
Consistency-based Diagnosis of Configuration Knowledge
Bases

Alexander Felfernig, Gerhard E. Friedrich, Dietmar Jannach 1 and Markus Stumptner 2

Abstract. Configuration problems are a thriving application area
for declarative knowledge representation that currently experiences
a constant increase in size and complexity of knowledge bases. Au-
tomated support of the debugging of such knowledge bases is a nec-
essary prerequisite for effective development of configurators. We
show that this task can be achieved by consistency-based diagnosis
techniques. Based on the formal definition of consistency-based con-
figuration we develop a framework suitable for diagnosing configu-
ration knowledge bases. During the test phase of configurators, valid
and invalid examples are used to test the correctness of the system.
In case such examples lead to unintended results, debugging of the
knowledge base is initiated. Starting from a clear definition of diag-
nosis in the configuration domain we develop an algorithm based on
conflicts. Our framework is general enough for its adaptation to di-
agnosing customer requirements to identify unachievable conditions
during configuration sessions.

1 INTRODUCTION

Knowledge-based configuration systems have a long history as a suc-
cessful AI application area. These systems have progressed from
their rule-based origins to the use of higher level representations such
as various forms of constraint satisfaction, description logics [10], or
functional reasoning. As a result of the increased complexity and size
of configurator knowledge bases, the user of a configuration tool is
increasingly challenged to find the source of the problem whenever
it is not possible to produce a working configuration, i.e, the config-
uration process is aborted. Ultimately, the cause of an abort is either
an incorrect knowledge base or unachievable requirements.

In this paper, we will focus on the situation of an engineer work-
ing on the maintenance of a knowledge base, searching for failures
while performing test configurations. Therefore, the goal is to exam-
ine what part of the knowledge base itself may have produced the
problem and provide adequate automated support to locate the true
source of the inconsistency. This validation phase will take place af-
ter the initial specification of the knowledge base or later in the life-
cycle when the knowledge base is updated to meet new or altered
application requirements (e.g., new component types or regulations).

It is the fact that the knowledge base is specified in some high-
level, declarative formalism that allows us to employ model-based
diagnosis techniques using positive and negative examples for this
purpose. This means that positive configuration examples should be

1 Institut für Wirtschaftsinformatik und Anwendungssysteme, Univer-
sitätsstrasse, A-9020 Klagenfurt, email: felfernig@ifi.uni-klu.ac.at

2 Institut für Informationssysteme, Abteilung für Datenbanken und Experten-
systeme, Paniglgasse 16, A-1040 Wien, email: mst@dbai.tuwien.ac.at

Authors are listed in alphabetical order.

accepted by the configurator whereas negative examples should be
rejected. The examples therefore play a role much like what is called
a test case in software engineering: they provide an input such that
the generated output can be compared to the tester’s expectations.
Once a test has failed, diagnosis can be used to locate the parts of the
knowledge base responsible for the failure. Such parts will typically
be constraints that specify legal connections between components, or
domain declarations that limit legal assignments to attributes. These
constraints and declarations, written as logical sentences, will serve
as diagnosis components when we map the problem to the model-
based diagnosis approach.

A second type of situation where diagnosis can be used is the sup-
port of the actual end user where the user’s requirements are unfulfil-
lable even though the knowledge base is correct, e.g., because she/he
placed unrealistic restrictions on the system to be configured.

The rest of the paper is organized as follows. We first present an
example to introduce the problem domain and the employed configu-
ration terminology. We then formalize the configuration task in terms
of a domain theory and system requirements, define what we under-
stand by a valid and irreducible configuration, and use the formaliza-
tion to express the notion of model-based diagnosis as it applies to
the configuration domain. After that, we give an algorithm for com-
puting diagnoses based on positive and negative example sets, and
explore the influence of different types of examples. In the final sec-
tions, we first examine the ”reverse” use of diagnosis for identifying
faults in requirements, present the results of a prototype implemen-
tation, and close with a discussion of related work.

