%, only 9% of the runs succeed, in 7289 seconds.

5 Conclusion

We have defined in this paper Ant-P-solver, an incomplete and
stochastic approach for solving permutation constraint satisfaction
problems which is based on the ACO metaheuristic.

This work could be enhanced in many different ways. In particular,
we could introduce repair-based technics in order to improve the best
solution found at each cycle, and speed up the convergence process.
Moreover, Ant-P-solver could be parallelized in a very straightfor-
ward way: the idea would be to execute different Ant-P-solver pro-

cesses, each of them working on a different pheromon matrix, while
the best solutions found by each solver could be exchanged. A similar
approach, where genetic algorithms cooperate with an ant algorithm
is proposed in [3].

Furthermore, we propose in [16] a generalization of this approach
to the resolution of any CSP. The graph used by ants associates a
vertex with each variable-value pair. The transition rule uses a lo-
cal evaluation function similar to the one used in Ant-P-solver. This
solver, called Ant-solver, can be used to solve any CSP in a generic
way. We more particularly illustrate its capabilities on the proposi-
tionnal satisfiability (SAT) problem.

REFERENCES
[1] N. Beldiceanu and E. Contejean, ‘Introducing global constraints in

CHIP’, Journal of Mathematical and Computer Modelling, 20(12), 97–
123, (1994).

[2] B. Bullnheimer, R.F. Hartl, and C. Strauss, ‘An improved ant system
algorithm for the vehicle routing problem’, Annals of Operations Re-
search, 89, 319–328, (1999).

[3] P.R. Calégari, Parallelization of population-based evolutionary algo-
rithms for combinatorial optimization problems, Ph.D. dissertation,
Ecole polytechnique fédérale de Lausanne, 1999.

[4] A. Davenport, E. Tsang, Kangmin Zhu, and C. Wang, ‘Genet: a connec-
tionist architecture for solving constraint satisfaction problems by iter-
ative improvement’, in Proceedings of AAAI’94, pp. 325–330, (1994).

[5] A.J. Davenport and E.P.K. Tsang, ‘Solving constraint satisfaction se-
quencing problems by iterative repair’, in Proceedings of the first in-
ternational conference on the practical applications of constraint tech-
nologies and logic programming (PACLP), pp. 345–357, (1999).

[6] M. Dorigo, Learning and Natural Algorithms (in italian), Ph.D. disser-
tation, Politecnico di Milano, 1992.

[7] M. Dorigo, G. Di Caro, and L. M. Gambardella, ‘Ant algorithms for
discrete optimization’, Artificial Life, 5(2), 137–172, (1999).

[8] M. Dorigo and G. Di Caro, ‘The Ant Colony Optimization meta-
heuristic’, in New Ideas in Optimization, eds., D. Corne, M. Dorigo,
and F. Glover, 11–32, McGraw Hill, UK, (1999).

[9] M. Dorigo and L.M. Gambardella, ‘Ant colony system: A cooperative
learning approach to the traveling salesman problem’, IEEE Transac-
tions on Evolutionary Computation, 1(1), 53–66, (1997).

[10] M. Dorigo, V. Maniezzo, and A. Colorni, ‘The ant system: Optimiza-
tion by a colony of cooperating agents’, IEEE Transactions on Systems,
Man, and Cybernetics-Part B, 26(1), 29–41, (1996).

[11] L. Gambardella, E. Taillard, and M. Dorigo, ‘Ant colonies for the
quadratic assignment problem’, Journal of the Operational Research
Society, 50, 167–176, (1999).

[12] I.P. Gent, ‘Two results on car-sequencing problems’, Technical report
(http://www.apes.cs.strath.ac.uk/apesreports.html), APES, (1998).

[13] I.P. Gent and T. Walsh, ‘Csplib: a benchmark library for con-
straints’, Technical report, APES-09-1999, (1999). available from
http://csplib.cs.strath.ac.uk/. A shorter version appears in CP99.

[14] H. Hoos, Stochastic Local Search - Methods, Models, Applications,
Ph.D. dissertation, TU Darmstadt, 1998.

[15] J.H.M. Lee, H.F. Leung, and H.W. Won, ‘Performance of a compre-
hensive and efficient constraint library using local search’, in 11th Aus-
tralian JCAI, LNAI, Springer-Verlag, (1998).

[16] S. Pimont and C. Solnon, ‘A generic ant algorithm for solving constraint
satisfaction problems’, Technical report, LISI, (2000).

[17] J.-C. Regin and J.-F. Puget, ‘A filtering algorithm for global sequencing
constraints’, in CP97, volume 1330 of LNCS, 32–46, Springer-Verlag,
(1997).

[18] H. Simonis and N. Beldiceanu, ‘A note on csplib prob007’, Technical
report, Cosytech, (1998).

[19] B. Smith, ‘Succeed-first or fail-first: A case study in variable and value
ordering heuristics’, in third Conference on the Practical Applications
of Constraint Technology PACT’97, pp. 321–330, (1996).

[20] E.P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.

[21] T. Warwick and E. Tsang, ‘Tackling car sequencing problems using a
genetic algorithm’, Journal of Evolutionary Computation - MIT Press,
3(3), 267–298, (1995).

