
Verification Programs for Abduction
Paolo Liberatore1 and Francesco M. Donini2

Abstract. We callverificationthe process of finding the actual ex-
planation of a given set of manifestations. We consider an abductive
setting, in which explanations are sets of assumptions. To filter out
erroneous explanations, a verification program should propose which
assumptions to check. Given the abductive setting of manifestations,
assumptions, and a theory relating them, we study the complexity
of providing aminimal setof assumptions to be checked in order
to identify the actual explanation. We study also the case in which
assumptions to be checked are given in a tree-like order.

1 INTRODUCTION

Abduction [8] has been frequently advocated as a process apt to for-
malizediagnosis— i.e., the way reasoning is used when looking for
(a set of possible) causes for some observed manifestations [9, 10, 2].

In a diagnostic setting, we are given a set of manifestationsM
observed in the (mal)functioning of a system, a (usually large) set of
assumptionsH that may or may not explainM , and some relationT
linking H to M . In the abductive framework,T is a theory expressed
in some logic. SuchT can be a logical account of how the system
works, or a set of causal relations betweenH andM [5], etc. Usually,
an explanationE is a subset of all assumptionsH.

Automated support in diagnosis is helpful for searching and pro-
viding some explanationE. However, in a diagnostic setting,E is
needed to decide how totake repair. Hence, onceE is given, one
should first check ifE is theactualexplanation, i.e. if the assump-
tions in E are true. If not, another explanation must be found and
checked, and so on.

We believe that automated support to diagnosis should also keep
up with verification — the process of enumerating and discarding
one after the other all possible explanations, till the actual one is iso-
lated. Since we consider explanations to be sets of assumptions, they
may share assumptions. Therefore, a system should also provide a
minimal set of assumptions to check, which, once checked, would
determinethe actual explanation. We call such a set aVerification
Set-Program. Moreover, the system could suggest which assump-
tions should be checked first (e.g. most discriminating ones), to come
as quickly as possible to the right explanation. In this case, assump-
tions to be checked could arranged in aVerification Tree-Program.

1.1 Abduction

An instance of abduction is a triple〈H, M, T 〉, whereH andM are
sets of propositional variables, whileT is a theory (set of proposi-
tional formulae). The set of explanations of〈H, M, T 〉 is defined as

1 Dipartimento di Informatica e Sistemistica, Univ. di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy. http://www.dis.uniroma1.it/˜liberato

2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Re
David 200, 00175 Bari, Italy.
http://dee.poliba.it/dee-web/doniniweb/donini.html

follows:

SOL(H, M, T) = {E ⊆ H | E ∪ Tconsistent, andE ∪ T |= M}

In many cases, not all explanations are equally plausible. It is cus-
tomary to consider explanations containing the least number of as-
sumptions as the most likely ones. This corresponds to the case in
which all assumptions are given the same probability, and assump-
tions are independent. Given an ordering� over the subsets ofH, the
set of minimal solutionsSOL�(H, M, T) of the problem is defined
asmin(SOL(H, M, T),�). In this paper we only refer to the order-
ing based on cardinality, that is,E1 � E2 if and only if |E1| ≤ |E2|.
Since this corresponds to the special case of equal weight/probability
of all assumptions, all of our hardness results carry over to the case
of weighted assumptions.

Example 1 Faults in computer networks are usually easy to detect,
but may be hard to locate
exactly. Let us consider the
layout aside.A, B, C, D,
and E denote some com-
puters connected to this
network. We are logged on
computerA, and see that
neitherB nor E are reach-

1

2

3

4

5

6
A

B

C D

E

able, which means that all paths fromA to B and fromA to E con-
tain a faulty link.

This problem can be formalized as an instance of abduction
〈H, M, T 〉, as follows. Lethi denote the fact that linki is faulty,
whilemX denotes the unreachability of computerX fromA.

