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Abstract. In diagnosis, the notion of observation varies according
to the class of considered systems. In discrete-event systems, an ob-
servation usually consists of a sequence, or a set of sequences, of
totally ordered observable events. This paper extends the concept of
discrete-event observation in several ways. First, observable events
(messages) may be uncertain in nature, both in behavioral models
and in system observations. Uncertain messages are specified by
variables ranging on finite sets of observable labels. Second, mes-
sages relevant to a system observation are accommodated within a
DAG, the observation graph, whose edges define a partial tempo-
ral ordering among (uncertain) messages. This way, an observation
graph implicitly defines a finite set of system observations in the tra-
ditional sense. Consequently, solving a diagnostic problem amounts
to solving at one time several traditional diagnostic problems. Fi-
nally, the (possibly distributed) reconstruction of the system behav-
ior is further complicated by the fact that homonymous observable
labels can be shared by different components. This raises the need
of dealing with null messages. The method is appropriate for several
real systems, where messages may get lost, are noisy, or attached
timestamps are generated by different clocks.

1 INTRODUCTION
Model-based diagnosis (MBD) is a problem solving task aimed at
troubleshooting a physical system, given an observation of the sys-
tem itself and the models describing its structure and behavior. A
solution produced by a diagnostic session is a set of candidate di-
agnoses, each diagnosis being a set of faulty components (or a set of
specific faults assigned to components) that explains the observation.
Thus, the system observation is an integral part of any diagnostic
problem and the input of any diagnostic process. Since the beginning
of MBD research it was quite clear that the temporal dimension of
observation, and consequently of behavioral models, is very impor-
tant for MBD [6]. However, taking the temporal dimension into ac-
count makes diagnosis significantly complex, both from the concep-
tual and practical point of view [3]. In temporal MBD, observation
is endowed with both a logical content, expressing what pieces of
information have been observed, and a temporal content, expressing
when they have been observed. Dually, the notion of candidate diag-
nosis is twofold: it encompasses both the set of faults explaining the
logical content of the observation, and the time constraints explain-
ing the temporal location of the observation. Moreover, the logical
and temporal aspects of diagnoses are closely related and cannot be
generated separately. This intuition is substantiated by the notion of
explanatory diagnosis [10].

In order to cope with the conceptual and computational difficulties
of temporal MBD, several simplifying assumptions have been made
in different approaches. This paper is focused on an approach that
models the dynamic and/or time-varying behavior of physical sys-
tems by means of discrete state changes. A discrete-change abstrac-
tion is simpler than a continuous-change one but, at the same time,
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is quite powerful since, for diagnostic purposes, many continuous-
variable systems can be modeled as discrete [9, 5]. In the last few
years, a good deal of research efforts have been devoted to MBD of
systems modeled as discrete-event [4, 12, 11, 7, 1, 2, 8]. All these
approaches feature compositional modeling and analogous modeling
primitives, since the behavior of each component is represented as a
finite automaton.

This paper extends the diagnostic method presented in [1, 2, 8],
in order to support the notion of uncertain observation, according to
which observations may be either logically uncertain or temporally
uncertain or both. An observation is logically uncertain if its logical
content is not univocal, that is, it does not identify one set of observed
labels but several ones. This includes the case when the sender of an
observed label is uncertain, as homonymous observable labels may
be generated by several components. An observation is temporally
uncertain if its temporal content identifies several temporal locations
of the logical content.

The solution of a diagnostic problem featuring an uncertain obser-
vation is, in principle, the union of the solutions of all the diagnostic
problems inherent to the univocal observations it represents. How-
ever, the proposed method can cope with an uncertain observation
uniformly, without generating and processing the single observation
instances. An uncertain observation is described by a DAG, where
each node is a (possibly logically uncertain) observed event and each
edge is a temporal precedence relation. A logically uncertain event
may be one out of a set of univocal events, where such a set may
even include the null event. In previous work the observation of the
system was only temporally uncertain, being a set of totally tempo-
rally ordered sequences of messages, each relevant to a single com-
ponent [1, 2] and to an arbitrary group of components [8]. In the
diagnoser approach [12] where, like in ours, the only temporal in-
formation that can be modeled by the available ontology of time are
ordering constraints, the observation is not uncertain at all, being just
one sequence of messages, pertaining to the whole system.