2 A CONFIGURATION EXAMPLE

We introduce our concepts using a small part of a configuration
knowledge base from the area of configurable personal computers.
We will insert a typical failure in this knowledge base and show how
this failure can be diagnosed. As a representation language we em-
ploy first order logic in order to facilitate a clear and precise presen-
tation. In our example a PC motherboard can host up to 4 CPUs and
exactly one chipset. The physical insertion of the parts is modeled via
ports. Additionally, attributes can be used to model further properties
of components, e.g., CPU clock rate.
The knowledge base consists of the following definitions:
types=f motherboard, cpu-486, cpu-586, chipset-1, chipset-2g.
ports(motherboard)=fchipset, cpu-1, cpu-2, cpu-3, cpu-4g.
ports(cpu-486)=fmotherboardg. ports(cpu-586)=fmotherboardg.
ports(chipset-1)=fmotherboardg.
ports(chipset-2)=fmotherboardg.

Typically, we use three predicates for associating types, connec-
tions, and attributes with individual components. A type t is asso-
ciated with a component c by a literal type(c; t). A connection is

represented by a literal conn(c1; p1; c2; p2) where p1 (resp. p2) is
a port of component c1 (resp. c2). An attribute value v assigned to
attribute a of component c is represented by a literal val(c; a; v). In
our example, we omit val - predicates to keep the presentation short.
(See [4] for examples using val - predicates.)
The following constraints have to hold in our domain:
“If there is a CPU-486 on the motherboard then a chipset of one of
the given types must be inserted too.”(Constraint C1)
8M;C : type(M;motherboard) ^ type(C; cpu-486)^
conn(C;motherboard;M;))
9S : conn(S;motherboard;M; chipset)^
(type(S; chipset-1) _ type(S; chipset-2)):

“If there is a CPU-586 on the motherboard, only a chipset of type
chipset-2 is allowed”. (Constraint C2)
8M;C : type(M;motherboard) ^ type(C; cpu-586)^
conn(C;motherboard;M;)) 9S :
conn(S;motherboard;M; chipset)^ type(S; chipset-2):

“The chipset port of the motherboard can only be connected to a
chipset of type chipset-1”. (Constraint C3)
8M;C : type(M;motherboard)^
conn(C; ;M; chipset)) type(C; chipset-1)

As it turns out, this constraint is faulty because it is too strong.
This constellation could have come about because the chipset type
chipset-2was newly introduced to the knowledge base, and C3 was
not altered to accommodate that. The correct version of this con-
straint (C3ok) would also permit chipsets of type chipset-2, i.e.,
8M;C : type(M;motherboard) ^ conn(C; ;M; chipset))
type(C; chipset-1) _ type(C; chipset-2):

In the following we denote the faulty knowledge base by
KBfaulty = fC1; C2; C3g.
In addition, a set of application independent constraints denoted by
CBasic is included in the domain description, specifying that con-
nections are symmetric, that a port can only be connected to one
other port, and that components have a unique type. Furthermore we
employ the unique name assumption, define that every attribute of
a component has a unique value, and that only the predefined type,
port, and attributesymbols are used.

After the definition of the knowledge base, the test engineer can
validate the returned results of the configurator for different (positive
and negative) examples.

The first positive example provided is a mainboard with two
CPUs plugged in where one is of type cpu-486and one of type cpu-
586. We denote such a positive example as e+. More formally,
e+ = f9M;C1; C2 : type(M;motherboard) ^
type(C1; cpu-486) ^ type(C2; cpu-586) ^
conn(C1; motherboard;M; cpu-1) ^
conn(C2; motherboard;M; cpu-2):g
Note that examples can either be partial or complete configura-

tions. The example above is a partial one, as more components and
connections must be added to arrive at a finished configuration.

