Verification Programs for Abduction

Paolo Liberatore! and Francesco M. Donin?

Abstract. We callverificationthe process of finding the actual ex- follows:
planation of a given set of manifestations. We consider an abductive)
setting, in which explanations are sets of assumptions. To filter ou8 OL(H, M, T) ={E C H | E'U Tconsistent, and& UT" |= M}

erroneous explanations, a verification program should propose Whiclrg] many cases, not all explanations are equally plausible. It is cus-
assumptions to check. Given the abductive setting of manifestation§ ' '

assumptions, and a theory relating them, we study the complexitfmary to consider exple_matlons conta!nlng the least number of as-
- L - . umptions as the most likely ones. This corresponds to the case in
of providing aminimal setof assumptions to be checked in order

to identify the actual explanation. We study also the case in whicriNh'Ch all assumptions are given the same probability, and assump-

assumptions to be checked are given in a tree-like order.

1 INTRODUCTION

Abduction [8] has been frequently advocated as a process apt to fo

malizediagnosis— i.e., the way reasoning is used when looking for
(a set of possible) causes for some observed manifestations [9, 10,
In a diagnostic setting, we are given a set of manifestatians

observed in the (mal)functioning of a system, a (usually large) set o

assumptiong? that may or may not explaif/, and some relatiof’
linking H to M. In the abductive frameworl; is a theory expressed
in some logic. Sucl’ can be a logical account of how the system
works, or a set of causal relations betwd&and M [5], etc. Usually,

an explanatiorE is a subset of all assumptiofs.

Automated support in diagnosis is helpful for searching and pro

viding some explanatiody. However, in a diagnostic settind; is
needed to decide how take repair Hence, onceZ is given, one
should first check ifF is theactual explanation, i.e. if the assump-

tions in E are true. If not, another explanation must be found and

checked, and so on.

ions are independent. Given an orderitgver the subsets df , the

set of minimal solution§ OL< (H, M, T) of the problem is defined
asmin(SOL(H, M,T), <). In this paper we only refer to the order-
ing based on cardinality, that i&;; < E» ifand only if |[E1| < |Es|.
pince this corresponds to the special case of equal weight/probability
of all assumptions, all of our hardness results carry over to the case

é]f weighted assumptions.

xample 1 Faults in computer networks are usually easy to detect,

ut may be hard to locate
exactly. Let us consider the
layout aside.A, B, C, D,
and E denote some com-
puters connected to this
network. We are logged on
computer A, and see that
neither B nor E are reach-
able, which means that all paths fromto B and fromA to £ con-
tain a faulty link.

This problem can be formalized as an instance of abduction
H,M,T), as follows. Leth; denote the fact that link is faulty,

We believe that automated support to diagnosis should also kee
up with verification— the process of enumerating and discarding
one after the other all possible explanations, till the actual one is iso-

hilem x denotes the unreachability of compuf€rfrom A.

i X X h H {h1,h2, h3, ha, hs, he}
lated. Since we consider explanations to be sets of assumptions, they _
may share assumptions. Therefore, a system should also provide a = {ms,mg}
minimal set of assumptions to check, which, once checked, would T = {-hi— -mc,—h2 — -mc,-hs — -mp,

determinethe actual explanation. We call such a seYexrification
Set-Program Moreover, the system could suggest which assump-
tions should be checked first (e.g. most discriminating ones), to come
as quickly as possible to the right explanation. In this case, assump- Formula T is a set of clauses likeh; — (mx
tions to be checked could arranged iWexification Tree-Program

—|h4 — (mB = mc),

—\h5 — (mc = mD),—'hG — (mD = mE)}

my) corre-
sponding to an edgeé between computek and Y, meaning that

if the link is not fault, then the reachability df is the same as the
reachability ofY". It is not hard to find that there three possible causes
of the problem: 1. links 1, 2, and 3 are fault; 2. links 3, 4, and 5 are
fault; 3. links 3, 4, and 6 are fault. These cases correspond to the
following set of explanations:

1.1 Abduction

An instance of abduction is a triplg?, M, T'), whereH and M are
sets of propositional variables, whilé is a theory (set of proposi-
tional formulae). The set of explanations(df, M, T') is defined as

1 Dipartimento di Informatica e Sistemistica, Univ. di Roma “La Sapienza”, SOL<((H, M,T)) = {{h1, ha, hs}, {hs, ha, hs}, {hs, ha, ho}}

Via Salaria 113, 00198 Roma, Italy. http://www.dis.uniromadiliérato

2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Re
David 200, 00175 Bari, Italy.
http://dee.poliba.it/dee-web/doniniweb/donini.html

There are other possibilities (for instance, all links are faulty); how-
ever, the above three are the ones that presume a minimal number of
faults.