2 APPROACH

A discrete-event system � is modeled as a network of communi-
cating finite automata, which are connected to one another through
communication links. Automata embodies both nominal and faulty
behaviors. Initially, � is in a quiescent state �0. On the arrival of an
event from the external world, � becomes reacting, that is, it makes
a series of transitions until a final quiescent state �f is reached. This
reaction yields a number of observable events, the messages, which
make up a system observation OBS(�). Based on OBS(�) and
�0, a reconstruction of the system behavior is carried out, which
yields an active space, that is, a graph representing the whole set
of histories (sequence of transitions) which explain OBS(�). Diag-
noses are eventually generated from the active space, as described in
[2].
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Figure 1. System � (center) and models of components P (left) and Q (right).

2.1 Component
A component model MC is a communicating automaton, MC =
(S;Ein; I; Eout;O; T ), where S is the set of states, Ein the set of
inputs, I the set of input terminals, Eout the set of outputs, O the set
of output terminals, and T the (nondeterministic) transition function,
T : S � Ein � I � 2Eout�O 7! 2S . A component is the instantia-
tion of a component model. Each component is implicitly endowed
with three virtual terminals, namely In 2 I, the standard input,
Msg 2 O, the message terminal, and F lt 2 O, the fault terminal.

An input (output) event is a pair (E; #), where E is an input (out-
put) and # an input (output) terminal. A transition T from state S1
to state S2 is triggered by an input event � = (E; I) at an input
terminal I and generates the (possibly empty) set of output events
� = f(E1; O1); : : : ; (En; On)g at output terminals O1 � � �On, re-

spectively. This is denoted by T = S1
� j�
�! S2. A transition can gen-

erate at most one output on each output terminal. An event (E;F lt)
is a faulty event and, the relevant transition, a faulty transition.

Let � be a set of observable labels and V a set of variables such
that 8X 2 V the value of X is defined on kXk � (� [ f�g), where
� denotes the null message. The set � = � [ V is the domain of
messages. The extension of a message m 2 � is the set defined as
follows:

kmk =

�
f`g if m = `; ` 2 �
kXk if m = X;X 2 V

2.2 Link
A link model ML is a 4-tuple, ML = (I;O; �; �), where I is the
input terminal, O the output terminal, � the capacity, � � 1, and
� the saturation policy. A link is an instantiation of a link model,
that is, the directed communication channel between two different
components C and C0, where an output terminal of C and an input
terminal of C0 coincide with the input and output terminal of L, re-
spectively. The state of a link L is the queue of events in L. In fact, if
a transition of C generates an event on the input terminal of L, such
an event is buffered within the link. Dually, when a transition of C0

is triggered by the first event in the queue within the link, such an
event is dequeued. When the number of events in L equals �, L is
saturated. When L is saturated, the semantics for the triggering of
a transition T of a component C that generates a new output event
(E;O) is dictated by the saturation policy � of L, which can be ei-
ther (i) LOSE: E is lost, (ii) OVERRIDE: E overrides the last event
in the queue of dangling events of L, or (iii) WAIT: the transition T
cannot be triggered until L becomes unsaturated, that is, until at least
one event in L is consumed. If (E; #) is an event, Link(#) denotes
the link relevant to #.

2.3 Cluster
A cluster � = (C;L) is a connected graph where nodes are termi-
nals of components in C and edges are the elements in L, that is,
the whole set of links among such terminals. A decomposition � =
f�1; : : : ; �ng of � is a set of disjoint clusters �i = (Ci;Li) where

fC1; : : : ; Cng is a partition of C. The interface of �, Interf (�),
is the set of links L0 � L where 8L = C1:O ) C2:I 2 L0

(C1 2 �i; C2 2 �j ; i 6= j; �i 2 �; �j 2 �).

