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Abstract.

In Model-Based Diagnosis there is an increasing interest in the
diagnosis of dynamic systems. Some recent contributions in the lit-
erature show that in some cases such systems can be diagnosed with
pure state-based diagnosis, i.e. reasoning on single states of the sys-
tem rather than on transitions of the system from one state to another.

In this work we discuss how in a different context the same re-
sults do not hold, and show how reasoning on the causality in the
system and using simulation can provide more precise diagnostic re-
sults with respect to state-based diagnosis.

Essential to this result are component fault models that character-
ize the discontinuity in the behavior associated with abrupt faults,
i.e. the sudden transition of a component from the correct mode of
behavior to afaulty behavior.

1 Introduction

In Model-Based Diagnosis [6] there is an increasing interest in the
diagnosisof dynamic systems(e.g. [2, 9, 11, 12, 10, 14]), given that
most of the technical systems that demand for some form of auto-
mated diagnosis are dynamic systems (in particular, systems with
feedback provided by some automated control).

Some recent contributions in the literature present, on the one
hand, results that show that a simple but paradigmatic dynamic con-
trolled system can be diagnosed with pure state-based diagnosis, i.e.
reasoning on single states of the system rather than on transitions
of the system from one state to another [10]. Similar considerations
have been provided in [5]. On the other hand, [14] presents some
genera conditions that ensure the equivalence of state-based and
simulation-based diagnosis. Such conditions include the assumption
that the system behaves continuously and that temporal constraints
are the samefor al behavior modes.

In this paper we compare state-based diagnosiswith asimulation-
based definition of diagnosis, which also takes into account the dis-
continuity in the behavior associated with abrupt faults, i.e. the sud-
den transition of a component from the correct behavior mode to a
fault mode. Based on the causdlity in the system we impose con-
straints on such a transition, which are specific to each fault mode
and violate the continuity conditions in [14] (in terms of [8] such
constraints are “region transition” constraints).

Likethe use of fault modes can eliminate spurious diagnoses[15],
we show that this additional knowledge, which characterizesthe dy-
namics of a fault, can significantly reduce the set of solutions with
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respect to state-based diagnoses, even under limited observability of
the system.

2 The example system and qualitative deviation
modeling

We consider the controlled electric motor in [10] (seefigure 1). The
motor M, whose rotational speedisw, is driven through a voltage v
by the controller C which acts based on the desired speed d and the
speed w,,, measured by the revolution counter S. Two versions of the
controller are considered in [10]: a P-controller and a PI-controller;
we consider the Pl-controller version only.

Figure 1. The examplesystem.

The system can be modeled by the following eguations, which
include for each component a constant that is used to model also the
faulty behavior of the component:

Motor : T*Ccll—"::cM*v—w (0]

dv
PI — controller : e co*(d—wm) 2
Sensor @ wm;m =Ccg*w (3)

where T' isthe inertia of the motor, cjs is the constant of the motor,
cc is the constant of the controller, cs is the constant of the rev-
olution counter. Faults can be characterized by deviations of such
constantsfrom their reference value.

In [10], in order to apply such a model for diagnosis, a corre-
sponding model is derived that relates qualitative deviation®f the
variablesin the model. For each variable z, itsdeviation is defined as

Az(t) = x(t) — zres(t)



where z..£(t) isareference behavidwor =, which could be the evo-
lution of = in case the system is not faulty (in which case it could
be computed from quantitative model of the system and initia con-
ditions), but could aso betaken, asin [10], as some other reference
value®.

The qualitative deviation modelisamodel derived from theini-
tial set of equations that relates the signsof variables and of their
deviations. Denoting the sign of an expression £ as [E], there are
rules for expressing [E] and [A E] as an expression in sign agebra
involving the signs of individual variables occurring in £ and the
signs of the deviations of such variables. For example, [A(a + b)] =
[Aa] @ [Ab], where® isthe additionin sign algebra. For derivatives,
the notation 0w isused for [££], and 9Ax for [A4L] = [L Az]

Theresulting qualitative deviation modeling for the motor system
isthefollowing:

(7] @ 0w & [w] = [cm] @ [v] @)

[AT]® 0w B Aw B [Aw] = [Acum] @ [v] B [Av] 5)
v =[cc]®[d— wm] (6)

AAv = [Acc] @ [d — wm] B [Ad] © [Awn] @)

[wm] = [cs] © [w] ®

Aol = [Acs] 0 W& [Ae] ()

Owm = [cs] @ Ow @ Fcs ® [w] (10

AAwm = [Acs] @ Ow @ OAw G OAcs ® [w] (1)

(the term [d — wx,] is l€eft asis, since its value will be observed
directly and then it will be more informative than [d] & [wy,]). Diag-
nosis is then performed reasoning on the qualitative deviations, i.e.
on classes of faultd-or each component we consider a correct mode,
with [c] = [+] and [Ac] = 0 (wherec iscar, cc Of ¢g), and three
fault modes:

o chigh: [c] = [4+] and[Ac] = [+]
o clow: [c] = [+]and [Ac] =[]
o czero: [c] = 0 and[Ac] = [—]

A mode assignmentssigns a (correct or faulty) behavior mode
to each component.

