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Abstract. The aim of this paper is to propose the use of a dynam-
ic plot model to improve landcover classification on a sequence of
images. This new approach consists in representing the plot as a dy-
namic system and in modeling its evolution (knowledge about crop
cycles) using the timed automata formalism. In order to refine results
obtained by a traditional classifier, observations given by a prelimi-
nary classification of images are matched with expected states pro-
vided by an automaton simulation. The paper presents the modeling
captured by the timed automata formalism and the general method,
which is based on prediction and postdiction mechanisms, that have
been adopted to improve the classification of a sequence of images.
Finally, the interest of the method is demonstrated through experi-
mental results.

1 Introduction

The classification and recognition problem has been intensively re-
searched in the recent past, incorporating new achievements of s-
tatistical, neural networks and Artificial Intelligence techniques. The
reason for classifying remotely-sensed or aerial images is to assign to
each object a label. In this study, images are related to an agricultural
site and describe agronomic plots we want to label with landcover
type (corn, barley, forest, water, etc.). The result is called a thematic
map. The traditional statistical classification tools, that we have ex-
perimented, provided unsatisfactory results. Inconsistencies are of-
ten due to the same causes: the confusion between landcover types
of similar spectral signatures and the existence of isolated pixels of
one class in an object identified as belonging to another class. Thus,
results provided by these tools usually need to be completed with
manual processing so as to have as good results as those obtained by
human photo-interpreters. With regard to these problems, two kinds
of approaches are possible: to develop more sophisticated statistical
methods in one hand or to develop systems using domain knowl-
edge in the other hand. This paper focuses on the second approach.
Matsuyama [11] developed an expert system for the classification of
images where image processing techniques used to extract scene in-
formation are distinguished from knowledge representation used to
identify objects. In scene interpretation, paradigms such as frames,
semantic nets and production systems [14, 12] are commonly used
to describe structural knowledge such as spatial-relations properties
of objects. These systems have been tested on specific domains in-
cluding the recognition of airports [12], roads and buildings. In the
domain of landcover classification, knowledge-based image analysis
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is also applied. These systems incorporate image context and spectral
characteristics in the ruled-based classification. Even if these meth-
ods provide better results than those obtained using traditional classi-
fiers, a significant part of the image still contains confusions between
classes. Some authors [13] suggest that the conjunction of multi-
seasonal remotely-sensed images is useful to discriminate between
different categories of vegetation.
The aim of this paper is to present a new approach to improve land-
cover classification. We suggest working on a sequence of images
and exploiting the dynamics of the entity we want to classify, i.e the
plot of land. The idea consists in modeling the evolution of the plot
and comparing the expected state of the plot obtained by a model
simulation with the observations extracted from the images, in or-
der to improve the classification of images. This approach, which in-
volves revising the observations by taking into account the expected
state of the system, has some similarities with approaches proposed
for monitoring dynamic systems, such as Kalman filtering [5], and
with the belief change/update domain [3]. We use a preliminary clas-
sification to define all plausible classes for each plot 3. The knowl-
edge about crop cycles, evolution of main crop states and rotation
practices are described in the timed automata formalism [2]. The re-
finement of the classification is based on prediction and postdiction
mechanisms where the model is used to give the expected state of the
plot at each date referred to here as time.
The paper is organized as follows. Section 2 presents the problem
and the general mechanism adopted to improve the classification of a
sequence of images. Section 3 defines the modeling formalism cho-
sen to represent the evolution of the system and which is based on
timed automata. Section 4 explains how this model is exploited on a
sequence of images by prediction and postdiction steps. Experimen-
tal validation and results are presented in section 5, followed by a
conclusion and further lines of research in section 6.

