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Abstract.
In Model-Based Diagnosis there is an increasing interest in the

diagnosis of dynamic systems. Some recent contributions in the lit-
erature show that in some cases such systems can be diagnosed with
pure state-based diagnosis, i.e. reasoning on single states of the sys-
tem rather than on transitions of the system from one state to another.

In this work we discuss how in a different context the same re-
sults do not hold, and show how reasoning on the causality in the
system and using simulation can provide more precise diagnostic re-
sults with respect to state-based diagnosis.

Essential to this result are component fault models that character-
ize the discontinuity in the behavior associated with abrupt faults,
i.e. the sudden transition of a component from the correct mode of
behavior to a faulty behavior.

1 Introduction

In Model-Based Diagnosis [6] there is an increasing interest in the
diagnosis of dynamic systems (e.g. [2, 9, 11, 12, 10, 14]), given that
most of the technical systems that demand for some form of auto-
mated diagnosis are dynamic systems (in particular, systems with
feedback provided by some automated control).

Some recent contributions in the literature present, on the one
hand, results that show that a simple but paradigmatic dynamic con-
trolled system can be diagnosed with pure state-based diagnosis, i.e.
reasoning on single states of the system rather than on transitions
of the system from one state to another [10]. Similar considerations
have been provided in [5]. On the other hand, [14] presents some
general conditions that ensure the equivalence of state-based and
simulation-based diagnosis. Such conditions include the assumption
that the system behaves continuously and that temporal constraints
are the same for all behavior modes.

In this paper we compare state-based diagnosis with a simulation-
based definition of diagnosis, which also takes into account the dis-
continuity in the behavior associated with abrupt faults, i.e. the sud-
den transition of a component from the correct behavior mode to a
fault mode. Based on the causality in the system we impose con-
straints on such a transition, which are specific to each fault mode
and violate the continuity conditions in [14] (in terms of [8] such
constraints are “region transition” constraints).

Like the use of fault modes can eliminate spurious diagnoses [15],
we show that this additional knowledge, which characterizes the dy-
namics of a fault, can significantly reduce the set of solutions with
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respect to state-based diagnoses, even under limited observability of
the system.

2 The example system and qualitative deviation
modeling

We consider the controlled electric motor in [10] (see figure 1). The
motor M, whose rotational speed is !, is driven through a voltage v
by the controller C which acts based on the desired speed d and the
speed!m measured by the revolution counter S. Two versions of the
controller are considered in [10]: a P-controller and a PI-controller;
we consider the PI-controller version only.
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Figure 1. The example system.

The system can be modeled by the following equations, which
include for each component a constant that is used to model also the
faulty behavior of the component:

Motor : T �
d!

dt
= cM � v � ! (1)

PI � controller :
dv

dt
= cC � (d� !m) (2)

Sensor : !m = cS � ! (3)

where T is the inertia of the motor, cM is the constant of the motor,
cC is the constant of the controller, cS is the constant of the rev-
olution counter. Faults can be characterized by deviations of such
constants from their reference value.

In [10], in order to apply such a model for diagnosis, a corre-
sponding model is derived that relates qualitative deviationsof the
variables in the model. For each variable x, its deviation is defined as

�x(t) = x(t)� xref(t)



where xref(t) is a reference behaviorfor x, which could be the evo-
lution of x in case the system is not faulty (in which case it could
be computed from quantitative model of the system and initial con-
ditions), but could also be taken, as in [10], as some other reference
value3.

The qualitative deviation model is a model derived from the ini-
tial set of equations that relates the signsof variables and of their
deviations. Denoting the sign of an expression E as [E], there are
rules for expressing [E] and [�E] as an expression in sign algebra
involving the signs of individual variables occurring in E and the
signs of the deviations of such variables. For example, [�(a+ b)] =
[�a]� [�b], where� is the addition in sign algebra. For derivatives,
the notation @x is used for [ dx

dt
], and @�x for [�dx

dt
] = [ d

dt
�x]

The resulting qualitative deviation modeling for the motor system
is the following:

[T ]
 @! � [!] = [cM ]
 [v] (4)

[�T ]
 @! � @�! � [�!] = [�cM ]
 [v]� [�v] (5)

@v = [cC]
 [d� !m] (6)

@�v = [�cC]
 [d� !m]� [�d]	 [�!m] (7)

[!m] = [cS]
 [!] (8)

[�!m] = [�cS]
 [!]� [�!] (9)

@!m = [cS]
 @! � @cS 
 [!] (10)

@�!m = [�cS]
 @! � @�! � @�cS 
 [!] (11)

(the term [d � !m] is left as is, since its value will be observed
directly and then it will be more informative than [d]	 [!m]). Diag-
nosis is then performed reasoning on the qualitative deviations, i.e.
on classes of faults. For each component we consider a correct mode,
with [c] = [+] and [�c] = 0 (where c is cM , cC or cS), and three
fault modes:

� c high: [c] = [+] and [�c] = [+]
� c low: [c] = [+] and [�c] = [�]
� c zero: [c] = 0 and [�c] = [�]

A mode assignmentassigns a (correct or faulty) behavior mode
to each component.