3 Fault detection

We intend the reference behavior as the evolution of the non-faulty
system®. In this case a diagnostic problem arises when a deviation
of an observable variable is observed, i.e. the values of some of the
variables in the qualitative deviation model are known and at least
one of them is anon-zero value of a deviation.

We assume here that such afault detections performed indepen-
dently of the qualitative deviation modeling; e.g. it is performed us-
ing a (maybe approximate) quantitative model, or, asin [14], it is
provided by subjective observation of a humanwho detectsthat some
variableislower or higher than it should be.

In either case, there cannot be a perfect match between the ac-
tual state of the system and its observation in terms of qualitative
deviations. Thisis because, e.g., apositive deviation meansanypos-
itive value, but we cannot expect an arbitrarily small deviation to
be detectable, e.g. due to noise and to imprecision in the estimation

3 Actually, in [10], this choice is essential to diagnosewith pure state-based
diagnosisthe system with the P-controller.
4 Differently from [10].

of numerical parameters in the model. This means that fault detec-
tion should be at least precise to detect the deviationsthat are large
enough to besignificant, e.g. expensive (estimating the expected cost
due to malfunctioning or inefficiency in the system, with the associ-
ated risks). Providing methodologiesfor doing thisisout of the scope
of this paper. What we should at least assumeis that fault detection,
evenif not completeiscorrecti.e. the deviationsit detectsareactual
ones, evenif not all the actual ones are detected.

The above issues are particularly significant for dynamic systems
with automated control: some deviations could go undetected since
the control subsystem compensates for them. Such deviations could
moreover be slowly but constantly increasing.

Moreover, in a system with feedback (including controlled sys-
tems) it is possible that a deviation in a variable (dueto afault) will
lead to deviations of most of the other variables. Thiswill only occur
through a sequence of qualitative states where the dynamics of the
feedback effects is reproduced. The qualitative deviation equations,
which, when everything was ok, were satisfied because all the devi-
ations were zero, will now be satisfied because some deviation (due
to the fault) is compensated by some opposite deviation (due to con-
trol). In principle, this situation could be detected e.g. by making the
system work in some reference condition.

In the example system we will assume that deviationsthat can be
observed are [Aw,] and 9Aw.,, e.g. based on approximate knowl-
edge of the correct behavior of the system which defines, for exam-
ple, an envelope where the observed speed should be included, based
on the target speed. A similar approach has been used to detect ob-
servationson areal system [1].

4 Defining diagnosis

A qualitative state assigns a qualitative value (in our case[—], 0 or
[+]) todl variables (including their deviations) and their derivatives.
Let S betheset of al qualitative states. The model of the systemisa
set of equationsand identifiesaset M C S of the states (those satis-
fying the equations). A mode assignment £ correspondsto a subset
of &, denoted as F, where the mode assignment equations are satis-
fied. A particular mode assignment is F.x where al the components
have the correct mode. A set of observationsO B S, assigningavaue
to asubset of variables, similarly identifiesasubset OBS of S.

A mode assignment F' is considered consistentwith aset OB.S
of observationsrelative to asingle state if M N F N OBS # 0.

Inthefollowing wedo not deal with time-varying faultthat is, we
assumethat faults are permanent; moreover, we restrict the attention
to single faults. This means that the system passes from the mode
assignment where all components are ok to a mode assignment with
asinglefault andthen remains, for thetimeit isobserved, in the same
mode assignment.

We also restrict the attention to a set of observations OBS in a
single qualitative state. As we shall discuss later in more detail, this
could bethefirst state where deviations are observed.

Even with such assumptionsthere can be several ways of defining
whether a mode assignment F' is considered to be a diagnosisfor a
set of observations O B S relative to a qualitative state.