2 Refinement problem

In this paper we consider the landcover classification of a sequence
of images I1; � � � ; In taken at time t1; � � � ; tn. Images may have been
acquired by different sensors (SPOT, LANDSAT, aerial, etc.) as they
represent the same landscape area. A preliminary per-plot classifica-
tion is performed on each image and associates to each agricultural
plot of the area an observation, i.e the set of all plausible classes.
Thus since we have a sequence of images, we get, for each plot, a se-
quence of observations coming from the preliminary classification.
The problem is to improve such a classification using knowledge de-
scribing the possible evolution of the plots, and this will be referred
to as refinement of the classification. The general algorithm is:

3 The classification step itself will not be discussed in this paper.



for each image Ii
for each plot P

preliminary classification �! Oi

for each plot P
refinement of the classification

(A; [O1; � � � ; On]) �! [K1; � � � ; Kn]

Let C be the set of classes. We denote Oi the observation about a
plot P at time ti. Oi � C is the set of all plausible classes describ-
ing the plot and resulting from the classification of the image Ii.
The refinement problem takes as input the pair (A; [O1; � � � ; On])
where A is the plot evolution model. The objective of the refine-
ment is to provide, for each plot, a sequence [K1; � � � ; Kn] where
K1 � C; � � � ; Kn � C and where the “quality” of [K1; � � � ; Kn] is
better than [O1; � � � ; On]. Two criteria enable us to judge the quality
of Ki:

� the cardinal of Ki: the fewer plausible classes in Ki, the better it
is. The best case is when Ki is restricted to one class.

� “validity” correctness: the real landcover type should belong to
Ki. If a ground truth is available for this plot, Ki and the class
given by the ground truth are compared in order to assess the ac-
curacy of the classification.

The refinement is realized in two steps. The evolution model of the
plot A is used in simulation to determine the set of expected data at
time ti, denoted Ei with Ei � C. A matching is applied between
the observation and the expected data. The matching process is
illustrated in Figure 1 and is defined as follows. Let Oi be the obser-
vation at ti. Let
 be the matching operator such that Ki = Oi
Ei.
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Figure 1. Refinement of the classification: simulation and matching

In the following, since sets of classes are considered, the matching
operator is the intersection. The matching may be extended to
probabilistic or ranking data where the operator represents any
fusion or combination rule.

Expected data are provided by simulation according to a prediction
or a postdiction mechanism.
Prediction. We define the prediction mechanism as < A; Ki�1; ti >

where A is the model of the system, Ki�1 is a state of the system at
time ti�1 with ti�1 < ti. Given the model and a state of the system
at time ti�1, the prediction mechanism consists in determining the
state of the system for the current time ti.
Postdiction. We define the postdiction mechanism as
< A; Ki+1; ti > where A is the model of the system, Ki+1

is a state of the system at time ti+1 with ti < ti+1. Given the
model and a state at time ti+1, the postdiction mechanism consists
in determining the state of the system for the current time ti.
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Figure 2. Prediction and postdiction on 3 dates

In order to refine the sequence of images, the method relies on both
prediction and postdiction steps. We denote E0

i (resp. Ei) the set re-
sulting from the prevision step (resp. postdiction step) and K0

i (resp.
Ki) the set resulting from the matching in the prediction step (resp.
postdiction step). K0

1 is the set of classes resulting from O1, from
which invalid classes at t1 have been discarded, and is used to ini-
tialize the plot evolution model. The refinement algorithm, based on
prediction and postdiction steps, is as follows.
Refinement of a plot:

1- Prediction
Initialization: K0

1 � O1

For all ti, with 2 � i � n

Prediction: E0
i = prediction < A; K0

i�1; ti >

Matching: K0
i = Oi 
E0

i

2- Postdiction
Initialization: Kn = K0

n

For all ti, with n� 1 � i � 1
Postdiction: Ei = postdiction < A; Ki+1; ti >

Matching: Ki = K0
i 
Ei

In an ideal case, there is no more confusion between classes and only
one good landcover type is proposed in each Ki. Figure 2 shows the
refinement of a classification on a sequence of 3 images.

3 Timed automata modeling

Let us come now to the model and to the formalism we have cho-
sen to encode it. Due to meteorological factors and to availability
of labor and machinery, the main feature of the system is its non-
determinism, which means that the system could be in multiple states
at the same time. Consequently, the transition-based model needs to
deal with uncertainty on temporal constraints over transitions. Note
also that the formalism adopted should be able to model crop cycles,
thus permitting us to define one generic model for several years of
study. Timed automata [2] bring together all the properties required
to model the evolution of the plot.