Example 1 In Figure 1, a system � is displayed, where P and Q
are components, while L1 and L2 are links, for which we assume
� = 2 and � = LOSE. The automata corresponding to the behav-
ior of P and Q are displayed on the left and on the right, respectively.
Both automata are composed of two states and three transitions, one
of which is faulty (p2 and q1, respectively). For instance, transition
p1 is triggered by the input event � = (e; In) and generates the set
of output events � = f(e2; O); (b;Msg)g, where the former is di-
rected toward Q by means of link L2, while the latter is a message
labeled b. Notice that transitions p3 and q2 involve uncertain mes-
sages, namely, Xp 2 fa; �g and Xq 2 fb; cg. Variable Xp can be
physically interpreted as an observable label a which may be lost,
while the observable label associated with Xq can be either b or c.
In the following, we assume � decomposed in � = f�p; �qg, where
�p = (fPg; ;), �q = (fQg; ;), and Interf (�) = fL1; L2g.

2.4 Observation
An observation OBS(�) of a cluster � = (C;L) is a directed (not
necessarily connected) acyclic graph, OBS(�) = (
;�;
0;
f ),
called observation graph, such that 
 is the set of nodes, where each
! 2 
 is marked with a message Msg(!) 2 �, � : 
 7! 2
 is the
set of edges, 
0 � 
 the set of roots, and 
f � 
 the set of leaves.
The ‘�’ temporal precedence relationship among nodes is defined as
follows:

1. If ! 7! !0 2 � then ! � !0;
2. If ! � !0 and !0 � !00 then ! � !00;
3. If ! 7! !0 2 � then 6 9!00 2 
 j ! � !00 � !0.

Furthermore, by definition,

4. ! � !0 iff ! � !0 or ! = !0;
5. 8!0 2 
0 (6 9! 2 
 j ! � !0);
6. 8!f 2 
f (6 9! 2 
 j !f � !).

An index = for OBS(�) is a subset of 
 such that 8! 2 = ( 6
9!0 2 = j !0 � !). The following two functions are defined on =
(where Cons stands for consumed):

1. Cons(=) = f! j ! 2 
; !0 2 =; ! � !0g;
2. Next(=) = N [ N+, where, if = 6= ;, then N = f! j ! 2


; ! 62 Cons(=); 8!0 7! ! 2 � (!0 2 Cons(=))g, else N =

0, and N+ = f! j ! 2 
; 8!0 2 N ; 8!00 2 
; !0 � !00 �
! (� 2 kMsg(!00)k)g:

= is complete when either Cons(=) = 
 or 8! 2 (
 �
Cons(=))(� 2 kMsg(!)k).

The restriction of OBS(�) on a set of components C0 � C(�),
denoted by OBShC0i(�), is an observation (
0;�0;
0

0;

0
f ) where,

denoting with �(C) the set of observable labels in � relevant to com-
ponents in C,
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Figure 2. Observation graph of system � (center), and observation
restrictions on clusters �p (left) and �q (right), where variable Y 2 fb; �g,

Z 2 fb; c; �g, W 2 fa; b; cg, and V 2 fa; b; �g:

1. 
0 = f!0 j !0 = !hC0i; ! 2 
g, where !hC0i, the restriction of
! on C0, is such that:

(a) kMsg(!0)k = fm j m 2 kMsg(!)kg [M�(!), where

M�(!) =

�
f�g if 9m (m 2 �(C0);m 2 �(C � C0)
; otherwise

(b) kMsg(!0)k 6= ;;

2. !01 7! !02 2 �0, !0
1 2 
0, !0

2 2 
0, !0
1 = !1hC0i, !