H = {h1, h2, h3, h4, h5, h6}
M = {mB , mE}
T = {¬h1 → ¬mC ,¬h2 → ¬mC ,¬h3 → ¬mB ,

¬h4 → (mB ≡ mC),

¬h5 → (mC ≡ mD),¬h6 → (mD ≡ mE)}

Formula T is a set of clauses like¬hi → (mX ≡ mY) corre-
sponding to an edgei between computerX and Y , meaning that
if the link is not fault, then the reachability ofX is the same as the
reachability ofY . It is not hard to find that there three possible causes
of the problem: 1. links 1, 2, and 3 are fault; 2. links 3, 4, and 5 are
fault; 3. links 3, 4, and 6 are fault. These cases correspond to the
following set of explanations:

SOL�(〈H, M, T 〉) = {{h1, h2, h3}, {h3, h4, h5}, {h3, h4, h6}}

There are other possibilities (for instance, all links are faulty); how-
ever, the above three are the ones that presume a minimal number of
faults.

The paper is organized as follows. In the next section, we introduce
verification programs. Then in Section 3 we study the complexity of
verification programs as sets. In Section 4 we study the impact of
imposing a tree ordering on verification programs. Finally we draw
some conclusions. For definitions of the complexity classes we use,
the reader is referred to [7].

2 VERIFICATION PROGRAMS

An instance of abduction may admit more than one possible expla-
nation. Even using some ordering based on plausibility, it is likely
we end up with more than one (in some cases, exponentially many)
possible explanations — as the above example shows. The aim of
verification is to determine which is the actual set of assumptions
that causes a given set of manifestations to happen.

We assume that we can directly test whether an assumption is true
or not. A possible future research is the study of the case in which
assumptions cannot be directly checked, and results of tests are the
truth values of complex formulas. In order to decide which explana-
tion is the actual one, we can run a verification program.

Definition 1 (Verification Program) A Verification Programis a
process aimed at determining a unique explanation, by checking the
truth value of some assumptions.

We want to minimize the number of assumptions that have to be
checked during verification. In this paper we consider two possible
ways of formalizing such concept. The first one are verificationset-
programs, which are sets of assumptions that, once checked, allow
for uniquely determining an explanation. The second one are veri-
fication tree-programs, in which we first check an assumption, and
then use its truth value to decide the next assumption to check.

Example 1 (Cont.) The diagnosis of the computer network still left
us with the problem of establishing which the actual cause of the
problem is. In practice, giving a set of possible explanations is not
enough: eventually, the problem should be fixed. In order to accom-
plishing this aim, we should first uniquely identify the faults (that is,
a single explanation).

This can be obtained by verifying each single link in the network.
However, while checking reachability of computers is easy (can be
done without moving from the console ofA), checking links requires
some time. This means that we should try to perform as few tests
as possible. In this case, checking link 3 is useless, as it is faulty in
all explanations (i.e., it must be faulty). On the other hand, checking
links 1, 5, and6 is sufficient to uniquely determine an explanation.
Indeed, if link1 is faulty, the explanation is{h1, h2, h3}. If link 5 is
faulty, the explanation is{h3, h4, h5}, and similarly for the case in
whichh6 is true. The question is: are at least three tests necessary,
or would two suffice?

3 VERIFICATION SET-PROGRAMS

Informally, a verification set-program for an instance of abduction is
a set of assumptionsP such that every truth value ofP determines
at most one explanation.

Definition 2 A verification set-program for an instance〈H, M, T 〉
is a subsetP ⊆ H such that, for every truth evaluationσP

of the variables inP , there exists at most one explanationE ∈
SOL�(〈H, M, T 〉) such that for allhi ∈ P :

hi ∈ E ⇔ σP (hi) = true

If we could verify all assumptions, then we would find the real
cause of the manifestations without uncertainty, that is, the set of all
assumptions is always a verification set-program. However, verifying
assumptions is a costly task — if it is not, there is no reason for using
abduction, as we can directly verify what happened. As a result, what
is needed is a verification set-program containing the minimal num-
ber of assumptions to verify. More refined definitions can be given
(e.g., assigning weights to assumptions), but for now we consider as
measure of optimality the number of assumptions to verify.