3.1 Formalism

Timed automata extend the automata formalism by adding clocks.
The vertices of the graph are called locations. Clocks are real-valued
variables increasing uniformly with time. Several independent



clocks may be defined for the same timed automaton. They define
timing constraints associated to locations or transitions. In a timed
automaton, transitions are instantaneous and allow the resetting
of clocks. A timing constraint related to a location is called its
invariant. It is possible to stay in a location as long as its invariant
is true. A timing constraint related to a transition means that the
transition is enabled only when the value of the clocks satisfies the
constraint.

Clock constraints. A clock constraint is the conjunction of atomic
constraints which compare the clock value with a non-negative ratio-
nal. We consider X the set of clock variables and �(X ) the set of
clock constraints ' defined by the following grammar:

' ::= x � c j c � x j x < c j c < x j ' ^ '

where x 2 X and c is a constant in Q. A clock valuation v for a
set X assigns a real value to each clock such that for all x 2 X ,
v(x) 2 R.

Definition. A timed automaton A is a tuple < S;X ;L; E ;I >

where:

� S is a finite set of locations and so 2 S is the initial location.
� X is a finite set of clocks.
� L is a finite set of labels.
� E is a finite set of edges, each edge e is a tuple (s; l; '; �; s0) such

that e connects the location s 2 S to the location s0 2 S on sym-
bol l. The enabling condition required for all clocks is captured in
' and � � X gives the set of clocks to be reset when the edge is
triggered.

� I : S ! �(X ) maps each location s with a clock constraint called
an invariant.

Let us consider the preliminary example shown in Figure 3. This

b, x >= 2

a, x:= 0

s0 s1

x < 5

Figure 3. Preliminary example of a timed automaton

timed automaton is described by two locations s0 and s1 and a
single clock x. The system is in the initial location s0 where it can
stay during an arbitrary time since no invariant is associated with
it. The system moves from the location s0 to the location s1 on the
transition labeled by a and the clock x is set to 0. The location s1 is
possible as long as x is less than 5. The b-labeled transition can then
be triggered during the uncertain interval [2,5[.

Semantics. The semantics of a timed automaton A is defined by a
transition system <Q;!; (so; vo)> where Q is the set of states,!
the set of transitions and (so; vo) the initial state. A state ofA, denot-
ed (s; v), is given by a location s and a valuation v such that v satis-
fies the invariant I(s). For all clocks x 2 X , we have vo(x) = 0. At
any state, A can evolve through one of the outgoing edges or remain
in the location while time passes. Consequently, two kinds of transi-
tions are distinguished.
Discrete transition. Let e = (s; l; '; �; s0) 2 E . The state (s; v)
has a discrete transition to the state (s0; v0) if v satisfies '. This dis-

crete transition is denoted (s; v)
l
! (s0; v0) where v0 = v[� := 0].

v[� := 0] gives the new clock valuation v0 such that all clocks x 2 �

are set to 0, the others keeping the value they had in the location v.
For instance, in the preliminary automaton a discrete transition would
be (s0; x = 1)

a
�! (s1; x = 0).

Timed transition. Let t 2 R. The state (s; v) has a timed transition

to the state (s; vt) denoted (s; v)
t
! (s; vt) if, for all t0 � t, vt0 sat-

isfies the invariant I(s) where vt (resp. vt0 ) is the valuation obtained
by adding all the clocks with t (resp. t0). A timed transition in the

example is (s1; x = 1)
1
�! (s1; x = 2).

3.2 Plot evolution model

We consider landcover types as the locations of a timed automa-
ton. Clock constraints are derived from crop calendars, generally ex-
pressed using dates. As the formalism requires rational values for
clock constraints, dates are transformed into numerical values in
[0; 365]. Because most crop cycles begin at the end of the summer,
the constant that appears in a clock constraint is the number of days
since September 1. Both types of transitions make sense to describe
the evolution of our system. Timed transitions are useful to express
the time elapsed in a crop state, while discrete transitions express
successions between landcover types. Cycles are defined by reset-
ting the clocks.
Figure 4 illustrates a simple version of a plot evolution modeled us-
ing a timed automaton. The automaton is composed of several sub-
automata, each of which refers to the evolution of one crop (corn,
wheat, rape plant, etc.) or to invariant landcover types (water, forest,
etc.). From the final location end crop of each sub-automaton, all
possible transitions towards the successive crops begin. Two clock-
s are necessary. Clock x refers to the number of days in one cycle,
from September 1 to August 31, such that x 2 [0; 365]. Clock y rep-
resents the number of days since September 1 of the first cycle and
enables us to count the years. The value of x corresponds to the value
of y modulo 365 days. The data set used for this study was acquired
from interviews with agronomists about the Rennes agricultural site
located in Brittany (France). Our automaton contains 40 states and
62 transitions.

