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Abstract. Modeling and simulation techniques developed within
qualitative reasoning might be profitably used for the analysis of ge-
netic regulatory systems. A major problem with current qualitative
simulation techniques is their lack of upscalability. We describe a
method that is able to deal with large and complex systems, and dis-
cuss its performance in simulation experiments with random regula-
tory networks.

1 Introduction

In the last few years, biologists have completed the sequencing of the
entire genome of model organisms like S. cerevisiae and E. coli, and
the human genome is expected to follow without much delay. The
analysis of these huge amounts of data involves such tasks as the
prediction of folding structures of proteins and the identification of
genes and regulatory signals. It is clear, however, that the structural
analysis of sequence data needs to be complemented with a func-
tional analysis to elucidate the role of genes in controlling funda-
mental biological processes.

One of the central problems to be addressed is the analysis of ge-
netic regulatory systems controlling the spatiotemporal expression
of genes in the organism. The structure of these regulatory systems
can be represented as a network of interactions between genes, pro-
teins, metabolites, and other small molecules. The study of genetic
regulatory networks will contribute to our understanding of complex
processes like the development of a multicellular organism.

Computer tools are indispensable for the analysis of genetic reg-
ulatory systems, as these usually involve many genes connected
through regulatory cascades and feedback loops. Currently, only a
few regulatory networks are well-understood on the molecular level,
and quantitative knowledge about the interactions is seldom avail-
able. This has stimulated an interest in modeling and simulation tech-
niques developed within qualitative reasoning (QR), most notably
QSIM [9] and QPT [2]. QR methods have been applied to the regu-
lation of tryptophan synthesis [7] and λ phage growth [6] in E. coli,
and to the regulation of the transcription factor families AP-1 and
NF-κB in different classes of animals [19].

A major problem is the lack of upscalability of these approaches.
As a consequence of the weak nature of qualitative constraints, and
the difficulty to identify implicit constraints, behavior trees and en-
visionments quickly grow out of bounds. This causes the range of
application of the methods to be limited to regulatory systems of
modest size and complexity. Systems of even a few genes related by
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positive and negative feedback loops cannot be handled, unless these
systems have been so well-studied already that behavior predictions
can be tightly constrained.

In this paper we will show that it is possible to qualitatively anal-
yse genetic regulatory networks of larger size and complexity. In or-
der to achieve this, we describe the systems by a class of piece-wise
linear differential equations (PLDEs) putting strong constraints on
possible trajectories in the phase space. Simulation is carried out by
an algorithm tailored to this class of models. The method has been
implemented in Java and used for the simulation of regulatory net-
works of currently up to 18 genes involved in complex feedback
loops.

In the next two sections, we will introduce the class of PLDEs
by which genetic regulatory systems can be described and review
its mathematical properties. The subsequent sections introduce the
qualitative simulation algorithm and present the results of simulation
studies.

2 Modeling genetic regulatory systems

In Fig. 1(a) a simple example of a regulatory network is shown, in-
volving three genes and their mutual interactions. A regulatory in-
teraction is here defined as a relation between a regulated gene and
one or more regulating genes. The regulating genes code for proteins
that control the expression of the regulated gene, by functioning as
a transcription factor or otherwise. An interaction has more than one
regulating gene, if the corresponding proteins fulfill their regulatory
function cooperatively, as when two proteins form a heterodimer. In
the figure, the expression of gene 2 is controlled through one inter-
action involving two regulating genes, and gene 3 through two inter-
actions involving one regulating gene. A gene positively (negatively)
regulates another gene, if the protein coded for by the former tends
to activate (inhibit) the expression of the latter.

Gene regulation is often modeled by differential equations of the
form

ẋi = fi(x)− γixi, xi ≥ 0, 1 ≤ i ≤ n, (1)

where x is a vector of cellular concentrations of gene products
(mRNAs or proteins), γi the decay rate of xi, and fi a usually highly
nonlinear function [3, 11, 18]. The rate of expression of gene i is
dependent upon the concentrations x, possibly including the con-
centration of the product of gene i. The term −γixi states that xi

degrades at a rate proportional to the concentration itself. Eqs. (1)
are called the state equations of the regulatory system.