In the literature, two special types of assumptions have been stud-
ied: necessary (those belonging to every explanation) and relevant
(those in at least one explanation) [3]. Let us now relate set-programs
with the sets of relevant and necessary assumptions. Clearly, non-
relevant assumptions are not in any minimal verification set-program.
The same holds for necessary assumptions: a necessary assumption
is in every explanation, thus its truth gives no information about
which explanation is the right one. The discriminating assumptions
are among the relevant, but not necessary, ones.

Theorem 1 The set of relevant and unnecessary assumptions is a
verification set-program.

However, such a set might not be a minimal verification set-
program. Let the set of minimal solutions be:

SOL�(〈H, M, T 〉) = {{h1, h2}, {h2, h3}, {h3, h4}, {h2, h4}}

The set of relevant and unnecessary assumptions is{h1, . . . , h4}.
However, there is exactly one minimal verification set-program:
{h3, h4}. It is easy to see that, given the value of these two assump-
tions, we can uniquely determine the actual explanation. It can also
be proved that no other set program composed of two assumptions
is a minimal verification set-program. As a result,h1 andh2 are not
part of any minimal set-program, while they are both relevant and
not necessary.

We remark that if non-minimal explanations are taken into ac-
count, then the only possible set-program is the set of all non-
necessary assumptions.

We show the definition of verification set programs on an example.

Example 1 (Cont.) Let us consider the faulty network again. What
is important is the set of explanations, that areE1 = {h1, h2, h3},
E2 = {h3, h4, h5}, andE3 = {h3, h4, h6}. It is not hard to prove
that{h1, h5} is a verification set-program.
Indeed, once checked whether links1
and 5 are faulty or not, we can deter-
mine the explanation as in the table.
The fourth case, in which both1 and5
faulty, is inconsistent with our hypothe-
sis of minimality of explanations.

h1 h5 explanation
0 0 E3

0 1 E2

1 0 E1

1 1 inconsistent

In all other cases, given a truth value ofh1 andh5, the explana-
tion is uniquely determined. As a result,{h1, h5} is a verification
set-program. Other minimal verification set programs for the same
instance are{h2, h5}, {h1, h6}, and{h2, h6}.

Hitting sets provide an equivalent definition of verification set-
programs. This formulation is useful because — apart from giving
a better insight — it leads to simpler proofs in some cases. We first
recall what is a hitting set.

Definition 3 LetS = {S1, . . . , Sm} be a family of sets. A setP is
a hitting setof S if P ∩ Si 6= ∅ for i = 1, . . . , m.

Note that, in spite of the similarity between verification set-programs
and hitting sets, these two concepts are not exactly the same. Namely,
verification set-programs are not hitting sets of the set of explana-
tions. Indeed, let the set of explanations be{{h1, h2}, {h2, h3}}.
The only minimal hitting set is{h2}, while there are two minimal
verification set-programs, namely{h1} and{h3}.

Let ∆ be the symmetric difference between two sets, that is,
A∆B = A\B ∪ B\A. A verification set-program should distin-
guish every explanation from every other one. Two explanations are
distinguished by those assumptions which are in either one, but not
in both of them.

Theorem 2 For any given set of explanations{E1, . . . , Em}, a set
of assumptionsP is a verification set-program if and only ifP is
a hitting set of the family{Ei∆Ej : i 6= j}, i.e., for any pair of
explanationsEi, Ej with i 6= j, it holdsP ∩ (Ei∆Ej) 6= ∅.

Proof. Let us assume thatV intersects any symmetric difference
between two explanations. We prove thatV is a verification set-
program. Given a truth assignment overV we can determine a unique
explanation by the following algorithm.