The paper is organized as follows. In the next section, we introduce If we could verify all assumptions, then we would find the real
verification programs. Then in Section 3 we study the complexity ofcause of the manifestations without uncertainty, that is, the set of all
verification programs as sets. In Section 4 we study the impact oissumptions is always a verification set-program. However, verifying
imposing a tree ordering on verification programs. Finally we drawassumptions is a costly task — if it is not, there is no reason for using
some conclusions. For definitions of the complexity classes we us@bduction, as we can directly verify what happened. As a result, what

the reader is referred to [7]. is needed is a verification set-program containing the minimal num-
ber of assumptions to verify. More refined definitions can be given
2 VERIFICATION PROGRAMS (e.g., assigning weights to assumptions), but for now we consider as

measure of optimality the number of assumptions to verify.
An instance of abduction may admit more than one possible expla- In the literature, two special types of assumptions have been stud-
nation. Even using some ordering based on plausibility, it is likelyied: necessary (those belonging to every explanation) and relevant
we end up with more than one (in some cases, exponentially manyjhose in at least one explanation) [3]. Let us now relate set-programs
possible explanations — as the above example shows. The aim ofith the sets of relevant and necessary assumptions. Clearly, non-
verification is to determine which is the actual set of assumptionselevant assumptions are notin any minimal verification set-program.
that causes a given set of manifestations to happen. The same holds for necessary assumptions: a necessary assumption
We assume that we can directly test whether an assumption is tris in every explanation, thus its truth gives no information about
or not. A possible future research is the study of the case in whiclwhich explanation is the right one. The discriminating assumptions
assumptions cannot be directly checked, and results of tests are thee among the relevant, but not necessary, ones.
truth values of complex formulas. In order to decide which explana-
tion is the actual one, we can run a verification program. Theorem 1 The set of relevant and unnecessary assumptions is a
verification set-program.
Definition 1 (Verification Program) A Verification Programis a
process aimed at determining a unique explanation, by checking the However, such a set might not be a minimal verification set-
truth value of some assumptions. program. Let the set of minimal solutions be:

We want to minimize the number of assumptions that have to beSOLj(<H7 M, TY) = {{h1, h2}, {h2,hs}, {hs, ha}, {ho,ha}}

checked during verification. In this paper we consider two possible

ways of formalizing such concept. The first one are verificaseh ~ The set of relevant and unnecessary assumptioj&is. . ., ha}.

programs, which are sets of assumptions that, once checked, allodowever, there is exactly one minimal verification set-program:

for uniquely determining an explanation. The second one are veri{hs, h4}. It is easy to see that, given the value of these two assump-

fication tree-programs, in which we first check an assumption, andtions, we can uniquely determine the actual explanation. It can also

then use its truth value to decide the next assumption to check. be proved that no other set program composed of two assumptions

is a minimal verification set-program. As a result,andhs are not

Example 1 (Cont.) The diagnosis of the computer network still Ieft part of any minimal set-program, while they are both relevant and

us with the problem of establishing which the actual cause of theéot necessary.

problem is. In practice, giving a set of possible explanations is not We remark that if non-minimal explanations are taken into ac-

enough: eventually, the problem should be fixed. In order to accomcount, then the only possible set-program is the set of all non-

plishing this aim, we should first uniquely identify the faults (that is, necessary assumptions.

a single explanation). We show the definition of verification set programs on an example.
This can be obtained by verifying each single link in the network.

However, while checking reachability of computers is easy (can b&xample 1 (Cont.) Let us consider the faulty network again. What

done without moving from the console4, checking links requires is important is the set of explanations, that dfe = {h1, h2, h3},

some time. This means that we should try to perform as few testg, — {h3,ha,hs}, and B3 = {h3, ha, he}. It is not hard to prove

as possible. In this case, checking link 3 is useless, as it is faulty ilthat{hl, hs} is a verification set-program.

all explanations (i.e., it must be faulty). On the other hand, checkingndeed, once checked whether links

links 1, 5, and6 is sufficient to uniquely determine an explanation. and 5 are faulty or not, we can deter}g }65 expl;natlon
Indeed, if linkl is faulty, the explanation i$h1, h2, hs}. If link 5 is mine the explanation as in the table0 1 ES
faulty, the explanation i§hs, ha, hs}, and similarly for the case in The fourth case, in which bothand 5 2
which he is true. The question is: are at least three tests necessanfaulty, is inconsistent with our hypothe-} (1) incofslistent
or would two suffice? sis of minimality of explanations.