3 Fault detection

We intend the reference behavior as the evolution of the non-faulty
system4. In this case a diagnostic problem arises when a deviation
of an observable variable is observed, i.e. the values of some of the
variables in the qualitative deviation model are known and at least
one of them is a non-zero value of a deviation.

We assume here that such a fault detectionis performed indepen-
dently of the qualitative deviation modeling; e.g. it is performed us-
ing a (maybe approximate) quantitative model, or, as in [14], it is
provided by subjective observation of a human who detects that some
variable is lower or higher than it should be.

In either case, there cannot be a perfect match between the ac-
tual state of the system and its observation in terms of qualitative
deviations. This is because, e.g., a positive deviation means anypos-
itive value, but we cannot expect an arbitrarily small deviation to
be detectable, e.g. due to noise and to imprecision in the estimation

3 Actually, in [10], this choice is essential to diagnose with pure state-based
diagnosis the system with the P-controller.

4 Differently from [10].

of numerical parameters in the model. This means that fault detec-
tion should be at least precise to detect the deviations that are large
enough to be significant, e.g. expensive (estimating the expected cost
due to malfunctioning or inefficiency in the system, with the associ-
ated risks). Providing methodologies for doing this is out of the scope
of this paper. What we should at least assume is that fault detection,
even if not complete, is correct, i.e. the deviations it detects areactual
ones, even if not all the actual ones are detected.

The above issues are particularly significant for dynamic systems
with automated control: some deviations could go undetected since
the control subsystem compensates for them. Such deviations could
moreover be slowly but constantly increasing.

Moreover, in a system with feedback (including controlled sys-
tems) it is possible that a deviation in a variable (due to a fault) will
lead to deviations of most of the other variables. This will only occur
through a sequence of qualitative states where the dynamics of the
feedback effects is reproduced. The qualitative deviation equations,
which, when everything was ok, were satisfied because all the devi-
ations were zero, will now be satisfied because some deviation (due
to the fault) is compensated by some opposite deviation (due to con-
trol). In principle, this situation could be detected e.g. by making the
system work in some reference condition.

In the example system we will assume that deviations that can be
observed are [�!m] and @�!m , e.g. based on approximate knowl-
edge of the correct behavior of the system which defines, for exam-
ple, an envelope where the observed speed should be included, based
on the target speed. A similar approach has been used to detect ob-
servations on a real system [1].

4 Defining diagnosis

A qualitative state assigns a qualitative value (in our case [�], 0 or
[+]) to all variables (including their deviations) and their derivatives.
Let S be the set of all qualitative states. The model of the system is a
set of equations and identifies a setM� S of the states (those satis-
fying the equations). A mode assignment F corresponds to a subset
of S , denoted as F , where the mode assignment equations are satis-
fied. A particular mode assignment is Fok where all the components
have the correct mode. A set of observationsOBS, assigning a value
to a subset of variables, similarly identifies a subsetOBS of S .

A mode assignment F is considered consistentwith a set OBS

of observations relative to a single state if M\F \OBS 6= ;.
In the following we do not deal with time-varying faults, that is, we

assume that faults are permanent; moreover, we restrict the attention
to single faults. This means that the system passes from the mode
assignment where all components are ok to a mode assignment with
a single fault and then remains, for the time it is observed, in the same
mode assignment.

We also restrict the attention to a set of observations OBS in a
single qualitative state. As we shall discuss later in more detail, this
could be the first state where deviations are observed.

Even with such assumptions there can be several ways of defining
whether a mode assignment F is considered to be a diagnosis for a
set of observationsOBS relative to a qualitative state.