Asan example of observationswe will consider the following (see
figure 2): the measured speed is positive (w., = [+]), it isbelow its
target ([d — ww] = [+]), itisincreasing (Qw., = [+]) but it isless
than it should be ([Aw,,] = [-]), and still diverging (0Aw,, = [—]).
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Figure 2. Theexample observation; ¢ isthe (unknown) time when the
fault occurs, ¢ ¢ ¢ isthe time wheniit is detected

4.1 State-based diagnosis

A basic requirementisthat F' is consistent with the observations; that
is, there exists a qualitative state S of the system that is consistent
with F' and OBS. State-based diagnosis reducesto thisif there are
observations on a single qualitative state. Therefore in our context
we have the following definition.

Definition 1 State-based diagnosisA mode assignment F' is a
state-based diagnosis if it is consistent with OBS, i.ee M N F N
OBS £ 0.

However, if we apply state-based diagnosis to our test case with
the exampl e observations, we get the following resullts.

requiring that .S is consistent with the fault ' and the observations,
we requirethat such astate can bereached from astate S, consistent
with the “all correct” mode assignment, and where all deviationsare
zero, through a sequence of states where the first one, S1, results
from “injecting” the fault into So, and the subsequent ones, up to
S, are each one a successor state of the previous one according to
qualitative simulation (seefigure 3).
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Figure 3. Defining diagnosisacrosstime.

Therelation of Sy and S; must be modeled, as we shall seelater,
with appropriate constraints on the transition from a behavior mode
to another (in particular, from the correct mode to a fault mode).
Notice that S could coincide with S;, and the initial conditions, i.e.
the qualitative values of “non-deviation” variables, in So, may be
known or not. Sincethe time where the fault occursis not known, the
quantitative values cannot be known®, but a qualitative value could
be known.

It could moreover be required that S is the first state in the se-
quencethat is detectableby fault detection; i.e., in the sequence, no
states could occur that would have been detected: diagnosis would

o Nearly all the single faults are consistent with the observations naye in fact been activated for that state rather than for S.

in particular, the resulting single fault candidatesare: ¢ high, c¢
low, cc zero, car high, car low, cs high, cs low. For example,
“car high” satisfies the equations provided that [Av] = [—] and
8Av = [+], that is, the control command is below its expected
value, but approachingit.

The definition of detectablesould vary, depending on the assump-
tions on fault detection. In qualitative simulation there is at least a
set of qualitative statesthat can only ideally be detected: those states
which only last for atime point, rather than an interval, since a vari-
able is at a landmark value (here the only landmark is 0) and its

e Even the “ok” mode for all components is consistent with the gerjvative isnot zero. Directly observing these states (rather than hy-

observations(again, the equations are satisfied, provided that
[Av] = [-] and 8Av = [+]). Thisfact is particularly signifi-
cant. The strategy of atypical diagnostic algorithm could start by
looking for conflictsin the set of assumptionsthat all components
are in the ok mode, and in this case it would not find anything.
In general, any diagnostic algorithm based on a preference for, at
least, minimal diagnoses, would conclude that the best explana-
tion here is that the system is working. There would be an incon-
sistency with fault detection which activated diagnosis based on
the observation that something was going wrong.

4.2 Simulation-based diagnosis

Even if the “ok” mode is consistent with the observation, thereisan
argument that makes it counterintuitive as a diagnosis: in the mode
where all componentsare in the ok mode, no deviation could possi-
bly be caused, i.e. the state that is consistent with the ok mode and
the observations cannot be reached from a state with no deviations.
Moreover, any fault should lead to atypical dynamicsin its manifes-
tation; for example, “cas high” should rather lead, at least initialy, to
a“too high” measured speed, rather than atoo low one (as observed
in the example).

Therefore, we consider the following idea for defining diagnosis
for observations OB .S relative to a qualitative state .S. Other than

pothesizing them based on the subsequent states), which only last for
atime point, isidealistic. We therefore adopt the fol lowing definition
of “detectable” asaminimal one.

Definition 2 Detectable state A qualitative state is detectableiff it
has some non-zero deviation and it is an interval state in qualitative
simulation.

We introduce the term immediate fault detectionto denote the
fact that any detectable state is detected (and then diagnosisis ac-
tivated) before it ends. This justifies the requirement above on the
sequenceof states: that S isthefirst detectable statein the sequence.

Notice that the use of the term “immediate” does not mean that
any arbitrarily small deviation should be detectdut only that a
deviation is detected before the system changesits qualitative state
to another one with some other deviation which is detected. Thisis
similar to the conditionin [10] that observationsare gapless

4.3 Constraints related to injecting a fault

As mentioned above, an important issueis to determine which state
the system can move to, immediately after the occurrence of an

5 Whichisoneof the reasonsthat preventsa quantitative simulation approach
to be applied.



abrupt fault, i.e. the case where a system parameter changesabruptly
(and, therefore, we assume, discontinuously) from itsreference value
to an abnormal value, and then its deviation changesfrom zero to a
non-zero (not necessarily constant) value.