The functions fi in (1) can be further specified as a sum of in-
teraction terms corresponding to the interactions in the regulatory
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(a)

ẋ1 = κ12h
+(x2, θ12, m)− γ1x1

ẋ2 = κ213h
−(x1, θ21, m)h−(x3, θ23, m)− γ2x2

ẋ3 = κ31h
−(x1, θ31, m) + κ33h

−(x3, θ33, m)− γ3x3 (b)

0 < θ21 < θ31 < max 1

0 < θ12 < max 2

0 < θ23 < θ33 < max 3 (c)

0 < κ12/γ1 < θ21

θ12 < κ213/γ2 < max2

0 < κ31/γ3 < θ23

0 < κ33/γ3 < θ23

θ33 < (κ31 + κ33)/γ3 < max3

(d)

Figure 1. (a) Example regulatory network modeled by the state equations in (b) and the threshold and nullcline inequalities in (c)-(d). A regulatory network is
a directed graph of genes (vertices) and interactions (directed edges), where interactions involving several regulating genes are represented by directed

hyperedges. The symbols ‘+’ and ‘−’ denote activating and inhibitory relations, respectively.

network. More precisely, for each interaction involving a regulated
gene i and a set of regulating genes J , the sum contains a term
κiJ

∏
j∈J r(xj), where r(xj) is a regulation function and κiJ a rate

constant determining the maximum expression level of i under the
influence of J .

A regulation function r(xj) accounts for the variation in expres-
sion level of gene i with the concentration xj of the product of gene
j. A regulation function often found in the literature is the Hill curve:

h+(xj , θij , m) = xm
j /(xm

j + θm
ij ), (2)

where θij denotes the threshold for the influence of j on i, and m > 1
a parameter determining the steepness of the function around θij .
The function ranges from 0 to 1, and increases as xj → ∞, so that
j positively regulates i. In order to express that j negatively regu-
lates i, the regulation function h+(xj , θij , m) must be replaced by
h−(xj , θij , m) = 1 − h+(xj , θij , m). In Fig. 1(b) the state equa-
tions for the example network are shown.

Due to the nonlinear character of the functions fi, analytical so-
lution of the state equations (1) is not possible. The nonlinear terms
can be eliminated by replacing the continuous Hill function by the
discontinuous step function:

s+(xj , θij) =

{
1, xj > θij ,

0, xj < θij .
(3)

The resulting equations are piecewise-linear differential equations
(PLDEs) of the form

ẋi = bi(x)− γixi, xi ≥ 0, 1 ≤ i ≤ n, (4)

where bi is a piecewise-constant function. In particular, bi is a sum of
products of step functions weighted by a rate constant. The approxi-
mation of a continuous sigmoid by a discontinuous step function has
been justified on the ground of the switch-like character displayed
by genes whose expression is regulated by steep sigmoid curves
[3, 4, 18]. In what follows, we will assume that genetic regulatory
systems are modeled by PLDEs of the form (4).

3 Mathematical analysis

Eqs. (4) have been well-studied in mathematical biology [3, 4, 5, 10,
11, 12, 13, 14, 16, 17, 18]. Consider an n-dimensional (hyper)box of
the phase space defined as follows:

θ33

θ23

0
x1

θ12

max 3

x2

max 1

ẋ1 = κ12 − γ1x1

ẋ2 = −γ2x2

ẋ3 = κ31 − γ3x3

x3

θ31θ21

max 2

Figure 2. The phase space box of the model in Fig. 1, divided into 18
volumes by the threshold planes. The state equations for the volume in bold
defined by 0 ≤ x1 < θ21, θ12 < x2 ≤ max2, and θ33 < x3 ≤ max3 are

shown in the lower right corner.

0 ≤ xi ≤ max i = max
x≥0

bi(x)/γi, 1 ≤ i ≤ n. (5)

It can be shown that all trajectories starting inside the n-box will
remain in it, while trajectories starting outside will enter the box at
some time or approach it asymptotically as t → ∞. We assume
that θji < max i for all genes j regulated by gene i. The n − 1-
dimensional threshold (hyper)planes xi = θji divide the n-box into
volumes. The volumes of the n-box are determined by the threshold
inequalities

0 < σ
(1)
i < . . . < σ

(pi)
i < max i, (6)

obtained by ordering and renaming the pi thresholds θji of gene i.
Since the step function is not defined at its threshold, Eqs. (4) are
not defined in the threshold planes separating the volumes. Fig. 2
displays the phase space box corresponding to the example network.

In each volume of the n-box, Eqs. (4) reduce to volume state equa-
tions with a constant production term µi composed of rate parameters



in bi:

ẋi = µi − γixi, xi ≥ 0, 1 ≤ i ≤ n. (7)

Notice that Eqs. (7) are linear and orthogonal. Fig. 2 gives an ex-
ample of the state equations corresponding to the volume 0 ≤ x1 <
θ21, θ12 < x2 ≤ max2, and θ33 < x3 ≤ max3. It can be easily
shown that within a volume all trajectories evolve towards a single,
stable focal state µ/γ , which lies at the intersection of the nullcline
(hyper)planes xi = µi/γi defined by ẋi = 0. As the nullclines are
assumed not to coincide with the threshold planes, the focal state will
be located at some distance from the threshold planes.
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κ12/γ1

x3
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θ33
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0

fs

θ21

κ31/γ3
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Figure 3. The focal state of the volume in Fig. 2 projected on the x1-x3

plane. Depending on whether κ31/γ3 > θ33 or κ31/γ3 < θ33, the focal
state lies inside or outside the volume.