As an example of observations we will consider the following (see
figure 2): the measured speed is positive (!m = [+]), it is below its
target ([d � !m] = [+]), it is increasing (@!m = [+]) but it is less
than it should be ([�!m] = [�]), and still diverging (@�!m = [�]).
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Figure 2. The example observation; t0 is the (unknown) time when the
fault occurs, tfd is the time when it is detected

4.1 State-based diagnosis

A basic requirement is thatF is consistent with the observations; that
is, there exists a qualitative state S of the system that is consistent
with F and OBS. State-based diagnosis reduces to this if there are
observations on a single qualitative state. Therefore in our context
we have the following definition.

Definition 1 State-based diagnosis. A mode assignment F is a
state-based diagnosis if it is consistent with OBS, i.e. M \ F \
OBS 6= ;.

However, if we apply state-based diagnosis to our test case with
the example observations, we get the following results.

� Nearly all the single faults are consistent with the observations;
in particular, the resulting single fault candidates are: cC high, cC
low, cC zero, cM high, cM low, cS high, cS low. For example,
“cM high” satisfies the equations provided that [�v] = [�] and
@�v = [+], that is, the control command is below its expected
value, but approaching it.

� Even the “ok” mode for all components is consistent with the
observations. (again, the equations are satisfied, provided that
[�v] = [�] and @�v = [+]). This fact is particularly signifi-
cant. The strategy of a typical diagnostic algorithm could start by
looking for conflicts in the set of assumptions that all components
are in the ok mode, and in this case it would not find anything.
In general, any diagnostic algorithm based on a preference for, at
least, minimal diagnoses, would conclude that the best explana-
tion here is that the system is working. There would be an incon-
sistency with fault detection which activated diagnosis based on
the observation that something was going wrong.

4.2 Simulation-based diagnosis

Even if the “ok” mode is consistent with the observation, there is an
argument that makes it counterintuitive as a diagnosis: in the mode
where all components are in the ok mode, no deviation could possi-
bly be caused, i.e. the state that is consistent with the ok mode and
the observations cannot be reached from a state with no deviations.
Moreover, any fault should lead to a typical dynamics in its manifes-
tation; for example, “cM high” should rather lead, at least initially, to
a “too high” measured speed, rather than a too low one (as observed
in the example).

Therefore, we consider the following idea for defining diagnosis
for observations OBS relative to a qualitative state S. Other than

requiring that S is consistent with the fault F and the observations,
we require that such a state can be reached from a state S0 , consistent
with the “all correct” mode assignment, and where all deviations are
zero, through a sequence of states where the first one, S1, results
from “injecting” the fault into S0 , and the subsequent ones, up to
S, are each one a successor state of the previous one according to
qualitative simulation (see figure 3).

S 0 S 1
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S. . .
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constraints on
fault injection
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Figure 3. Defining diagnosis across time.

The relation of S0 and S1 must be modeled, as we shall see later,
with appropriate constraints on the transition from a behavior mode
to another (in particular, from the correct mode to a fault mode).
Notice that S could coincide with S1 , and the initial conditions, i.e.
the qualitative values of “non-deviation” variables, in S0, may be
known or not. Since the time where the fault occurs is not known, the
quantitative values cannot be known5, but a qualitative value could
be known.

It could moreover be required that S is the first state in the se-
quence that is detectableby fault detection; i.e., in the sequence, no
states could occur that would have been detected: diagnosis would
have in fact been activated for that state rather than for S.

The definition of detectablecould vary, depending on the assump-
tions on fault detection. In qualitative simulation there is at least a
set of qualitative states that can only ideally be detected: those states
which only last for a time point, rather than an interval, since a vari-
able is at a landmark value (here the only landmark is 0) and its
derivative is not zero. Directly observing these states (rather than hy-
pothesizing them based on the subsequent states), which only last for
a time point, is idealistic. We therefore adopt the following definition
of “detectable” as a minimal one.

Definition 2 Detectable state. A qualitative state is detectable iff it
has some non-zero deviation and it is an interval state in qualitative
simulation.

We introduce the term immediate fault detection to denote the
fact that any detectable state is detected (and then diagnosis is ac-
tivated) before it ends. This justifies the requirement above on the
sequence of states: that S is the first detectable state in the sequence.

Notice that the use of the term “immediate” does not mean that
any arbitrarily small deviation should be detected, but only that a
deviation is detected before the system changes its qualitative state
to another one with some other deviation which is detected. This is
similar to the condition in [10] that observations are gapless.

4.3 Constraints related to injecting a fault

As mentioned above, an important issue is to determine which state
the system can move to, immediately after the occurrence of an

5 Which is one of the reasons that prevents a quantitative simulation approach
to be applied.



abrupt fault, i.e. the case where a system parameter changes abruptly
(and, therefore, we assume, discontinuously) from its reference value
to an abnormal value, and then its deviation changes from zero to a
non-zero (not necessarily constant) value.