0
2 = !2hC0i iff

(a) !1 � !2 in OBS(�),

(b) 6 9!03 2 
0, !0
3 = !3hC0i, such that !1 � !3 � !2 inOBS(�).

Let �0 = (C0;L0), C0 � C. By definition, OBSh�0i(�) �
OBShC0i(�). Let Q! = h!1; : : : ; !pi such that:

1. f!1; : : : ; !pg = 
(OBS(�));
2. 8i 2 [1 :: p], 8j 2 [1 :: p], i 6= j (if !i � !j in OBS(�) then !i

precedes !j in Q!).

Let Q` = h`1; : : : ; `pi, where 8i 2 [1 :: p](`i 2 kMsg(!i)k; !i 2
Q!). LetQ0

` = h`01; : : : ; `
0
p0i, p0 � p, be the sequence obtained from

Q` by removing the null messages. Q0
` is an instance of OBS(�).

The extension of OBS(�), kOBS(�)k, is the whole set of the in-
stances of OBS(�). The i-th instance of an observation can be
thought of as a special case of observation, whose graph, denoted by
OBS(i)(�), is a sequence of nodes corresponding to the messages in
the instance.
OBS(�) is weaker thanOBS0(�), namelyOBS(�) = OBS0(�),

iff kOBS(�)k � kOBS0(�)k. More generally, OBS(�) w
OBS0(�) iff kOBS(�)k � kOBS0(�)k.

Example 2 On the center of Figure 2, an observation graph of
� is depicted, where 
 = f!1; : : : ; !6g, 
0 = f!1g, 
f =
f!6g, and � is represented by edges among nodes. Notice that
Msg(!1) = c, while Msg(!4) = Z, where kZk = fb; c; �g. Since
!1 7! !2 2 �, we have !1 � !2 and, since !2 � !4, we also
have !1 � !4. Assuming = = f!2; !3g, we have Cons(=) =
f!1; !2; !3g and Next(=) = f!4; !5g. The only complete index is
f!6g. The restrictions OBS(�p) = OBSh�pi(�) and OBS(�q) =
OBSh�qi(�) are given on the left and on the right of Figure 2, re-
spectively. We have �(P ) = fa; bg and �(Q) = fb; cg. Thus, P and
Q share the observable label b. This is why !1h�pi = Y , Y 2 fb; �g.
In fact, one cannot know a priori whether b has been actually gener-
ated by P or byQ. SinceMsg(!6) =W ,W 2 fa; b; cg, the restric-
tion !6h�pi will include a, but not c. Besides, the ambiguous label b
will be replaced by the uncertain pair (b; �), so that !6h�pi = V ,
V 2 fa; b; �g. An instance of OBS(�) is hb; c; b; c; ai, correspond-
ing to Q! = h!1; !3; !2; !5; !4; !6i and Ql = hb; c; �; b; c; ai. It is
easy to show that kOBS(�)k includes 57 instances.

2.5 Reconstruction

A pair }(�) = (OBS(�), �0), where OBS(�) is an observation and
�0 the initial state of �, is a diagnostic problem for �. An active space
of }(�) is a finite automaton, Act(}(�)) = (S;E ; T ; S0;Sf), where
S is the set of states, E the set of events, T the transition function, S0
the initial state, and Sf � S the set of final states, defined as follows:

1. (Atomic active space) if � incorporates a single component C with
model MC = (SC ; EinC ; IC ; EoutC , OC ; TC) and OBS(�) =
ukn, then S = SC , E = TC , T : S � E 7! S , S0 = �0, and Sf
is the set of states reachable from S0;

2. (Compound active space) if � = f�1; : : : ; �ng is a decomposition
of � and A = fAct(}(�1), : : :, Act(}(�n)g a set of active spaces
relevant to �, where

(a) 8i 2 [1 :: n] (Act(}(�i) = (Si; Ei; Ti; S0i ;Sfi), }(�i) =
(OBS(�i); �i0)), and

(b) OBS(�)� fOBS(�1); : : : ; OBS(�n)g,

then Act(}(�)) = <OBS(�)(A), where < is the reconstruction
operator introduced below.