The focal state of a volume may lie inside or outside that vol-
ume. Whether the focal state lies inside or outside the volume is
determined by the nullcline inequalities, which locate the nullclines
xi = µi/γi between two subsequent thresholds of xi:

σ
(li)
i < µi/γi < σ

(li+1)
i , 1 ≤ li < pi, (8)

with the special cases 0 < µi/γi < σ
(1)
i and σ

(pi)
i < µi/γi <

max i. If for every i, µi/γi lies between the threshold boundaries
of the volume, then the focal state lies inside the volume. If not, it
lies outside the volume (Fig. 3). The nullcline inequalities for the ex-
ample regulatory system are shown in Fig. 1(d). Notice that several
nullcline inequalities have been specified for x3, as a consequence
of the fact that µ3 changes between different volumes. More gener-
ally, the set of possible nullclines in the ith dimension is given by
{bi(x)/γi | 0 ≤ x ≤ max}.

If the focal state lies outside the volume, the trajectories will tend
towards one or several of the threshold planes bounding the volume.
Since (4) is not defined at the thresholds, special attention should be
given to the behavior of the system as it approaches the threshold
planes. Following [14], the behavior of the piecewise-linear equa-
tions (4) at the threshold planes is defined as the behavior of the origi-
nal nonlinear equations (1) in the limit m→∞ (see also [13]). This
is motivated by the observation that, as m goes to ∞, the sigmoid
function (2) approaches the step function (3).

Given this definition, two different things can happen when a tra-
jectory approaches a threshold plane xi = θji. First, the trajectory
may be continued by a trajectory in the neighbouring volume mov-
ing towards a different focal state determined by the volume state
equations of the new volume. In this case a transition from the vol-
ume to its neighbouring volume takes place and the threshold plane

is transparent. Second, if the focal state of the neighbouring volume
is such that trajectories in that volume also approach the threshold
plane xi = θji, no transition between the volumes is possible and
the threshold plane is non-transparent.

The global behavior of the PLDEs may be quite complex and is
not well understood. Continuations of trajectories in several volumes
may give rise to (oscillations towards) additional steady states lo-
cated at the intersection of threshold planes, cycles, limit cycles,
or even chaotic oscillations (for n ≥ 4) [5, 10, 12, 13, 14, 17].
Numerical simulation studies have shown that, in many cases, the
global behavior of the piecewise-linear systems (4) and nonlinear
systems (1) with steep sigmoids exhibit the same qualitative prop-
erties [4, 13, 18].

4 Qualitative simulation method

Our method performs a qualitative simulation of regulatory systems
described by PLDEs (4). The basic idea underlying the method is to
determine, in an iterative way, all volumes that are reachable from
an initial volume through successive volume transitions. For each
volume that has been found reachable, the position of the focal state,
and hence the possible transitions to new volumes, are calculated.

Consider a volume defined in the ith dimension by two consecu-
tive thresholds σ

(li)
i and σ

(li+1)
i , 1 ≤ li < pi.3 The inequalities

σ
(li)
i < xi < σ

(li+1)
i (9)

form the qualitative value of xi, denoted by qvi. In addition to the
qualitative value for xi, we have a qualitative value q̇vi for ẋi, being
one of the following three inequalities

ẋi > 0, ẋi < 0, or ẋi � 0. (10)

If the nullcline plane for xi lies outside the volume, i.e., µi/γi <

σ
(li)
i or µi/γi > σ

(li+1)
i , the qualitative value will be ẋi < 0 or

ẋi > 0, respectively, everywhere in the volume. If the nullcline runs
through the volume, i.e., σ

(li)
i < µi/γi < σ

(li+1)
i , it holds that

ẋi < 0 on one side of the nullcline plane, ẋi > 0 on the other side,
and ẋi = 0 in the nullcline plane. The qualitative value of ẋi in the
volume is then written as ẋi � 0.

Given a volume v with a vector qv of qualitative values for x, q̇v
can be easily inferred from the equations and inequalities (5)-(8) by
means of basic algebraic rules. As a consequence of the orthogonal-
ity of the volume state equations, this can be done separately in each
dimension, thus requiring onlyO(n) inferences. For the volume em-
phasized in Fig. 2, we find the vector [ẋ1 � 0, ẋ2 < 0, ẋ3 < 0].