Next, a negative example is provided, comprising a motherboard
with two CPUs of type cpu-486and cpu-586as it was the case in
e+ but in addition a chipset of type chipset-1is also connected to the
motherboard. We denote such a negative example as e�, where such
an example should be inconsistent with the knowledge base.
e� = f9M;C1; C2; CS1 : type(M;motherboard) ^
type(C1; cpu-486) ^ type(C2; cpu-586) ^
type(CS1; chipset-1) ^ conn(C1; motherboard;M; cpu-1)
^ conn(C2; motherboard;M; cpu-2) ^
conn(CS1; motherboard;M; chipset):g
Testing the knowledge base with e� results in the expected con-

tradiction, i.e., KBfaulty [e� [CBasic is inconsistent. However,
KBfaulty [e+ [CBasic is also inconsistent which is not in-
tended. The question is which of the application specific constraints
fC1; C2; C3g are faulty. When adopting a consistency-based diag-
nosis formalism, the constraints C1, C2, and C3 are viewed as com-
ponents and the problem can be reduced to the task of finding those
constraints which, if canceled, restore consistency.

Note that fC2; C3g [e+ [CBasic is contradictory. It follows
that C2 or C3 has to be canceled in order to restore consistency, i.e.,
fC1; C2g[e+ [CBasic is consistent and fC1; C3g[e+ [CBasic
is consistent. However, if we employ the negative example we recog-
nize that fC1; C3g [e� [CBasic is also consistent which has to be
avoided. Therefore, in order to repair the knowledge base, fC1; C3g
has to be extended for restoring inconsistency with e�. To be able to
accept ”C2 is faulty” as a diagnosis we have to investigate whether
such an extension EX can exist. To check this, we start from the
property that fC1; C3g [e� [EX [CBasic must be inconsis-
tent (note that fC1; C3g [EX [CBasic must be consistent) and
therefore fC1; C3g [EX [CBasic j= :e�, i.e., the knowledge-
base has to imply the negation of the negative example. In addition,
this knowledge base has also to be consistent with the positive ex-
ample: fC1; C3g [e+ [EX [CBasic is consistent. Therefore,
fC1; C3g [EX [e+ [:e� [CBasic would have to be consis-
tent which is not the case for our example: e+ [:e� implies that
there must not be a chipset of type chipset-1connected to the slot of
a motherboard whereas fC1; C3g [e+ [CBasic requires that this
slot must be connected to a chipset of type chipset-1. Consequently,
the diagnosis ”C2 is faulty” must be rejected. Note that the case in
which we removed C3, the knowledge base fC1, C2g is inconsistent
with e�, i.e., ”C3 is faulty” can be accepted as a diagnosis.

These concepts will be defined and generalized in the following
sections. The resulting consistency-based framework for configura-
tion and diagnosis of configuration knowledge bases will also give us
the ability to identify multiple faults given sets of multiple examples.

3 DEFINING CONFIGURATION AND
DIAGNOSIS

In practice, configurations are built from a predefined catalog of
component types for a given application domain. These component
types are described through their properties (attributes) and connec-
tion points (ports) for logical or physical connections to other com-
ponents. We assume this information and additional constraints on
legal constellations to be contained in a domain description DD.

An actual configuration problem has to be solved according to
some set of specific user requirements SRS describing e.g., addi-
tional constraints or initial partial configurations. An individual con-
figuration (result) consists in our example of a set of components,
a listing of established connections and their attribute values. Such
configurations are described by positive ground literals. In the previ-
ous example the predicates conn=4 and type=2 are employed with-
out limiting the generality of our approach. Depending on the ap-
plication domain other predicates can be used, e.g., for specifying
attribute assignments or ports to be unconnected.
Definition (Configuration Problem): In general we assume a con-
figuration problem is described by a triple(DD; SRS;CONL)
whereDD andSRS are logical sentences andCONL is a set of
predicate symbols.
DD represents a configuration knowledge base (domain descrip-

tion), andSRS specifies the particular system requirements which
define an individual configuration problem instance. A configuration