Of coursethe state resulting from such an abrupt fault must satisfy
the system equations plus the additional constraint on the abnormal
parameter, but it is evident from the examples that more constraints
can be given based on the intuition of the causality of the system.

For an example from a different domain®, consider a fluid con-
tainer with incoming flow f, outcoming flow f. and pressurep. Its
qualitative deviation equationis

[Afile[Af] ©[Aficar] = AP

where fi.qx isthe flow leaking out, whosereference valueis 0. Con-
sider the casewhere, starting from astatewhereall the deviationsare
0, the container starts leaking, i.e. [A ficax] changesfrom O to [+].
Notice that there are several possible ways of satisfying the equation
given [A ficqx] = [+], and, in particular, thereis more than one min-
imal change that restores the equation: [A f1] becomes [+], [A f2]
becomes[—], or 3Ap becomes[—], that is, the inflow increases, the
outflow decreases, or the pressure starts deviating negatively. Intu-
itively, only the last case is a possible direct effect, i.e., can be the
first state where the system moves to. The other changes are possi-
ble, especialy if there is a pressure control system or anyway some
compensatory effect; but such a control or compensationisonly pos-
sible as a consequence of a (whatever small) negative change of the
pressure“ caused” by 0Ap = [—].

Severa approaches exist for introducing this causal information,
which is essential to an adequate representation of the behavior of
the system. Some approaches for deriving the causal structure of a
model have been introduced early in the qualitative reasoning com-
munity by de Kleer and Brown [4], and by Iwasaki and Simon [7]
based on earlier work in the field of economics. In [12] atemporal
causal graphis derived from abond graph the causality assignment
rules for bond graphs are such that for a capacitor, the effort (pres-
sure) is determined based on the flow. Therefore in an example (a
bi-tank system) similar to the one considered here, the pressure in
the container is determined based on the sum of flows; as a result,
in the temporal causal graph, one flow can influence another only
through the pressure”.

Independent of how causal dependencies are derived, they are
used in the same way in approaches for reasoning about actions
and change. For example in [16] causal rules that relate a change
to another change are derived from amore compact representation of
knowledge, based on state constraints (whose equivalent here are the
system equations) and influence informationthat is, information on
which “fluent” (variable) can directly influence another, in the sense
that achangeof thefirst may causea change of the second. Influence
information is analogousto causal orderingin[7]. Something similar
can be provided in the example, stating that fi..x can only influence
42 Therefore, if changing the influenced variables leads to satis-
fying the equation, these will be the only possible overall changes
occurring as a side effect of the change corresponding to the abrupt
fault. Usually, a variable does not influence more than another one,
and there is only one value for the latter that restores the equation,
therefore thereis only one possible resulting state.

6 Thisis asimplification of an example from a real system; the approach in
the paper has been successfully applied to such a system.

7 In particular, in the bi-tank example, the effect of alesk in the first tank
would be the same as the one of a sudden decrease of the inflow, which
leadsin a subsequent state, due to an integration effect, to a changein the
pressure at the bottom of the tank.

This methodology can be applied to the motor system as follows.

e Inthemotor equation, cas only influences 22 ; therefore, when the
fault “car high” occurs, the only way of satisfying equation (5) is
(assuming [v] = [+]) to have dAw = [+].

¢ In the PI-controller equation, cc only influences 22; therefore,
whenthe fault“cc high” occurs, the only way of satisfying equa-
tion (7) isto have 0Av = ([d — wm)).

¢ Inthesensor equation, ¢ s only influencesw ., ; therefore, whenthe
fault “c< high ™ occurs, the only way of satisfying equation (9) is
to have [Aw,»] = [+], and the only way of satisfying equation
(11) isto have 0Awy, = dw

Determining al possible dependencies allows to establish which
(hopefully deterministic) side effects a fault gives rise to. Doing this
for the example system, a sequence of deterministic side effects for
each fault injection has actually been provided.

4.4 Definitions of simulation-based diagnosis

Based on the above approach to constrain the behavior of the system
when afault occurs, weintroduce the following definition for stating
whether a mode assignment F' is adiagnosisfor observationsOB S
(we again refer to figure 3).