The vector q̇v of qualitative values for ẋ expresses the position of
the focal state with respect to v, and hence allows one to determine
the possible transitions from v to neighbouring volumes. A volume
v’ defined by qv’ is a candidate successor volume of v, if there is
exactly one i such that qv′i = succ(qvi), where succ is defined in
Table 1, and qv′

j = qvj for all j 
= i, 1 ≤ j ≤ n. That is, only one
variable has changed its qualitative value in the candidate successor
volume, implying that concentrations of gene products are assumed
to never reach their thresholds simultaneously.

For a candidate successor v′ to be an actual successor of v, the
threshold plane separating v and v′ must be transparent. This implies

3 The procedure can be easily generalized to the cases 0 < µi/γi < σ
(1)
i

and σ
(pi)
i < µi/γi < max i.



qvi and q̇vi succ(qvi, q̇vi)

σ
(li)
i < xi < σ

(li+1)
i , ẋi > 0 σ

(li+1)
i < xi < σ

(li+2)
i

σ
(li)
i < xi < σ

(li+1)
i , ẋi < 0 σ

(li−1)
i < xi < σ

(li)
i

σ
(li)
i < xi < σ

(li+1)
i , ẋi � 0 −

Table 1. The function succ mapping qualitative values for xi and ẋi to a
successor qualitative value for xi, 1 < li < pi − 1. The successor relations

are motivated by basic continuity restrictions, as in [9].

that, for the xi changing its qualitative value in the transition, the
qualitative values of its derivative should not be opposite. That is, if
qv′

i 
= qvi, then not q̇v′
i > 0 (< 0) and q̇vi < 0 (> 0), 1 ≤ i ≤ n.

The simulation algorithm iteratively generates, in a depth-first
manner, all volumes that are reachable from an initial volume vinit

defined by qualitative values qvinit .

push(stack , vinit )
determine q̇vinit

while not stack is empty do
current volume v← pop(stack )
declare v to be reachable
generate candidate successor volumes of v
for all candidate successors v′ do

determine q̇v′

if v ′ is actual successor
then if not v ′ is reachable and not v ′ on stack

then push(stack , v ′)

The volumes and their reachable successors form a directed transi-
tion graph. The graph may contain volumes without successors and
volume cycles, which will be together referred to as attractors. If
a volume has no successors, it either contains a steady state or all
outgoing trajectories approach non-transparent threshold plane(s). In
the worst case, the algorithm will generate O((p + 1)n) reachable
volumes, where p is the maximum number of genes influenced by a
single gene.
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Figure 4. The number of reachable volumes from an initial volume for
models with k = 2 and n = 2, . . . , 18. Each dot in the plot represents a

simulation.

5 Experimental results

The simulation algorithm predicts the attractors that may be reached
from an initial volume following a sequence of volume transitions.
From a biological point of view, this means that possible functional
states of the regulatory system are identified, given certain initial
gene expression levels [8, 18]. As shown in the previous section, the
number of reachable volumes theoretically grows in an exponential
fashion. This compromises the objective to deal with larger-scale reg-
ulatory systems. In order to test whether the average-case behavior
is more favorable, we have performed a series of computer experi-
ments.

The experiments have been carried out with an implementation of
the simulation method in Java 1.2. The program reads and parses in-
put files with the equations and inequalities specifying the model of
the system (state equations, threshold and nullcline inequalities) as
well as the initial volume. The core of the program consists of an in-
equality reasoner for the determination of q̇v′ in the main loop of the
algorithm. We have developed a version of Simmons’ [15] Quantity
Lattice, adapted to the particularities of the class of PLDEs we are
dealing with. The output produced by the program consists of a tab-
ular representation of the volume transition graph, a list of attractors,
and run-time statistics. The simulations reported below were run on
a SUN Ultra 10 workstation with 128 Mb of RAM.

In order to study the upscaling properties of the methods in a sys-
tematic way, we have carried out experiments with random regula-
tory networks. For each of the n genes in a network, k inputs were
randomly chosen among the other genes. Next, the functions fi were
randomly selected from the set of all possible functions with k in-
puts. Further, a random order between the thresholds of the regula-
tion functions was generated, as well as a lower and upper threshold
bound for the nullcline terms µi/γi. Each of the models thus ob-
tained was simulated from a randomly-selected initial volume in the
phase space.