CONF is described by a set of positive ground literals whose pred-
icate symbols are in the set ofCONL. 2

Example: In the domain described in the previous section, DD
is given by the union of the specification of types and ports
with the set of constraints fC1; C2; C3okg [CBasic; CONL =
ftype=2; conn=4g, and the set e+ can be seen as a particular set of
system requirements. In this example the system is specified by ex-
plicitly listing the set of required key components. A configuration
for this problem is given by
CONF1 = ftype(m;motherboard): type(c1; cpu-486):
type(c2; cpu-586): type(cs; chipset-2):
conn(c1; motherboard;m; cpu-1).
conn(c2; motherboard;m; cpu-2).
conn(cs;motherboard;m; chipset):g 2

Note that the above configuration CONF1 is consistent with SRS[
DD. In general, we are interested only in such consistent configura-
tions.
Definition (Consistent Configuration): Given a configuration prob-
lem (DD;SRS;CONL), a configurationCONF is consistent iff
DD [SRS [CONF is satisfiable.2

This intuitive definition allows determining the validity of partial
configurations, but does not require the completeness of configura-
tions. For example, CONF1 above constitutes a consistent configu-
ration, but so would e+ alone if we view the existential quantification
as Skolem constants.

As we see, for practical purposes, the consistency of configu-
rations is not enough. It is necessary that a configuration explicitly
includes all needed components (and their connections and attribute
values), in order to assemble a correctly functioning system. We need
to introduce an explicit formula for each predicate symbol inCONL
to guarantee this completeness property. In order to stay within first
order logic, we model the property by first order formulae. However,
other approaches, e.g., based on logics with nonstandard semantics,
are possible.
For our example we have to add the completeness axioms
type(X;Y))

W
Z2CONF

type(X;Y) = Z:

conn(V;W;X; Y))
W
Z2CONF

conn(V;W;X; Y) = Z:

We denote the configuration CONF extended by completeness ax-
ioms with dCONF .
Definition (Valid Configuration): Let (DD; SRS;CONL) be a
configuration problem. A configurationCONF is valid iff DD [

SRS [dCONF is satisfiable.2
Having completed our definition of the configuration task, we can

now try to find the sources of inconsistencies in terms of model-based
diagnosis (MBD) terminology. Generally speaking, the MBD frame-
work assumes the existence of a set of components (whose incor-
rectness can be used to explain the error), and a set of observations
that specify how the system actually behaves. Following the exposi-
tion given in the introduction, the role of components is played by
the elements of DD, while the observations are provided in terms of
(positive or negative) configuration examples.
Definition (CKB-Diagnosis Problem): A CKB-Diagnosis Problem
(Diagnosis Problem for a Configuration Knowledge Base) is a triple
(DD;E+; E�) whereDD is a configuration knowledge base,E+

is a set of positive andE� of negative configuration examples. The
examples are given as sets of logical sentences. We assume that each
example on its own is consistent.2

The two example sets serve complementary purposes. The goal of
the positive examples in E+ is to check that the knowledge base will
accept correct configurations; if it does not, i.e., a particular positive

example e+ leads to an inconsistency, we know that the knowledge
base as currently formulated is too restrictive. Conversely, a negative
example serves to check the restrictiveness of the knowledge base;
negative examples correspond to real-world cases that are configured
incorrectly, and therefore a negative example that is accepted means
that a relevant condition is missing from the knowledge base.

Typically, the examples will of course consist mostly of sets of lit-
erals whose predicate symbols are in CONL. (If we want to test an
example w. r. t. specific user requirements, we include them in the
example definition.) In case these examples are intended to be com-
plete the special completeness axioms must be added. If an example
is supposed to be a complete configuration, diagnoses will not only
help to analyze cases where incorrect components or connections are
produced in configurations, but also cases where the knowledge base
requires the generation of superfluous components or connections.
The reason why it is important to give partial configurations as ex-
amples is that if a test case can be described as a partial configuration,
a drastically shorter description may suffice compared to specifying
the complete example that, in larger domains, may require thousands
of components to be listed with all their connections [5].