In all other cases, given a truth value bf and hs, the explana-
3 VERIFICATION SET-PROGRAMS tion is uniquely determined. As a resuft1, hs} is a verification

set-program. Other minimal verification set programs for the same
Informally, a verification set-program for an instance of abduction isinstance arg{h2, hs}, {h1, he}, and{ha, hs}.
a set of assumption® such that every truth value d? determines
at most one explanation. Hitting sets provide an equivalent definition of verification set-
programs. This formulation is useful because — apart from giving

Definition 2 A verification set-program for an instan¢é, M,T) 3 petter insight — it leads to simpler proofs in some cases. We first
is a subsetP C H such that, for every truth evaluationp recall what is a hitting set.

of the variables inP, there exists at most one explanatiéh €
SOL<({H,M,T)) such that for allh; € P: Definition 3 LetS = {Si,...,Sn} be a family of sets. A sét is
hi € E & op(h;) = true ahitting setof Sif PNS; AP fori =1,...,m.

Note that, in spite of the similarity between verification set-programs = Given a graphG = (N, E), let £ be the following set of explana-
and hitting sets, these two concepts are not exactly the same. Nametions on the set of assumptiofs= N U E.
verification set-programs are not hitting sets of the set of explana-
tions. Indeed, let the set of explanations g1, ha}, {ho, ha}}. & ={{er,e2} [e1,e2 € E}U{{e,n}, {e,m} | e = (n,m) € E}
Th? _onl_y minimal hitting set igh» }, while there are two minimal Lemma 1l If P is a verification set-program fof thenP N N is a
verification set-programs, namefyi; } and{hs}.

L ._vertex cover of5.

Let A be the symmetric difference between two sets, that is,

AAB = A\B U B\A. A verification set-program should distin- | emma 2 If V' is a vertex cover ofs thenV U E is a verification
guish every explanation from every other one. Two explanations arget-program foi€.

distinguished by those assumptions which are in either one, but not

in both of them. Note that the above two lemma® notestablish a one-to-one
correspondence between vertex coversGoaind verification set-
programs off. Indeed, a vertex covér’ may correspond to many
verification set-programs;, P, . .. such that’, " N = V, but with
different elements ofs.

With two reasonable restrictions, we can prove that the correspon-
Proof. Let us assume that intersects any symmetric difference dence between some vertex covers and the corresponding verification
between two explanations. We prove tHatis a verification set- set-programs is one-to-one.
program. Given a truth assignment o¥éwe can determine a unique
explanation by the following algorithm.

Theorem 2 For any given set of explanatiod€, ..., E., }, a set
of assumptionsP is a verification set-program if and only ® is
a hitting set of the family{ E;AE; : i # j}, i.e., for any pair of
explanationst;, E; with < # j, it holds P N (E;AE;) # 0.

Lemma 3 If V is a vertex cover for a grapliy = (N, E) with no
isolated vertex andN\V| > 2, then for everyt’ C E,V U E’ is
P=FE: not a verification set-program faf.

foreach:in {2,...,m} do:
v is an assumption iV N (PAE;)
(this set is nonempty by assumption);
the truth value ob allows ruling out one explanation
betweenP and E;: set P to the remaining one.
returnp Theorem 3 Let G = (N, F) be a graph with no isolated vertex,
whose minimal vertex covers contain at madgt — 2 nodes. Thef’

In other words, we proceed by comparing pairs of explanationsis a minimal vertex cover & if and only if P = V U E is a minimal
SinceV intersects any symmetric difference between two explanaverification set-program fo€.
tions, a truth evaluation over the variablesiimallows for choosing
an explanation in any pair. Namely,ifis in P, then if it is assigned ~ Proof. We divide the proof in two parts.
to true thenFE; is ruled out. If it is false therd® can be removed. The
converse holds if is in E;.

We now prove that, if there is a pair of explanatidfisand E;
such thatPn(E;AE;) = 0, thenP is not a verification set-program.
Let us consider the truth assignment that maps each variatstenin
E; N E; into true, and any other variable iR into false. BothE;
and E; are compatible with this assignment, since all elemenf3 of
that are inF; or in E; are mapped to true, and no variable appearing”
only in £ orin Es is in P. As a result,P is not a verification set-
program. O

In other words, removing elements Bffrom V' U E, one loses the
verification set-program property.