4 Specifying prediction and postdiction
mechanisms with reachability properties

Given the evolution model of a plot defined using a timed automa-
ton, this section explains how to specify the refinement problem in
terms of the reachability properties of a timed system. Analyzing the
behavior of a timed automaton means verifying whether the timing
properties it is supposed to verify are satisfied. There are several ver-
ification problems and we have chosen to focus on reachability anal-
ysis. Reachability analysis consists in determining whether or not,
given two states, an execution starting at one state reaches the other
state.
TCTL [1] is a temporal logic usually used to specify properties where
time is introduced explicitly into the syntax. The TCTL formulae are
defined by the following grammar:

f ::= p j x 2 I j :f j f1 _ f2 j 93I f j 83I f

where p 2 P is a basic predicate, x 2 X is a clock and I is a time
interval. Intuitively, 93If means that there is an execution leading
to a state satisfying f at time t 2 I and 83If means that every run
has a state where f holds at time t 2 I .
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Figure 4. Part of the plot evolution modeling expressed as a timed automaton

Let ti and di, be the date and the year of Oi. The refinement algo-
rithm based on prediction and postdiction is now expressed using the
TCTL formulae.

1- Prediction
Initialization:

K0
1 = fs 2 O1 j init ) 93=t1 sg

For all ti, with 2 � i � n,
K0

i = fs 2 Oi j init ) 93=ti
s and

9s0 2 K0
i�1 such that:

(s0 ^ x= ti�1 ^ y=di�1) ) 93 (s ^ x= ti ^ y=di) g
2- Postdiction

Initialization: Kn = K0
n

For all ti with n� 1 � i � 1
Ki = fs 2 K0

i j 9s
0 2 K0

i+1 such that:
(s ^ x= ti ^ y=di) ) 93 (s0 ^ x= ti+1 ^ y=di+1) g

In the prediction step, the first reachability property verifies that each
state s proposed by the observation is consistent, at time ti, according
to its invariant. The second one checks the successibility condition.
Several algorithmic methods for solving this verification problem
have been researched and are supported by tools [6, 10, 15]. To im-
plement the verification of these properties, we have used Kronos
[15].

5 Experimental results

Our approach has been applied to the images of an environmen-
tal project in which the landcover map is a fundamental feature re-
garding water pollution. A sequence of five images (one aerial, one
LANDSAT and three SPOT) is at our disposal. They were taken at
different dates (between April 18 1997 and August 7 1998) on a wa-
tershed near Rennes in France. Each image contains 2124 plots we
aim to classify into ten classes known a priori.

5.1 Preliminary classification

The preliminary classification is a per-plot classification performed
using a traditional classifier called Arkemie. The idea of preliminary

statistical classification was proposed in knowledge-based imagery
interpretation though it was applied to the pixel [7, 14]. The role of
this initial classification is to apply low-level processes to the im-
age. We have chosen a supervised classification which uses samples
from the ground truth to identify the classes [9]. For each plot this
classification provides a probability distribution over classes. In this
approach, we do not consider the ranking value of classes but use a
minimum threshold with a value of 0.1 in order to discard less repre-
sentative classes from the set of plausible classes.

5.2 Classification assessment

It should be remembered that to assess the quality of a result set de-
scribing the plot, two criteria must be taken into account: the number
of classes and the matching with the ground truth if it is available
for the plot. With regard to the first criterion, we have defined three
qualitative kinds of plot:

� Clear plot: the plot is identified by only one class.
� Ambiguous plot: the plot is identified by several classes.
� Non-labeled plot: the plot is not identified (there are classification

difficulties in labeling too small plots).