Let � = S1�; : : : ;�Sn, =� the domain of the indexes = of
OBS(�), and D the domain of the states of the links in Interf (�).
The spurious active space of A based on the observation OBS(�),
obtained by applying the spurious reconstruction operator e<, is an
automaton e<OBS(�)(A) = (eS; E ; eT ; S0;Sf), where

� eS = fS0g [ fS0 j S
�
! S0 2 eT g; eS � ��=� �D;

� E =
Sn

i=1
Ei;

� eT : eS � E 7! eS;
� S0 = (�0;=0; D0), where �0 = (S01 ; : : : ; S0n),
=0 = ;, D0 = (;; : : : ; ;);

� Sf = f(�f ;=f ; Df ), where 8Si 2 �f (Si 2 Sfi);=f is com-
plete, and Df = (;; : : : ; ;)g.

The transition function eT is defined as follows: N
T
! N 0 2 eT ,

where N = (�;=; D), T = S
�j�
�! S0, N 0 = (�0;=0; D0), � =

(S1; : : : ; Sn); �
0 = (S01; : : : ; S

0
n) iff:

1. T is triggerable, that is, defining

� L� = Link(��); � = (E�; ��); L� 2 Interf (�),

� L� = fL� = Link(B) j (EB; B) 2 �; L� 2 Interf (�)g,

� Lu� = fL� 2 L� j L� is not saturated or L� = L�g,

� Ls� = L� � L
u
� ,

� Lso� = fL� 2 L
s
� j �(L�) = OVERRIDEg,

� Lsw� = fL� 2 L
s
� j �(L�) =WAITg,

and denoting with L(D)[i] the i-th event within link L of D, we
have:

(a) L�(D)[1] = E�,

(b) One of the following conditions holds:

i. (m;Msg) 62 �

ii. (m;Msg) 2 � and � 2 kmk
iii. (m;Msg) 2 � and (kmk \ f` j ` 2 kMsg(!)k; ! 2

Next(=)g) 6= ;,

(c) Lsw� = ;;

2. �0 is such that 8i 2 [1 :: n] (if T 2 Ti then S0i = S0 else S0i =
Si);

3. If (m;Msg) 62 � then =0 = = else =0 2 =+, where =+ is the
smallest set of indexes defined by the following rules:
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Figure 3. Active space corresponding to the canonical reconstructionb<(OBS(�);�0), where �0 = (P0; Q0).

(a) If � 2 kmk then = 2 =+,

(b) =m 2 =+, where

� =m = (= [ f!mg)� f! j ! 2 =; ! � !mg,

� !m 2 f! j ! 2 Next(=); ((kmk � f�g) \ kMsg(!)k) 6=
;g;

4. D0 is such that, denoting with jL(D)j the number of events within
link L of D, the following conditions hold:

(a) jL�(D0)j = jL�(D)j � 1, 8x 2 [1 :: (jL�(D)j � 1)]
(L�(D

0)[x] = L�(D)[x+ 1]);

(b) 8(E;#) 2 �, L� = Link(#), L� 2 Lu�
(L�(D

0)[jL�(D)j+ 1] = E, jL�(D0)j = jL�(D)j+ 1);

(c) 8(E;#) 2 �, L� = Link(#), L� 2 Lso�
(L�(D

0)[jL�(D)j] = E, jL�(D0)j = jL�(D)j);

(d) 8L 2 (Interf (�)� (L� [ L
u
� [ L

so
� )) (L(D0) = L(D)).

A state S 2 eS is convergent if there exists a path S ; Sf ine<OBS(�)(A) such that Sf 2 Sf . A transition S
�
! S0 2 eT is

convergent if S and S0 are convergent. The reconstruction < of A
based on the observation OBS(�) is the automaton <OBS(�)(A) =

(S;E ;T ; S0;Sf ) obtained by removing from e< the states and tran-
sitions which are not convergent.