In this case, we are able to prove that minimal vertex covers cor-
respond to minimal verification set-programs.

1. If V is a vertex cover therP is a verification set-program by
Lemma 2. IfV is also a minimal vertex cover, then ¢ C V
can be a vertex cover. As aresultAf = V' U E, thenP’ is not a
verification set-program faf by Lemma 3. What is left to prove
is thatP’ = V U E’ is not a verification set-program for every
E’ C E. This is a consequence of Lemma 3.

If P is a verification set-program the N NV is a vertex cover,
andP N E = E. If no subset ofP is a verification set-program
for £ then no subset df is a vertex cover.

This theorem is useful because it gives a characterization of veri- W& can then conclude that there is a one-to-one correspondence

fication set-programs that is not based on truth assignments and doB&tween minimal vertex covers 6 and minimal verification set

not involve determining a unique element, but is only based on comPrograms ot’. U

parisons between sets. The assumption thé&t does not contain isolated nodes and that has
a vertex cover composed of at moat| — 2 nodes does not change

Let us consider the computational complexity of determining athe complexity of the vertex cover problem.

minimal verification set-program. A simple idea could be just enu-

merating all minimal explanations, and then, using Theorem 2, findTheorem 4 Given an integek and a set of explanatior deciding

ing a hitting set of the symmetric differences of all pairs of explana-Whether there exists a verification set-program with no more than

tions. Of course, this might be an overkill if the complexity of finding assumptions fof is NP complete.

a minimal verification set-program were less than the one of hlttlngP 00f. Membership in NP is proved by Theorem 2, which shows

sets. Hence, we first consider the easiest case — which is almost not. . e .
a reduction from verification set-programs to hitting sets. Hardness

even related to abduction — in which we are given explicitly the set ; .

of explanations, is p_r_ove_d by Theorem 3, showing a reduction from vertex covers to
In order to determine the complexity of finding minimal verifica- verification set-programs. U

tion set-programs, we employ a reduction from the problem of find- The complexity of finding a minimal verification set-program can

ing a minimal vertex cover of a graph. The following lemmas showbe proved in the same manner, still assuming that the set of explana-

that such a reduction is possible. tions are given exhaustively.

Theorem 5 Given a set of explanatiors finding a minimal verifi- Example 1 (Cont.) A unique explanation for the computer network
cation set-program fo€ is FA%[log n] complete. can be determined using verification tree-programs. Let us represent
trees using the parenthetic notation, assuming that the left subtree is
The analysis of the case whé&his a Horn theory shows an in- the one in which the root is assignedfaise. The tree(hi (hs)())
crease of complexity w.r.t. the case in which explanations are givefs a verification tree program for that instance. Indeedifis false,
exhaustively. We summarize the results we proved. we have to checks, and the explanation is eithef, or E3, de-
pending on the result of this test.Af is true, we conclude that the

Theorem 6 The complexity of the following problems, whErs a €Xplanation isk; .
Horn theory, is:
checking whether a sét is a verification set-program:
AP[log n]-complete;
existence of a verification set-program composed of at mast
sumptions A% [log n]-hard, in3?;
finding a minimal verification set-program: in/s;.

It can be proved that the depth of minimal verification tree-
programs may be less than the size of minimal verification set-
programs, which means that using tree-programs instead of set-
programs we always test less assumptions.

Let H = {h1,..., ha,} be a set of assumptions. We consider the
following set of explanations, all of cardinality.

4 TREE_PROGRAMS g:{{hl,...,hi,hn+i+1,...,h2n}|0SiSn}

o)]) In other words, for any we have an explanatiol; composed of
Even minimal set-programs may in some case require testing aspe first; assumptiond . . ., h:, while the othem — i ones are the
sumptions that are not really useful to the extent of uniquely deterp;; assumptions

mining the real explanation. For instance let the explanantions be
{{h1, h2}, {h2, hs}, {h1, hs}}. A minimal verification set-program Lemma 4 The minimal verification set-programs &fhave sizer.
is {h1, h2}. Indeed, the

nditly -y R2n.