Of course the state resulting from such an abrupt fault must satisfy
the system equations plus the additional constraint on the abnormal
parameter, but it is evident from the examples that more constraints
can be given based on the intuition of the causality of the system.

For an example from a different domain6, consider a fluid con-
tainer with incoming flow f1, outcoming flow f2 and pressure p. Its
qualitative deviation equation is

[�f1]	 [�f2]	 [�fleak] = @�p

where fleak is the flow leaking out, whose reference value is 0. Con-
sider the case where, starting from a state where all the deviations are
0, the container starts leaking, i.e. [�fleak] changes from 0 to [+].
Notice that there are several possible ways of satisfying the equation
given [�fleak] = [+], and, in particular, there is more than one min-
imal change that restores the equation: [�f1] becomes [+], [�f2]
becomes [�], or @�p becomes [�], that is, the inflow increases, the
outflow decreases, or the pressure starts deviating negatively. Intu-
itively, only the last case is a possible direct effect, i.e., can be the
first state where the system moves to. The other changes arepossi-
ble, especially if there is a pressure control system or anyway some
compensatory effect; but such a control or compensation is only pos-
sible as a consequence of a (whatever small) negative change of the
pressure “caused” by @�p = [�].

Several approaches exist for introducing this causal information,
which is essential to an adequate representation of the behavior of
the system. Some approaches for deriving the causal structure of a
model have been introduced early in the qualitative reasoning com-
munity by de Kleer and Brown [4], and by Iwasaki and Simon [7]
based on earlier work in the field of economics. In [12] a temporal
causal graphis derived from a bond graph; the causality assignment
rules for bond graphs are such that for a capacitor, the effort (pres-
sure) is determined based on the flow. Therefore in an example (a
bi-tank system) similar to the one considered here, the pressure in
the container is determined based on the sum of flows; as a result,
in the temporal causal graph, one flow can influence another only
through the pressure7.

Independent of how causal dependencies are derived, they are
used in the same way in approaches for reasoning about actions
and change. For example in [16] causal rules that relate a change
to another change are derived from a more compact representation of
knowledge, based on state constraints (whose equivalent here are the
system equations) and influence information, that is, information on
which “fluent” (variable) can directly influence another, in the sense
that a change of the first may cause a change of the second. Influence
information is analogous to causal ordering in [7]. Something similar
can be provided in the example, stating that fleak can only influence
dp

dt
. Therefore, if changing the influenced variables leads to satis-

fying the equation, these will be the only possible overall changes
occurring as a side effect of the change corresponding to the abrupt
fault. Usually, a variable does not influence more than another one,
and there is only one value for the latter that restores the equation,
therefore there is only one possible resulting state.

6 This is a simplification of an example from a real system; the approach in
the paper has been successfully applied to such a system.

7 In particular, in the bi-tank example, the effect of a leak in the first tank
would be the same as the one of a sudden decrease of the inflow, which
leads in a subsequent state, due to an integration effect, to a change in the
pressure at the bottom of the tank.

This methodology can be applied to the motor system as follows.

� In the motor equation, cM only influences d!

dt
; therefore, when the

fault “cM high ” occurs, the only way of satisfying equation (5) is
(assuming [v] = [+]) to have @�! = [+].

� In the PI-controller equation, cC only influences dv

dt
; therefore,

when the fault “cC high ” occurs, the only way of satisfying equa-
tion (7) is to have @�v = ([d� !m]).

� In the sensor equation, cS only influences!m; therefore, when the
fault “cS high ” occurs, the only way of satisfying equation (9) is
to have [�!m] = [+], and the only way of satisfying equation
(11) is to have @�!m = @!

Determining all possible dependencies allows to establish which
(hopefully deterministic) side effects a fault gives rise to. Doing this
for the example system, a sequence of deterministic side effects for
each fault injection has actually been provided.

4.4 Definitions of simulation-based diagnosis

Based on the above approach to constrain the behavior of the system
when a fault occurs, we introduce the following definition for stating
whether a mode assignment F is a diagnosis for observations OBS

(we again refer to figure 3).