P = E1;
for each i in {2, . . . , m} do:

v is an assumption inV ∩ (P∆Ei)
(this set is nonempty by assumption);

the truth value ofv allows ruling out one explanation
betweenP and Ei: set P to the remaining one.

returnP

In other words, we proceed by comparing pairs of explanations.
SinceV intersects any symmetric difference between two explana-
tions, a truth evaluation over the variables inV allows for choosing
an explanation in any pair. Namely, ifv is in P , then if it is assigned
to true thenEi is ruled out. If it is false thenP can be removed. The
converse holds ifv is in Ei.

We now prove that, if there is a pair of explanationsEi andEj

such thatP∩(Ei∆Ej) = ∅, thenP is not a verification set-program.
Let us consider the truth assignment that maps each variable inP ∩
Ei ∩ Ej into true, and any other variable inP into false. BothEi

andEj are compatible with this assignment, since all elements ofP
that are inEi or in Ej are mapped to true, and no variable appearing
only in E1 or in E2 is in P . As a result,P is not a verification set-
program.

This theorem is useful because it gives a characterization of veri-
fication set-programs that is not based on truth assignments and does
not involve determining a unique element, but is only based on com-
parisons between sets.

Let us consider the computational complexity of determining a
minimal verification set-program. A simple idea could be just enu-
merating all minimal explanations, and then, using Theorem 2, find-
ing a hitting set of the symmetric differences of all pairs of explana-
tions. Of course, this might be an overkill if the complexity of finding
a minimal verification set-program were less than the one of hitting
sets. Hence, we first consider the easiest case — which is almost not
even related to abduction — in which we are given explicitly the set
of explanations.

In order to determine the complexity of finding minimal verifica-
tion set-programs, we employ a reduction from the problem of find-
ing a minimal vertex cover of a graph. The following lemmas show
that such a reduction is possible.

Given a graphG = (N, E), let E be the following set of explana-
tions on the set of assumptionsH = N ∪ E.

E = {{e1, e2} | e1, e2 ∈ E} ∪ {{e, n}, {e, m} | e = (n, m) ∈ E}

Lemma 1 If P is a verification set-program forE thenP ∩ N is a
vertex cover ofG.

Lemma 2 If V is a vertex cover ofG thenV ∪ E is a verification
set-program forE .

Note that the above two lemmasdo not establish a one-to-one
correspondence between vertex covers ofG and verification set-
programs ofE . Indeed, a vertex coverV may correspond to many
verification set-programsP1, P2, . . . such thatPi∩N = V , but with
different elements ofE.

With two reasonable restrictions, we can prove that the correspon-
dence between some vertex covers and the corresponding verification
set-programs is one-to-one.

Lemma 3 If V is a vertex cover for a graphG = (N, E) with no
isolated vertex and|N\V | ≥ 2, then for everyE′ ⊂ E, V ∪ E′ is
not a verification set-program forE .

In other words, removing elements ofE from V ∪ E, one loses the
verification set-program property.

In this case, we are able to prove that minimal vertex covers cor-
respond to minimal verification set-programs.

Theorem 3 Let G = (N, E) be a graph with no isolated vertex,
whose minimal vertex covers contain at most|N |− 2 nodes. ThenV
is a minimal vertex cover ofG if and only ifP = V ∪E is a minimal
verification set-program forE .

Proof. We divide the proof in two parts.

1. If V is a vertex cover thenP is a verification set-program by
Lemma 2. IfV is also a minimal vertex cover, then noV ′ ⊂ V
can be a vertex cover. As a result, ifP ′ = V ′∪E, thenP ′ is not a
verification set-program forE by Lemma 3. What is left to prove
is thatP ′ = V ∪ E′ is not a verification set-program for every
E′ ⊂ E. This is a consequence of Lemma 3.

2. If P is a verification set-program thenP ∩ N is a vertex cover,
andP ∩ E = E. If no subset ofP is a verification set-program
for E then no subset ofV is a vertex cover.

We can then conclude that there is a one-to-one correspondence
between minimal vertex covers ofG and minimal verification set
programs ofE .

The assumption thatG does not contain isolated nodes and that has
a vertex cover composed of at most|N | − 2 nodes does not change
the complexity of the vertex cover problem.