Definition 3 Simulation-based diagnosis with immediate fault
detection Let Sa=q bethe set of states where all deviations are 0.
Let Vaobs bethe set of observable deviation variables, and S A obs=0
be the set of states where all the members of Va ... are zero. Let
Scontexrt e the set of states where the initial conditions have the
known value (if any such value is known). Let Sp and S; be
the set of point states and interval states in qualitative simulation.
F is a simulation-based diagnosis if there is a sequence of states
So7 Sl, ey S such that:

SO € M N Tok n SA:O N Sconte.rt

Sl,...,Sk—l S MOTO(SPUSAObS:())
S e MNFNOBSNS;
inject(For, F, S0, S1) A next(S1,S2) A ... Anext(Sk—1, Sk)

where “next” is the successor relation in qualitative simulation?®,
and “inject” isthe relation defined by fault injection constraintsdis-
cussed above: inject(Fok, F, So, S1) meansthat injecting £ in So,
where F.;, was holding, may lead® to S;.

Notice that the “immediate” fault detection requirement corre-
sponds to the constraint that intermediate states are not detectable,
i.e. they are either point states or states with no deviation for observ-
ablevariables.

4.5 Results on the example system

In the example we assume the same set of observations as above,
i.e. [Awm] = [-], Awm = [~], wm = [+], Owm = [+], and
[d — wm] = [+]; moreover, we assumeasinitial conditionsthe same
valuesfor non-deviation variables, i.e. w,, = [+], dwn = [+], and

& In particular, we have experimented a constructivenotion of qualitativesim-
ulation also based on the causal dependencies[13].

9 Or “leads’, if the relation is functional in its 4th argument as in the exam-
ples. Moreover, thefirst argument of the relation may be omitted if weonly
define congtraintsrelative to injecting afault in the F',, mode.
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Figure 4.

[d — wm] = [+]. Thismeans assuming that when the fault occurred,
the measured speed was positive, increasing and below its target,
which makes sensein the situation in figure 2 even if the exact time
when the fault occurred is unknown.

The“ok” modefor al componentsis not a simulation-based diag-
nosis for this case, since starting from a state with no deviation, and
injecting no fault, no state with non-zero deviation can be reached,
including the state S to which observationsare relative.

The simulation-based single fault diagnoses, assuming immediate
fault detection and the aboveinitial conditions, are just 3 out of the
7 state-based diagnoses ¢ low, c¢is low and ¢ s low. For example,
“car high” is discarded because it predicts the evolution in figure
4, where the fault injection leads to state S1, where Acy = [+]
implies, given the causality constraints associated with equation 5,
dAw = [+], and, being the sensor ok, Aw,, = [+], dueto equa-
tion 11. Thisleadsto S2, where Aw = [+] and Aw., = [+]. This
positive deviation of the measured speed should have been detected
before the negative deviation that activated diagnosis. A similar se-
quence, with opposite (i.e., negative) deviations, shows that “c s
low” isadiagnosis.

5 Discussion

In this paper we presented results in an opposite direction with re-
spect to theonesin [10, 14]: we showed, on avariation of an example
from those papers, that simulation may actually be useful to restrict
the set of possible diagnoses. Similar results have been obtained in
atest case regarding a dynamic, automatically controlled subsystem
of areal industrial system[1].

With respect to the experimental resultsin [10], we usea different
definition of the reference behaviors; the onein [10] is shown to be
useful for diagnosing the system with the P-controller, but observing
the second-order derivative is necessary for the Pl-controller.

With respect to the general results in [14], there is a fundamen-
tal difference here: the temporal constraints are not continuous(in
the sense of [14]) exactly because of the constraints on fault injec-
tion, that capture an inherent discontinuity in the behavior of the
system: the occurrence of an abrupt fault. Moreover, such transition
constraints are specific of each fault, i.e. different fault modesare not
homogeneouggain in the sense of [14])

[14] also mentions a way of enhancing the results of state-based
diagnosis by enriching the observations, using the same kind of in-
ferences used in qualitative simulation, i.e. reasoning on continuity
and derivatives. In particular, the ideais that if, e.g., a positive de-
viation of v is observed, which was 0 before, there must be a state

in between where both the deviation of v and its derivative are pos-
itive. The results shown above for state-based diagnosis assumethat
such aninference has aready been done, in fact they also provide the
deviation of the derivative in the observations.

Of course, an advantageof state-based diagnosiswould beits effi-
ciency, since simulation-based diagnosis should perform a searchin
the state spacein order to rule out afault. However, in [13] we show
that using causal dependenciesin simulation allows usto make such
a search feasible (as in [12]; the causal structure is used to speed-
up simulation aso in [3]). Moreover, as in [1], where an on-board
monitoring and diagnosis system should react promptly as soon as
some deviation is detected, such a search can be performed off-line,
precompiling the resultsinto a decision tree to be used on-line.
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