Let A be the set of atomic active spaces relevant to components
in �. The canonical reconstruction of }(�), b<(}(�)), is the recon-
struction based on the atomic active spaces, that is, b<(}(�)) =
<OBS(�)(A).

A path S0 ; Sf in Act(}(�)), where Sf 2 Sf , is a history of
�. The whole (possibly boundless) set of histories in Act(}(�)) is
denoted by H(Act(}(�))).

Example 3 Consider the diagnostic problem }(�) = (OBS(�),
�0), where OBS(�) is depicted in Figure 2 and �0 = (P0, Q0) (see
Figure 1). The canonical reconstruction A = b<(}(�)), based on the
atomic active spaces of components P and Q, is shown in Figure 3,
where ellipses and edges represent states and transitions ofA, respec-
tively. The displayed graph corresponds to the search carried out by
an extension of the Reconstruct algorithm presented in [1]. Dashed
lines denote backtracking. We assume the decomposition � =
f�p; �qg. Each state is characterized by three fields, these being the
states of P and Q (namely, �), the index of OBS(�) (namely, =),
and the state of the links in Interf (�) = fL1; L2g (namely, D). The
initial state (denoted in bold) is (�0 = (P0; Q0);=0 = fg; D0 =
(hi; hi)). Each edge in A is marked with the identifier of the corre-
sponding transition in the atomic active space, possibly followed by
an observable label and the identifier of a relevant node in OBS(�).
For example, the first edge is marked by p1(b; 1), which means that,
a transition p1 of component P1 is triggered, assuming that it pro-
duces the observable label b associated with node !1 in OBS(�).
Note that, to simplify the intricacy of the graph, several nodes have
been identified by labels Ni, which are then used for indirect refer-
encing (circles), e.g., N14 = ((P0; Q0); f6g; (hi; hi)). Final states
are denoted by double nodes. In Figure 3, the path in bold from the
initial state to the final state N14 is one of the histories of �, namely
h = hp1(b; !1), q1(b; !2), p2, q2(c; !3), p3, q1(b; !5), q3(c; !4),
p3(a; !6)i. Notice that the sequence of messages relevant to h is
an instance of OBS(�), that is, hb; b; c; b; c; ai 2 kOBS(�)k. In
other words, h explains OBS(�). Incidentally, transition from N5

to N12, namely q2(fb; cg; 6), incorporates two distinct labels, b and
c. This means that the set fb; cg is shared by kXqk = fb; cg, in
the behavioral model of Q, and kWk = fa; b; cg in !6. Therefore,
both b and c might have been generated by transition q1 during the
reaction. According to the definition of active space, besides pro-
viding the explanation of the observation, a history is required to



involve transitions which do not violate the management policy of
links and, for a transition to be triggered by an internal input event,
such an event is expected to be ready in the relevant link of �. For
example, in transition p3(a; 6) from N4 to N14, event e1 is actually
within link L1, as specified in N4 = ((P1; Q0); f4; 5g; (he1i; hi)).
A node which is not within a history is inconsistent. For example,
N10 = ((P1; Q1); f6g; (hi; he2i)) is inconsistent because transi-
tion q3, which might be activated by event e2, would generate the
message c, which is inconsistent with index = = f!6g. In fact,
Cons(f!6g) = 
, which means that = is complete.

Proposition 1 Let }(�) = (OBS(�); �0) be a diagnostic problem
where kOBS(�)k =

Sn

i=1
fOBS(i)(�)g is the set of instances of

OBS(�). Then,

H(b<(}(�))) = n[
i=1

H(b<(OBS(i)(�); �0)):
Formally, Proposition 1 asserts the soundness and completeness of
the diagnostic method. In other words, it claims that solving a di-
agnostic problem }(�) involving an uncertain observation OBS(�)
produces the same histories as solving the n diagnostic problems cor-
responding to the whole set of totally ordered observations implicitly
incorporated in OBS(�).