Definition 3 Simulation-based diagnosis with immediate fault
detection. Let S�=0 be the set of states where all deviations are 0.
Let V�obs be the set of observable deviation variables, and S�obs=0
be the set of states where all the members of V�obs are zero. Let
Scontext be the set of states where the initial conditions have the
known value (if any such value is known). Let SP and SI be
the set of point states and interval states in qualitative simulation.
F is a simulation-based diagnosis if there is a sequence of states
S0; S1; : : : ; Sk such that:

S0 2M\Fok \ S�=0 \ Scontext

S1; : : : ; Sk�1 2M\F \ (SP [ S�obs=0)

Sk 2 M\F \OBS \ SI

inject(Fok; F;S0; S1) ^ next(S1; S2) ^ : : : ^ next(Sk�1; Sk)

where “next” is the successor relation in qualitative simulation8,
and “inject” is the relation defined by fault injection constraints dis-
cussed above: inject(Fok; F; S0; S1) means that injecting F in S0 ,
where Fok was holding, may lead9 to S1 .

Notice that the “immediate” fault detection requirement corre-
sponds to the constraint that intermediate states are not detectable,
i.e. they are either point states or states with no deviation for observ-
able variables.

4.5 Results on the example system

In the example we assume the same set of observations as above,
i.e. [�!m] = [�], @�!m = [�], !m = [+], @!m = [+], and
[d�!m] = [+]; moreover, we assume as initial conditions the same
values for non-deviation variables, i.e. !m = [+], @!m = [+], and

8 In particular, we have experimenteda constructive notion of qualitative sim-
ulation also based on the causal dependencies [13].

9 Or “leads”, if the relation is functional in its 4th argument as in the exam-
ples. Moreover, the first argument of the relation may be omitted if we only
define constraints relative to injecting a fault in the Fok mode.
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Figure 4. Rejecting fault cM high.

[d� !m] = [+]. This means assuming that when the fault occurred,
the measured speed was positive, increasing and below its target,
which makes sense in the situation in figure 2 even if the exact time
when the fault occurred is unknown.

The “ok” mode for all components is not a simulation-based diag-
nosis for this case, since starting from a state with no deviation, and
injecting no fault, no state with non-zero deviation can be reached,
including the state S to which observations are relative.

The simulation-based single fault diagnoses, assuming immediate
fault detection and the above initial conditions, are just 3 out of the
7 state-based diagnoses: cC low, cM low and cS low. For example,
“cM high” is discarded because it predicts the evolution in figure
4, where the fault injection leads to state S1 , where �cM = [+]
implies, given the causality constraints associated with equation 5,
@�! = [+], and, being the sensor ok, @�!m = [+], due to equa-
tion 11. This leads to S2 , where �! = [+] and �!m = [+]. This
positive deviation of the measured speed should have been detected
before the negative deviation that activated diagnosis. A similar se-
quence, with opposite (i.e., negative) deviations, shows that “cM
low” is a diagnosis.

5 Discussion

In this paper we presented results in an opposite direction with re-
spect to the ones in [10, 14]: we showed, on a variation of an example
from those papers, that simulation may actually be useful to restrict
the set of possible diagnoses. Similar results have been obtained in
a test case regarding a dynamic, automatically controlled subsystem
of a real industrial system [1].

With respect to the experimental results in [10], we use a different
definition of the reference behaviors; the one in [10] is shown to be
useful for diagnosing the system with the P-controller, but observing
the second-order derivative is necessary for the PI-controller.

With respect to the general results in [14], there is a fundamen-
tal difference here: the temporal constraints are not continuous(in
the sense of [14]) exactly because of the constraints on fault injec-
tion, that capture an inherent discontinuity in the behavior of the
system: the occurrence of an abrupt fault. Moreover, such transition
constraints are specific of each fault, i.e. different fault modes are not
homogeneous(again in the sense of [14])

[14] also mentions a way of enhancing the results of state-based
diagnosis by enriching the observations, using the same kind of in-
ferences used in qualitative simulation, i.e. reasoning on continuity
and derivatives. In particular, the idea is that if, e.g., a positive de-
viation of v is observed, which was 0 before, there must be a state

in between where both the deviation of v and its derivative are pos-
itive. The results shown above for state-based diagnosis assume that
such an inference has already been done, in fact they also provide the
deviation of the derivative in the observations.

Of course, an advantage of state-based diagnosis would be its effi-
ciency, since simulation-based diagnosis should perform a search in
the state space in order to rule out a fault. However, in [13] we show
that using causal dependencies in simulation allows us to make such
a search feasible (as in [12]; the causal structure is used to speed-
up simulation also in [3]). Moreover, as in [1], where an on-board
monitoring and diagnosis system should react promptly as soon as
some deviation is detected, such a search can be performed off-line,
precompiling the results into a decision tree to be used on-line.
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