explanation can be determined . Proof. Clearly,{hu, ..., h,} is a verification set-program fet. Let
from the value ofh; and hy as— h: __explanation us now prove that no verification set-program can contain lessthan
shown in the table. Given thedise false none assumptions. Assume, by contradiction, tiais a verification set-
value ofh; andhs, it is possible false true {h2, hs} program, and thatP| < n. A consequence of this assumption is
to determine a single explanation!' /€ false {hi,hs} that there exists an indexsuch thath;, h,+; ¢ P. Consider the
The fact that{h, ko } true true {h1, ha} following pair of explanations.

is a minimal set-program is due to the fact that there are three mini-
; ; i Eiov = {h1,...;hic1,hnti, .. hon}
mal explanations, while set-programs composed of only one variable
have only two possible truth assignment. E; = A{h1,..., hishngigr, .. han}
Verifying two assumptions we can uniquely determine the expla- It holds Ei_ s AE: = {hs, hnss}. Since neitheh; nor . is in

nation. However, there is a case in which one assumption only i§3 . -
N . ,itfollows that(E;_1 AE;)NP = (), thus contradicting Theorem 2
enough. Let for instance assume that we chieckrst and therh,. (B) 0 9

N R i . ifi I - i |
If hy is true, thenhs is needed to determine the explanation. How- for verification set-programs
ever, ifh, is false, we already know that the explanatioffs, h3 } On the other hand, there are verification tree-programg foav-
without checking the value df,. ing a logarithmic depth.

The idea of verification tree-programs is that assumptions are ver-) L
ified in some order, and the next choice may depend on the resuftmmas The tree (hn/z(hnsa -)(hansa--.)) is @ verification
of the previous tests. For instance, we may chiecfirst, and then, tree-program fore.
if h1 = true we tesths, otherwise we teshs. We can represent
such programs with trees whose nodes are labeled with the verifi
assumptions.

This pair of lemmas prove that the size of verification set-programs
er‘i’1ay be exponentially larger than the depth of the optimal verification
tree-programs.

Definition 4 A tree-programis a binary tree whose nodes are la- Corollary 7 There are sets of explanations for which the size of all
beled with assumptions, and edges are labeled with or false, verification set-programs is exponentially larger than the depth of its
such that, for each path from the root to a leaf, no assumption apoptimal verification tree-programs.

pears twice, and the outgoing edges of a node have different labels.)
Finally, we note that, even for very simple theoriEsthe number

As a result, the leaves of a tree-program are associated to partigr exp!anations may pe exponentially Igrge, which_implies that the
interpretations over the alphabet of assumptions. If such interpretégtall sizeof a verification wee-program is exponential (diepthis

tions allow one to determine unique explanations, then we have 8f$_?1ur?e ??Entdfd by the number ofsssumptldﬂ?. i ¢ al
verification tree-program. e fact that tree-programs may be exponential is not always a

problem. What we want is the right explanation of a given set of

o A . . . manifestations, and this can be done iteratively as follows:
Definition 5 A verification tree-prograris a tree-program in which Y

the truth value of the assumptions in each leaf allows identifying exwhile there is more than one explanatido:

actly one explanation. find an assumption that is the root of a
minimal verification tree-program;
Minimal tree-programs are tree-programs having minimal depth. verify whether this assumption is true or false;

A tree-program is a decision tree [4] on the set of explanations. setthe value of the assumption

Let us now consider the complexity of problems related to veri-polynomial-space algorithm, and intractability results when the the-
fication tree-programs. In the case in which explanations are giveonry contains just direct implications between assumptions and man-
explicitly (that is, the input of the problem is a set of explanations),ifestations. An impact of our results is that it is now possible to use
verification tree-programs are binary decision trees. Hence, decidingustom algorithms and techniques for, e.g. vertex cover, to decide
whether there exists a verification tree-program of a given depth ishe tests to be performed in looking for an explanation. For more
NP-complete [4]. complex problems, like finding the root of an optimal tree-program,

In the case in which the input is a real abduction instancetechniques for solving general PSPACE problems can be used [1].
(H, M, T), what makes the problem complex is that even minimalWe are now considering special cases in which providing verification
tree-programs may be exponentially large. Let us for example conprograms could be simpler. However, high complexity in computing
sider the problem of finding the root of an optimal tree-program.a verification program might not be a problem, if we assume that it
Guessing a verification tree-program with a given assumption as roatan be computed off-line.
does not work, since it requires guessing a tree that may be exponen-Finally, let us relate our work with that of Mcllraith [6], who in-
tially large. Given this premise, the upper bound we proved may lookroduced a framework in which abduction is used for finding tests
surprisingly simple. in model-based diagnosis. There are three main differences between