In the line of consistency-based diagnosis, an inconsistency be-
tween DD and the positive examples means that a diagnosis cor-
responds to the removal of possibly faulty sentences from DD such
that the consistency is restored. Conversely, if that removal leads to a
negative example e� becoming consistent with the knowledge base,
we have to find an extension that, when added to DD, restores the
inconsistency for all such e�.
Definition (CKB-Diagnosis): A CKB-diagnosis for a CKB-
Diagnosis Problem(DD;E+; E�) is a setS � DD of sentences
such that there exists an extensionEX, whereEX is a set of logical
sentences, such that
DD � S [EX [e+ consistent8e+ 2 E+

DD � S [EX [e� inconsistent8e� 2 E�

2

A diagnosis will always exist under the (reasonable) condition that
positive and negative examples do not interfere with each other.
Proposition: Given a CKB-Diagnosis Problem(DD;E+; E�), a
diagnosisS for (DD;E+; E�) exists iff
8e+ 2 E+ : e+ [

V
e�2E�

(:e�) is consistent.
Proof (see [4].)
From here on, we refer to the conjunction of all negated negative
examples as NE, i.e., NE =

V
e�2E�

(:e�)
In principle, the definition of CKB-diagnosis S is based on finding

an extension EX of the knowledge base that fulfills the consistency
and the inconsistency property of the definition for the given example
sets. However, the proposition above helps us insofar as it gives us a
way to characterize diagnoses without requiring the explicit specifi-
cation of the extension EX.
Corollary: S is a diagnosis iff8e+ 2 E+ : DD � S [e+ [NE
is consistent.
The following remark relates configuration and diagnosis for config-
uration knowledge bases.
Remark: Let e+ be partitioned in two disjoint sets e+

CONF
and

e+
SRS

where e+
CONF

is a set of positive ground literals whose pred-
icate symbols are in the set of CONL and e+

SRS
represents system

requirements (if some are specified in conjunction with the positive
example).
S is a diagnosis for(DD;E+; E�) iff 8e+ 2 E+ : e+

CONF
is

a consistent configuration for(NE [DD � S; e+
SRS

; CONL).
Note that, if the completeness axioms have been added to

e+
CONF

then e+
CONF

is a valid configuration for (NE [DD �
S; e+

SRS
; CONL).

4 COMPUTING DIAGNOSES

The above definitions allow us to employ the standard algorithms for
consistency-based diagnosis, with appropriate extensions for the do-
main. In particular, we use Reiter’s Hitting Set algorithm [12] which
is based on the concept of conflict sets for focusing purposes.
Definition (Conflict Set) : A conflict setCS for (DD;E+; E�)
is a set of elements ofDD such that9e+ 2 E+ : CS [e+ [
NE is inconsistent. We say that, ife+ 2 E+ : CS [e+ [NE is
inconsistent, thate+ inducesCS. 2

In the algorithm we employ a labeling that corresponds to the la-
beling of the original HS-DAG ([8], [12]), i.e., a node n is labeled by
a conflict CS(n) and edges leading away from n are labeled by log-
ical sentences s 2 CS(n). The set of edge labels on the path leading
from the root to n is referred to as H(n). In addition, each node is
labeled by the set of positive examples CE(n) that have been found
to be consistent withDD�H(n)[NE during the DAG-generation.
The reason for introducing the label CE(n) is the fact that any e+

that is consistent with a particular DD �H(n) [NE is obviously
consistent with any H(n0) such that H(n) � H(n0). Therefore any
e+ that has been found consistent in step 1.(a) below does not need
to be checked again in any nodes below n. Since we generate a DAG,
a node n may have multiple direct predecessors (we refer to that set
as preds(n) from here on), and we will have to combine the sets
CE(m) for all direct predecessors m of n. The consistent examples
for a set of nodes N (writtenCE(N)) are defined as the union of the
CE(n) for all n 2 N .
Algorithm (schema) In: DD;E+; E�; Out: a set of diagnoses S
(1) Use the Hitting Set algorithm to generate a pruned HS-DAG D