With regard to the second one, we rely on a ground truth which is
available over about 110 plots, for each image, meaning that for these
plots we already know their real landcover type, thanks to human ob-
servation. We propose a classification performance criterion called
identification rate performed on each image. Let Gi be, for the image
Ii, the set of plots with a ground truth available. jGij is the cardinal
of the set Gi. Let Wi be, for the image Ii, the set of plots, elements
of Gi, which proposes the class given by the ground truth. jWij is the
cardinal of the set Wi. The identification rate �i for the image Ii is
defined by �i = 100: jWi j

jGij
and is used to verify the reliability of the

results. In our experiment we have a dual objective: to increase the
number of clear plots between the results of the preliminary classi-
fication and the results provided by the refinement, and to obtain a
reasonable identification rate.



5.3 Analysis of the results

Table 1 describes the results provided by the preliminary classifica-
tion. The last three columns show the number and the percentage of

Ii �i clear ambiguous non-labeled
plots plots plots

I1 90.91% 1788 84.2% 330 15.5% 6 0.3%
I2 89.29% 1697 79.9% 386 18.2% 41 1.9%
I3 75.68% 796 37.5% 1306 61.5% 22 1%
I4 64.49% 958 45.1% 1161 54.7% 5 0.2%
I5 63.55% 541 25.5% 1583 74.5% 0 0%

Table 1. Preliminary classification results

the three types of plots. Table 2 lists the results after the refinement
of the classification has been applied to the 5 images of the series.

Ii �i clear ambiguous non-labeled
plots plots plots

I1 90.91% 2030 95.6% 88 4.1% 6 0.3%
I2 86.90% 1908 89.8% 175 8.2% 41 1.9%
I3 81.08% 1948 91.8% 154 7.2% 22 1%
I4 69.16% 1813 85.4% 306 14.4% 5 0.2%
I5 75.70% 1594 75% 530 25% 0 0%

Table 2. Refinement of the classification results

The result clearly shows the progression of the number of clear plots
on all images (up to 54:3% for image I3). The identification rate re-
mains reasonable. The interpretation of the results is detailed in [9].
We have conducted another experiment to show the respective con-
tributions of prediction and postdiction. It leads us to make the length
and the first image of the sequence vary. In Table 3, lines represent

I1 I2 I3 I4 I5

I1 - 242 0 0 0
I2 209 - 2 0 0
I3 0 174 - 806 172
I4 0 39 244 - 572
I5 0 28 93 932 -

Table 3. Contribution of prediction and postdiction

the number of new clear plots resulting from the refinement for the
images I1 to I5 and columns I1�I5 represent the contribution of the
images during the prediction and postdiction steps (shown in ordi-
nary and bold type, resp.). If we take image I3, image I2 contributes
174 clear plots in the prediction step, and images I4 and I5 contribute
806 and 172 clear plots respectively in the postdiction step.

6 Conclusion

In this paper, we have proposed refinement of the classification of a
remotely-sensed sequence of images. One distinctive feature of the
method is that it considers the plot as a dynamic system and its evo-
lution is modeled in order to improve the classification. Observations
are derived from the images using a preliminary classification. The
model simulation provides the expected state of the system, which
is matched with the observation in order to propose a better set of
classes for each plot at each date. The general framework is based on
two mechanisms: prediction and postdiction. Timed automata appear
to be the most convenient formalism to model the plot evolution by
taking into account time constraints, uncertainty on transitions, and
cycles. The experiments we have carried out show that the number of
clear plots increases on all images and that the identification rate is
globally better. We intend to validate the method by experimenting it
on another area of study (the Vittel site, France).

Our current work focuses on the integration of probabilities in the
modeling. A new matching operator has been defined to take into ac-
count the probabilistic distributions describing the observation and
the expected data resulting from the simulation of a probabilistic
timed automaton. Finally a decision rule has to be applied to choose
the preferred class for ambiguous plots remaining at the end of the
refinement process. First results obtained from this probabilistic ap-
proach do not seem to improve on the refinement of the classification
proposed in this paper. A parallel may be drawn between this ap-
proach (simulation and matching) and the Generalized Update (GU)
proposed by Boutilier [3] based on a two-step process (prediction and
revision). This approach is also related to work developed to cope
with uncertainty and imprecision of sensor data and based on the
fusion of information from different sources [4, 8, 7]. These meth-
ods successfully discriminate between classes with similar spectral
characteristics but they require a large amount of information and
several images from various sensors at the same date. Our approach
is sensor-independent and relies only on high-level knowledge that is
easy to collect.
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