Theorem 4 Given an integerk and a set of explanationsE , deciding
whether there exists a verification set-program with no more thank
assumptions forE is NPcomplete.

Proof. Membership in NP is proved by Theorem 2, which shows
a reduction from verification set-programs to hitting sets. Hardness
is proved by Theorem 3, showing a reduction from vertex covers to
verification set-programs.

The complexity of finding a minimal verification set-program can
be proved in the same manner, still assuming that the set of explana-
tions are given exhaustively.

Theorem 5 Given a set of explanationsE , finding a minimal verifi-
cation set-program forE is F∆p

2[log n] complete.

The analysis of the case whenT is a Horn theory shows an in-
crease of complexity w.r.t. the case in which explanations are given
exhaustively. We summarize the results we proved.

Theorem 6 The complexity of the following problems, whenT is a
Horn theory, is:
checking whether a setP is a verification set-program:

∆p
2[log n]-complete;

existence of a verification set-program composed of at mostt as-
sumptions:∆p

2[log n]-hard, inΣp
2;

finding a minimal verification set-program: in F∆p
3.

4 TREE-PROGRAMS

Even minimal set-programs may in some case require testing as-
sumptions that are not really useful to the extent of uniquely deter-
mining the real explanation. For instance let the explanantions be
{{h1, h2}, {h2, h3}, {h1, h3}}. A minimal verification set-program
is {h1, h2}. Indeed, the
explanation can be determined
from the value ofh1 and h2 as
shown in the table. Given the
value ofh1 andh2, it is possible
to determine a single explanation.
The fact that{h1, h2}

h1 h2 explanation
false false none
false true {h2, h3}
true false {h1, h3}
true true {h1, h2}

is a minimal set-program is due to the fact that there are three mini-
mal explanations, while set-programs composed of only one variable
have only two possible truth assignment.

Verifying two assumptions we can uniquely determine the expla-
nation. However, there is a case in which one assumption only is
enough. Let for instance assume that we checkh1 first and thenh2.
If h1 is true, thenh2 is needed to determine the explanation. How-
ever, ifh1 is false, we already know that the explanation is{h2, h3}
without checking the value ofh2.

The idea of verification tree-programs is that assumptions are ver-
ified in some order, and the next choice may depend on the result
of the previous tests. For instance, we may checkh1 first, and then,
if h1 = true we testh2, otherwise we testh3. We can represent
such programs with trees whose nodes are labeled with the verified
assumptions.

Definition 4 A tree-programis a binary tree whose nodes are la-
beled with assumptions, and edges are labeled withtrue or false,
such that, for each path from the root to a leaf, no assumption ap-
pears twice, and the outgoing edges of a node have different labels.

As a result, the leaves of a tree-program are associated to partial
interpretations over the alphabet of assumptions. If such interpreta-
tions allow one to determine unique explanations, then we have a
verification tree-program.

Definition 5 A verification tree-programis a tree-program in which
the truth value of the assumptions in each leaf allows identifying ex-
actly one explanation.

Minimal tree-programs are tree-programs having minimal depth.
A tree-program is a decision tree [4] on the set of explanations.

Example 1 (Cont.) A unique explanation for the computer network
can be determined using verification tree-programs. Let us represent
trees using the parenthetic notation, assuming that the left subtree is
the one in which the root is assigned tofalse. The tree(h1(h5)())
is a verification tree program for that instance. Indeed, ifh1 is false,
we have to checkh5, and the explanation is eitherE2 or E3, de-
pending on the result of this test. Ifh1 is true, we conclude that the
explanation isE1.

It can be proved that the depth of minimal verification tree-
programs may be less than the size of minimal verification set-
programs, which means that using tree-programs instead of set-
programs we always test less assumptions.

Let H = {h1, . . . , h2n} be a set of assumptions. We consider the
following set of explanations, all of cardinalityn.