our definitions and hers. First, while we give a set of definitions of
Theorem 8 Let (H, M, T) be an instance of abduction, whefeis the tests needed to find the correct explanation for an instance of
a propositional theory. Deciding whether an assumption is the rootabduction, Mcllraith starts from an instance of a model-based di-
of an optimal verification tree-program f&#OL< ((H, M, T)) is in agnosis, and uses abduction as a technical tool for finding the set
PSPACE of tests needed to identify the problem. As such, our framework is

suited for problems that can be formalized as abduction, while hers

Note that no condition oveF is assumed, that ig can be any is useful for problems that can be encoded in a model-based diag-
formula (even a non-Horn one). The same upper bound holds fonosis framework. Second, Mcllraith does not consider the minimal
the related problems of deciding whether there exist verification treenumber of tests to perform in finding the actual diagnosis, nor the
programs of depth or less, and to actually find the root of an optimal way tests are performed (unordered vs. ordered, as our set-programs
verification tree-program. and tree-programs): her definition of “minimal” set of test is based

Regarding hardness, we show two results. The first one refers to@n local minimality, that is, irredundance (a set of tests is minimal
very simple form for theory", while the second one is about Horn if no test can be neglected from the set). Third, the way in which
theories. test themselves are formalized is different: intuitively, our checks on

assumptions would be rephrased in her notatiof{&sh), i.e. tests
Theorem 9 Deciding whether there exists a verification tree- with no achievables.
program for a given instance of abductid#/, M, T) whose depth
is k or less, isNP-hard. This result holds evenif is a conjunction
of implications of the fornk — m, whereh € H andm € M. ACKNOWLEDGMENTS

The authors thank the referees for their comments. This work has

A slightly stronger result can be given for the case in whits been partially supported by CNR.
assumed to be in Horn form.

REFERENCES
(1]

Theorem 10 Deciding whether there exist a verification tree-
program for a given instance of abductig#/, M, T') whose depth
is k or less, isA%[log n]-hard. This result holds even’ff is a Horn
theory.

M. Cadoli, A. Giovanardi, and M. Schaerf, ‘An algorithm to evaluate
quantified boolean formulae’, iRroc. of AAAI'98 pp. 262—-267. AAAI
Press/The MIT Press, (1998).

L. Console and G. Friedrich, edsModel-based DiagnosisAnn. of
Mathematics and Artificial Intelligence, 1994.

T. Eiter and G. Gottlob, ‘The complexity of logic-based abductian’,
of the ACM 42(1), 3-42, (1995).

(2]
(3]

5 DISCUSSION
(4]

In this paper we investigated verification, which is the process for
uniquely determine the explanation of a given set of manifestations[5]
in an abductive framework. We considered verification programs, to

) i) 6]
be accomplished by checking the truth of assumptions of candldaté
minimal explanations. We considered verification set-programs (no[7]
hint on which assumptions are to be checked first) and verification
tree-programs (a tree tells which assumption to check next, depend$]
ing on the result of the last check). Verification tree-programs are the[g]
natural extension of decision trees to find the right explanation in a
diagnostic setting. Since verification tree-programs can have exp@to]
nential size, it makes sense to study verification set-programs, which
have size always less than or equal to the total number of assump-
tions. We showed the complexity of finding an optimal verification
set-program for the cases in which explanations are explicitly enu-
merated, and found close upper and lower complexity bounds for
the case in which the abductive theory is Horn. We also studied
the case for verification tree-programs, for which we gave a general

L. Hyafil and R. Rivest, ‘Constructing optimal binary decision trees is
NP-complete.’Jnformation Processing Letters(1), 15-17, (1976).
K. Konolige, ‘Using default and causal reasoning in diagnogish. of
Mathematics and Artificial Intelligencél, (1994).

S. Mcllraith, ‘Generating tests using abduction’ Rmoc. of KR'94 pp.
449-460, (1994).

C. H. Papadimitriou,Computational ComplexityAddison Wesley,
Reading, MA, 1994.

C. S. Peirce, ‘Abduction and induction’, iRhilosophical Writings of
Peirce ed., J. Buchler, chapter 11, Dover, New York, (1955).

Y. Peng and J. Reggia, ‘Plausibility of diagnostic hypothesisRiac.
of AAAI'86, pp. 140145, (1986).

R. Reiter, ‘A theory of diagnosis from first principlegrtificial Intel-
ligence 32, 57-96, (1987).