for the collection F of conflict sets for (DD;E+; E�). The DAG is
generated in a breadth-first manner since we are interested in gener-
ating diagnoses in order of their cardinality.
(a) Every theorem prover call TP (DD � H(n); E+ �
CE(preds(n));E�) at a node n corresponds to a test of
whether there exists an e+ 2 E+ � CE(preds(n)) such that
DD � H(n) [e+ [NE is inconsistent. In this case it returns a
conflict set CS � DD �H(n), otherwise it returns ok.
Let ECONS � E+ � CE(preds(n)) be the set of all e+ that have
been found to be consistent in the call to TP.
(b) Set CE(n) := ECONS [CE(preds(n)).
(2) Return fH(n)jn is a node of D labeled by okg

Complete versus Partial Examples
As mentioned before, examples (negative and positive) can be

complete or partial. Previously we stated that complete examples are
in principle preferable for diagnosis (neglecting the effort needed for
specification) since they are more effective. We will now show that
this is so because, under certain assumptions for the language used in
the domain description, diagnosing a complete example will always
result in only singleton conflicts.
Proposition: Given an examplee+ (consisting of a configuration
and the corresponding completeness axioms) from a set of positive
examplesE+ for a CKB-diagnosis problem(DD;E+; E�) such
thatDD uses only predicates fromCONL, then any minimal con-
flict set induced bye+ for (DD;E+; E�) is a singleton.
Proof (see [4].)

The practical implications are that for any given complete positive
example, we can limit ourselves to checking the consistency of the
elements s of DD with e+ [NE individually, because any s found
to be inconsistent constitutes a conflict. Conversely, any s found to
be consistent is not in the induced minimal conflict sets of e+.

5 DIAGNOSING REQUIREMENTS

Even once the knowledge base has been tested and found correct, di-
agnosis can still play a significant role in the configuration process.
Instead of an engineer testing an altered knowledge base, we are now
dealing with end users who are using the assumed correct knowl-
edge base for configuring actual systems. During their sessions, such
users frequently face the problem of requirements being inconsis-
tent because they exceed the feasible capabilities of the system to
be configured. In such a situation, the diagnosis approach presented
here can now support the user in finding which of his/her require-
ments produces the inconsistency. Formally, the altered situation can
be easily accommodated by swapping requirements and domain de-
scription in the definition of CKB-Diagnosis. Formerly, we were in-
terested in finding particular sentences from DD that contradicted
the set of examples. Now we have the user’s system requirements
SRS, which contradict the domain description. The domain descrip-
tion is used in the role of an all-encompassing partial example for
correct configurations.
Definition (CREQ-Diagnosis Problem): A configuration require-
ments diagnosis (CREQ-Diagnosis) problem is a tuple(SRS;DD),
whereSRS is a set of system requirements andDD a configuration
domain description. A CREQ Diagnosis is a subsetS � SRS such
thatSRS � S [DD is consistent.2
Remark: S is a CREQ diagnosis for (SRS;DD) iff S is a CKB
diagnosis for (SRS; fDDg; fg).

6 EXPERIMENTAL RESULTS

In order to test the applicability of our approach we have imple-
mented a prototype using a commercial configurator product (ILOG
Configurator [9]). When using this package of C++ libraries, a con-
figuration problem can be defined in terms of a Constraint Satisfac-
tion Problem (CSP)whereby the basic CSP mechanism is enhanced
with special features for the configuration domain, e.g., the number
of variables (components) the final product consists of may not be
known beforehand.

The problem representation used in this tool is based on the gen-
eral component-port model for configuration as described in Section
2. The domain description comprises the definition of the product
structure (available components, attributes and ports) as well as ad-
ditional relational or arithmetic constraints on the problem variables.
A configuration result comprises a set of components and instan-
tiated problem variables (attributes, ports). The user requirements
SRS and the example sets E+ and E� can be given in terms of
additional constraints or in terms of partial or complete examples.