E =
{

{h1, . . . , hi, hn+i+1, . . . , h2n} | 0 ≤ i ≤ n
}

In other words, for anyi we have an explanationEi composed of
the firsti assumptionsh1, . . . , hi, while the othern− i ones are the
last assumptionshn+i+1, . . . , h2n.

Lemma 4 The minimal verification set-programs ofE have sizen.

Proof. Clearly,{h1, . . . , hn} is a verification set-program forE . Let
us now prove that no verification set-program can contain less thann
assumptions. Assume, by contradiction, thatP is a verification set-
program, and that|P | < n. A consequence of this assumption is
that there exists an indexi such thathi, hn+i 6∈ P . Consider the
following pair of explanations.

Ei−1 = {h1, . . . , hi−1, hn+i, . . . , h2n}
Ei = {h1, . . . , hi, hn+i+1, . . . , h2n}

It holdsEi−1∆Ei = {hi, hn+i}. Since neitherhi nor hn+i is in
P , it follows that(Ei−1∆Ei)∩P = ∅, thus contradicting Theorem 2
for verification set-programs.

On the other hand, there are verification tree-programs forE hav-
ing a logarithmic depth.

Lemma 5 The tree(hn/2(hn/4 . . .)(h3n/4 . . .)) is a verification
tree-program forE .

This pair of lemmas prove that the size of verification set-programs
may be exponentially larger than the depth of the optimal verification
tree-programs.

Corollary 7 There are sets of explanations for which the size of all
verification set-programs is exponentially larger than the depth of its
optimal verification tree-programs.

Finally, we note that, even for very simple theoriesT , the number
of explanations may be exponentially large, which implies that the
total sizeof a verification tree-program is exponential (thedepthis
of course bounded by the number of assumptions|H|).

The fact that tree-programs may be exponential is not always a
problem. What we want is the right explanation of a given set of
manifestations, and this can be done iteratively as follows:

while there is more than one explanationdo:
find an assumption that is the root of a

minimal verification tree-program;
verify whether this assumption is true or false;
setthe value of the assumption inT

Let us now consider the complexity of problems related to veri-
fication tree-programs. In the case in which explanations are given
explicitly (that is, the input of the problem is a set of explanations),
verification tree-programs are binary decision trees. Hence, deciding
whether there exists a verification tree-program of a given depth is
NP-complete [4].

In the case in which the input is a real abduction instance
〈H, M, T 〉, what makes the problem complex is that even minimal
tree-programs may be exponentially large. Let us for example con-
sider the problem of finding the root of an optimal tree-program.
Guessing a verification tree-program with a given assumption as root
does not work, since it requires guessing a tree that may be exponen-
tially large. Given this premise, the upper bound we proved may look
surprisingly simple.

Theorem 8 Let 〈H, M, T 〉 be an instance of abduction, whereT is
a propositional theory. Deciding whether an assumption is the root
of an optimal verification tree-program forSOL�(〈H, M, T 〉) is in
PSPACE.

Note that no condition overT is assumed, that is,T can be any
formula (even a non-Horn one). The same upper bound holds for
the related problems of deciding whether there exist verification tree-
programs of depthk or less, and to actually find the root of an optimal
verification tree-program.

Regarding hardness, we show two results. The first one refers to a
very simple form for theoryT , while the second one is about Horn
theories.

Theorem 9 Deciding whether there exists a verification tree-
program for a given instance of abduction〈H, M, T 〉 whose depth
is k or less, isNP-hard. This result holds even ifT is a conjunction
of implications of the formh → m, whereh ∈ H andm ∈ M .

A slightly stronger result can be given for the case in whichT is
assumed to be in Horn form.

Theorem 10 Deciding whether there exist a verification tree-
program for a given instance of abduction〈H, M, T 〉 whose depth
is k or less, is∆p

2[log n]-hard. This result holds even ifT is a Horn
theory.