Proposition 2 Let OBS(�) be an observation of a cluster � with
initial state �0, � = f�1; : : : ; �ng a decomposition of �, and R̂ =Sn

i=1
fb<(OBS(�i); �i0g a set of relevant canonical reconstructions

such that �0 = (�10 ; : : : ; �n0) and 8i 2 [1 :: n] (OBS(�i) =
OBSh�ii(�)). Then,

H(<OBS(�)(R̂)) = H(b<(OBS(�); �0)):
Proposition 2 opens the way to modular behavior reconstruction, by
asserting the equivalence between a canonical active space and a
compound active space built from lower-level (canonical) partial ac-
tive spaces. More generally, Proposition 2, which is the theoretical
basis for the (distributed and parallel) stepwise reconstruction of the
active space based on a reconstruction plan, as introduced in [2] and
formalized in [8], is still valid for discrete-event systems character-
ized by uncertain observations.

2.6 Diagnosis
A history hf in an active space Act(}(�)) is faulty if and only if hf
includes at least one faulty transition Tf . The component relevant to
Tf is a faulty component. A diagnosis Æ of }(�) is the set of faulty
components relevant to a history in Act(}(�)). The set of candidate
diagnoses of }(�), namely �(}(�)) = fÆ1; : : : ; Æng, is the whole
set of diagnoses relevant to the histories in Act(}(�)).

Example 4 Considering the history h = hp1(b; !1), q1(b; !2), p2,
q2(c; !3), p3, q1(b; !5), q3(c; !4), p3(a; !6)i highlighted in Fig-
ure 3, since p2 and q1 are faulty transitions for P and Q, respec-
tively, the diagnosis relevant to h is Æ(h) = fP;Qg. Alternatively, a
diagnosis can be defined in terms of faulty events relevant to a his-
tory, named deep diagnosis [2]. The deep diagnosis relevant to h is
Æd(h) = f(P; f1); (Q; f2)g.

3 CONCLUSION
The choice of the notion of observation to adopt for temporal MBD
depends on the application domain. If all the observable labels gen-
erated by a system are received by the observer, and the latter can
trace the sender component of each label, then there is no need for

a logically uncertain notion of observation. If, instead, a number of
labels may get lost during the transmission (e.g. owing to masking
phenomena), or the receiver cannot further discriminate the value of
each label within a set of values (e.g. owing to noise), or homony-
mous labels may be generated by distinct components, then the set
of labels received by the observer differs from those generated by the
system, and/or labels can be ascribed to different sets of components.
Therefore, the received labels cannot be described as a univocal set,
but, rather, as a concise representation of all the possible sets of labels
generated by the system that are compatible with it. This is actually
what we call a logically uncertain notion of observation. The diag-
nostic task has to supply as output the candidate diagnoses for all the
corresponding diagnostic problems. Analogously, if all the temporal
constraints holding when the observable labels are generated, reach
the observer, then a temporally uncertain notion of observation is
useless. If, instead, only a subset of the temporal constraints holding
when the observable labels are generated is known to the observer,
then a temporally uncertain notion of observation has to be adopted.
This case is typical when labels are sent to the observer by means
of distinct channels and the temporal constraints holding among the
labels sent on different channels get lost, or when the timestamps
associated with observable labels are produced by different clocks.
Since these clocks may be not perfectly synchronized, the relative
order between two timestamps t and t0 generated by two different
clocks is uncertain when jt� t0j < E, where E is the time difference
between the two clocks. Thus, no relative ordering relationship has
to be assumed for such events.

This paper extends the modeling primitives and diagnostic method
of a previous research [1, 2, 8], in order to support observations that
are uncertain. The proposed notion of observation widens the class
of physical systems that can be dealt with by the quoted approach,
allowing for the representation of several sources of uncertainty due
to partial system observability.
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