In the context of a CSP, a conflict set for an example is a set of
constraints that, if canceled, make the CSP satisfiable, i.e., a solu-
tion can be found. The call to the theorem prover as described in the
algorithm above then corresponds to a call to the constraint solver,
to test – given some positive examples – which constraints are defi-
nitely violated, or whether one partial example can not be extended
to a complete configuration.

In general the task of finding (minimal) conflict sets may be com-
putationally expensive. Note that the presented diagnosis algorithm
does not necessarily need minimal conflict sets, although the perfor-
mance of the algorithm depends on the size of the conflict sets. In the
case of our prototype implementation the calculation of one arbitrary
solution for the CSP is done by the solver in a very efficient manner.
Therefore, the algorithm can also be employed with reasonable per-
formance, even if the inference engine (constraint solver) has only

limited capabilities of explaining the sources of the inconsistencies.
The single fault from our simple demonstration example can be di-

agnosed on a standard Pentium-II PC instantaneously. However, in
a more realistic setting with about thirty component types and about
thirty types of generic constraints on the problem variables and sev-
eral hundred constraint instances, the system still detects two inserted
double faults in a few seconds. Finding diagnoses of cardinality four
takes about half a minute in our typical test cases using our non-
optimized prototype. We can restrict the search depth to a certain
level assuming that in many cases, diagnoses of higher cardinality
do not help the user too much anyway.

Apart from the tests on our example domain, we have conducted
experiments on real world problems for the configuration of private
telecommunication switching systems which have shown the benefits
of our method.

7 RELATED WORK

In [3], a framework for model-based diagnosis of logic programs was
developed using expected and unexpected query results to identify
incorrect clauses, a line of work later continued by Bond [2]. Their
framework is similar to ours, but differs in using queries instead of
checking consistency as we do for configurations. [2] embedded the
diagnosis of logic programs and the concept of Algorithmic Program
Debugging [13] in a common underlying framework.

Related work in the area of logic programming was done by [11]
using a semantics based on SLDNF-resolution. Simlar results may
be achieved by using proper extensions of their framework. Note that
our goal was to remain within first order predicate logic with its stan-
dard semantics.

Work is currently underway to extend the use of model-based di-
agnosis to other types of software, in particular those with non-
declarative semantics, i.e., imperative languages ([6], [14]). In [1],
model-based diagnosis is used for finding solutions for overcon-
strained constraint satisfaction problems. Search is controlled by ex-
plicitly assigning weights to the constraints in the knowledge base
that provide an external ordering on the desirability of constraints,
an assumption that is generally too strong for our domain.

A model-based scheme for repairing relational database consis-
tency violations is given in [7]. Integrity constraints, though ex-
pressed in relational calculus, effectively are general clauses using
the relations in the database as base predicates. The interpretation
of the constraints in diagnosis terms uses two fault models for each
relation, expressing that a particular tuple must either be removed or
inserted into the database to satisfy the constraint. Individual violated
constraints are used to directly derive conflict sets for the diagnosis
process. A particular diagnosis serves directly as a specification for
the actions that will bring the database into a state consistent with
the violated constraints. However, the computation of diagnoses only
considers the current set of violated constraints, i.e., a repair exe-
cuted according to a diagnosis found by examining the inconsistent
constraints may lead to alterations that violate other, previously satis-
fied, constraints. Given that the goal of the approach is the alteration
of the database, the best correspondence is with what we consider
requirements diagnosis (and like our definition of CREQ-diagnosis,
Gertz and Lipeck do not use negative examples).