5 DISCUSSION

In this paper we investigated verification, which is the process for
uniquely determine the explanation of a given set of manifestations,
in an abductive framework. We considered verification programs, to
be accomplished by checking the truth of assumptions of candidate
minimal explanations. We considered verification set-programs (no
hint on which assumptions are to be checked first) and verification
tree-programs (a tree tells which assumption to check next, depend-
ing on the result of the last check). Verification tree-programs are the
natural extension of decision trees to find the right explanation in a
diagnostic setting. Since verification tree-programs can have expo-
nential size, it makes sense to study verification set-programs, which
have size always less than or equal to the total number of assump-
tions. We showed the complexity of finding an optimal verification
set-program for the cases in which explanations are explicitly enu-
merated, and found close upper and lower complexity bounds for
the case in which the abductive theory is Horn. We also studied
the case for verification tree-programs, for which we gave a general

polynomial-space algorithm, and intractability results when the the-
ory contains just direct implications between assumptions and man-
ifestations. An impact of our results is that it is now possible to use
custom algorithms and techniques for, e.g. vertex cover, to decide
the tests to be performed in looking for an explanation. For more
complex problems, like finding the root of an optimal tree-program,
techniques for solving general PSPACE problems can be used [1].
We are now considering special cases in which providing verification
programs could be simpler. However, high complexity in computing
a verification program might not be a problem, if we assume that it
can be computed off-line.

Finally, let us relate our work with that of McIlraith [6], who in-
troduced a framework in which abduction is used for finding tests
in model-based diagnosis. There are three main differences between
our definitions and hers. First, while we give a set of definitions of
the tests needed to find the correct explanation for an instance of
abduction, McIlraith starts from an instance of a model-based di-
agnosis, and uses abduction as a technical tool for finding the set
of tests needed to identify the problem. As such, our framework is
suited for problems that can be formalized as abduction, while hers
is useful for problems that can be encoded in a model-based diag-
nosis framework. Second, McIlraith does not consider the minimal
number of tests to perform in finding the actual diagnosis, nor the
way tests are performed (unordered vs. ordered, as our set-programs
and tree-programs): her definition of “minimal” set of test is based
on local minimality, that is, irredundance (a set of tests is minimal
if no test can be neglected from the set). Third, the way in which
test themselves are formalized is different: intuitively, our checks on
assumptions would be rephrased in her notation as({}, h), i.e. tests
with no achievables.

ACKNOWLEDGMENTS

The authors thank the referees for their comments. This work has
been partially supported by CNR.

REFERENCES
[1] M. Cadoli, A. Giovanardi, and M. Schaerf, ‘An algorithm to evaluate

quantified boolean formulae’, inProc. of AAAI’98, pp. 262–267. AAAI
Press/The MIT Press, (1998).

[2] L. Console and G. Friedrich, eds.Model-based Diagnosis. Ann. of
Mathematics and Artificial Intelligence, 1994.

[3] T. Eiter and G. Gottlob, ‘The complexity of logic-based abduction’,J.
of the ACM, 42(1), 3–42, (1995).

[4] L. Hyafil and R. Rivest, ‘Constructing optimal binary decision trees is
NP-complete.’,Information Processing Letters, 5(1), 15–17, (1976).

[5] K. Konolige, ‘Using default and causal reasoning in diagnosis’,Ann. of
Mathematics and Artificial Intelligence, 11, (1994).

[6] S. McIlraith, ‘Generating tests using abduction’, inProc. of KR’94, pp.
449–460, (1994).

[7] C. H. Papadimitriou,Computational Complexity, Addison Wesley,
Reading, MA, 1994.

[8] C. S. Peirce, ‘Abduction and induction’, inPhilosophical Writings of
Peirce, ed., J. Buchler, chapter 11, Dover, New York, (1955).

[9] Y. Peng and J. Reggia, ‘Plausibility of diagnostic hypothesis’, inProc.
of AAAI’86, pp. 140–145, (1986).

[10] R. Reiter, ‘A theory of diagnosis from first principles’,Artificial Intel-
ligence, 32, 57–96, (1987).