The results of experiments with 2 ≤ n ≤ 18 and k = 2 are shown
in Fig. 4. For each n, 25 simulations were carried out, each with a
different model and initial volume. The number of volumes reachable
from the initial volume is displayed as a function of n. The most
important observation to be made is that the average-case behavior
is much more favorable than the worst-case behavior, shown as the
drawn line in the figure (notice the logarithmic scale of the y-axis).
For n = 12, the median number of volumes reachable is 5418, about
1% of the total number of volumes in the phase space.
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Figure 5. Example regulatory network for n = 8 and k = 3.

Fig. 4 shows a large spread in the simulation results. Simulations
for n = 16 give results varying from 72 to 675,216 reachable vol-
umes, although most of the time around 105 volumes are generated.
A number of factors contribute to these differences, in particular the
distance of the initial volume to the reachable attractors and the num-



ber and the size of the attractors. The number of reachable attractors
also strongly varies between simulations. For n = 14, the median
number of reachable attractors is 2, with 7 simulations yielding more
than 100 attractors, mostly cycles.

Although no simulation took more than half an hour to complete,
for n > 18 over one third of the simulations ended with a memory
overflow due to the large number of volumes generated. This seldom
if ever happened for lower n. We have also carried out simulations
for k = 3 and k = 4, that is, for more densely connected networks.
In these cases, the number of reachable volumes theoretically grows
asO(4n) and O(5n). As for k = 2, the average-case behavior tends
to be more favorable. However, for n > 13 simulations started to
become intractable with the current implementation.

Fig. 5 shows an example of a network with n = 8 and k = 3 and a
large number of positive and negative feedback loops. The model is
defined by a total of 120 equations and inequalities. Simulated from
a random initial volume, 3892 volumes turn out to be reachable. The
trajectories either end in the single volume with a steady state or in
one of the 14 cycles.

6 Discussion

The method for qualitative simulation of genetic regulatory systems
presented in this paper has been shown capable of dealing with net-
works of larger size and complexity than possible with existing QR
methods. We have modeled regulatory systems by a class of differen-
tial equations putting strong constraints on the local behavior in the
phase space, in combination with a simulation algorithm adapted to
these equations. Currently we are able to deal with networks of up to
18 genes with 2 to 4 regulators per gene and complicated feedback
structures. The simulation studies described here present one of the
first attempts to systematically investigate upscaling of QR methods
in the context of a realistic application. The simulation method has
been tailored to one class of models, but the principles underlying
our approach might be applicable to other problems as well.

Adaptation to a specific class of models is the principal respect in
which the approach presented in this paper differs from well-known
QR methods like QPT and QSIM [2, 9]. The expressivity and gen-
erality of the formalism have been traded for the capability to deal
with larger and more complex systems. For instance, the description
of the state of a regulatory system is achieved on a higher level of
abstraction. The basic element in our formalism is a volume, defined
by a vector of qualitative values σ

(li)
i < xi < σ

(li+1)
i . In QSIM

one would have to distinguish individual states inside a volume as
well, such as boundary states defined by xi = σ

(li)
i or xi = σ

(li+1)
i ,

and nullcline states defined by ẋi = 0. The method presented here
thus abstracts from trajectories inside a volume, which among other
things allows a more compact representation of the behavior of the
system.

Qualitative methods for the analysis of genetic regulatory sys-
tems have been developed in mathematical biology as well, the best-
known example being Boolean networks [8]. Simulation of Boolean
networks rests on the assumption that a gene is either active or in-
active, and that genes change their activation state synchronously.
Translated to the formalism of this paper, this means that there is
only one threshold per gene and that thresholds are reached simulta-
neously. For many purposes, these assumptions are too strong. The
use of random networks to study the upscaling properties of the
method has been stimulated by Kauffman’s [8] simulation studies
with Boolean networks. The observation that trajectories remain lo-
calized in a small part of the phase space agrees with the results ob-

tained for Boolean networks.
Thomas and colleagues [18] have proposed a generalized logical

method that permits multivalued activation states and asynchronic
transitions. In fact, Snoussi [16] has demonstrated that their for-
malism can be seen as an abstraction of a special case of (4). Al-
though simulation is possible in the generalized logical method, the
emphasis is on the identification of steady states, including steady
states located on the threshold planes [13, 14, 17]. The use of log-
ical equations abstracting from differential equations makes it dif-
ficult to integrate (semi-)quantitative information [1]. With the ad-
vent of cDNA microarrays and other new measurement technolo-
gies, (semi-)quantitative gene expression data is becoming available
in large amounts.

The simulation method presented in this paper forms the core of a
system currently under development called the Genetic Network An-
alyzer (GNA). The system will be used to address a problem of high
biological relevance, namely the validation of hypothesized regula-
tory networks by means of expression data.
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