8 CONCLUSION

With the growing relevance and complexity of AI-based applications
in the configuration area, the usefulness of other knowledge-based

techniques for supporting the development of these systems is like-
wise growing. In particular, due to its conceptual similarity to config-
uration, model-based diagnosis is a highly suitable technique to aid
in the debugging of configurators. We have developed a framework
for localizing faults in configuration knowledge bases, based on a
precise definition of configuration problems. This definition enables
us to clearly identify the causes (diagnoses) that explain a misbe-
havior of the configurator, and express their properties. Positive and
negative examples, commonly used in testing configurators, are ex-
ploited to identify possible sets of faulty clauses in the knowledge
base. Building on the analogy between the formal models of con-
figuration and diagnosis, we have given an algorithm for computing
diagnoses in the consistency-based diagnosis framework. Finally, we
have examined how our method can be used for a different task in the
same context: identifying conflicting customer or user requirements,
that prevent the construction of valid configurations, support the user
during configuration sessions. The clear separation between knowl-
edge base and inference engine enables us to deal with knowledge
bases in terms of their declarative semantics, and at the same time fa-
cilitates their translation to (or incorporation into) the type of model
desired for diagnosis purposes. Since the model remains independent
of a particular implementation of the inference process, the net result
is that the model-based approach scores both in terms of generality
and ease of application as well as in terms of robustness.

Acknowledgement
We thank D. T. Dupré for his valuable comments.

REFERENCES
[1] R. R. Bakker, F. Dikker, F. Tempelman, and P.M. Wognum, Diagnosing

and solving over-determined constraint satisfaction problems, In Proc.
IJCAI’93, pp. 276-281, Chambery, Morgan Kaufmann, 1993.

[2] G. W. Bond, Top-down consistency based diagnosis, In Proc. DX’96
Workshop, Val Morin, Canada, 1996.

[3] L. Console, G. E. Friedrich, and D. T. Dupré. Model-based diagno-
sis meets error diagnosis in logic programs, Proc. IJCAI’93, pp. 1494-
1499, Chambery, Morgan Kaufmann, 1993.

[4] A. Felfernig, G. E. Friedrich, D. Jannach, and M. Stumptner. Con-
sistency based diagnosis of configuration knowledge bases, AAAI’99
Workshop on Configuration (WS99-05), AAAI Press, 1999.

[5] G. Fleischanderl, G. E. Friedrich, A. Haselboeck, H. Schreiner, and
M. Stumptner, Configuring Large Systems Using Generative Constraint
Satisfaction, IEEE Intelligent Systems, Vol. 13, No. 4, pp. 59-68,
July/August 1998, 1998.

[6] G. E. Friedrich, M. Stumptner, and F. Wotawa: Model-Based Diagnosis
of Hardware Designs, Artificial Intelligence, 111(2):3-39, 1999

[7] M. Gertz and U. W. Lipeck, A Diagnostic Approach to Repairing Con-
straint Violations in Databases, In Proc. DX’95 Workshop, Goslar, Oc-
tober 1995.

[8] R. Greiner, B. A. Smith, and R. W. Wilkerson, A correction to the algo-
rithm in Reiter’s theory of diagnosis, Artificial Intelligence, 41(1):79-
88, 1989.

[9] D. Mailharro, A Classification and constraint-based framework for
configuration, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 12(4), 1998.

[10] D. L. McGuinness and J. R. Wright, Conceptual Modelling for Con-
figuration: A Description Logic-based Approach, Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 12(4), 1998.

[11] L. M. Pereira, C. V. Damsio, and J. J. Alferes, Debugging by Diagnos-
ing Assumptions, In Proc. AADEBUG’93, Linköping, 1993.

[12] R. Reiter, A theory of diagnosis from first principles, Artificial Intelli-
gence, 32(1):57-95, 1987.

[13] E. Shapiro, Algorithmic Program Debugging, MIT Press, Cambridge,
Massachusetts, 1983.

[14] M. Stumptner and F. Wotawa, VHDLDIAG+: Value-Level Diagnosis of
VHDL Programs, In Proceedings DX’98 Workshop, Cape Cod, 1998.

