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Abstract. We propose the use of anytime performance profiles to
describe the computational behaviour of problem solving methods.
A performance profile describes how the quality of the output of an
algorithm gradually increases as a function of the computation time.
Such anytime descriptions of problem solving methods are attractive
because they allow a trade-off to be made between available compu-
tation time and output-quality. It turns out that many problem solv-
ing methods found in the literature have a natural anytime behaviour,
which has remained largely unexploited until now.

In this paper we propose an axiomatic description of performance
profiles. Furthermore, we give a fixed schematic form for these ax-
iomatic descriptions. Finally, we apply our proposal to a number of
realistic problem-solving methods, namely hierarchical classification
(used in MDX), and parametric design methods from XCON and
VT.

1 Motivation

A dominant theme in the Knowledge Engineering literature on Prob-
lem Solving Methods (PSMs) in the last decade has been the descrip-
tion of the “competence” of PSMs, ie. the functional 1/0 relation of
methods. Typically, a method is regarded as a functional 1/O relation
between the given domain knowledge and the required goals of the
method. Much of the more recent work on characterising PSMs still
focuses exclusively on the “competence” of the PSM [12].

This leaves an entire dimension of PSMs uncovered in the litera-
ture: how should the computational performance of a PSM be de-
scribed?

In this paper we propose the use of so-called anytime perfor-
mance profiles [3] to describe the computational behaviour of PSMs
(see section 2). Traditionally, such performance profiles are given in
the form of graphs which are obtained empirically by executing the
PSM. We propose an axiomatic description of performance profiles
(section 3). Our descriptions always consist of the same four ele-
ments, each of which must be provided when characterising method
performance. Finally (section 4), we apply our proposal to a number
of realistic problem-solving methods, namely for hierarchical classi-
fication, and parametric design (methods from XCON and VT).

2 What is anytime reasoning?

Anytime algorithms are defined as algorithms that return some an-
swer for any allocation of computation time, and are expected to re-
turn better answers when given more time [1]. This is in contrast
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with traditional algorithms which guarantee a correct output only af-
ter termination, and no guarantees are given for any intermediate re-
sults. The behaviour of an anytime algorithm is described by a per-
formance profile. A performance profile describes how the quality of
the output of the algorithm varies as a function of the computation
time. The quality measure of the output may be any characteristic
of the result of an algorithm that we find significant. One anytime
algorithm could have several performance profiles tracking different
attributes of the results it returns. A performance profile is typically
given in the form of a graph that plots output quality against runtime.

Itis clear that anytime behaviour of PSMs is desirable. Such PSMs
are usable even when there is insufficient time to compute complete
solutions. This is often the case given the intractable nature of typi-
cal tasks for PSMs. Also, such PSMs are applicable in real-time sit-
uations when the available computation time is often short and not
known in advance. Thirdly, they offer the user the possibility to trade
solution-quality against computation time, making the PSMs more
widely applicable when selected from a library.

Perhaps surprisingly, anytime PSMs occur frequently. Many PSMs
in the literature turn out to have an anytime nature, even when they
were not developed with this purpose in mind. We have analysed the
PSMs from a modern textbook on knowledge-based systems [9], and
have found that many of the methods discussed there have anytime
behaviour. This will be illustrated in section 4, where we discuss ex-
amples which are all taken from this textbook, many of which are
used in realistic KBS applications.

3 A schema for anytime descriptions

The motivating question for this paper as given in the introduction
was: how should the computational performance of a PSM be de-
scribed?

Instead of the empirically obtained quality-performance graphs
used for this purpose in the literature, we aim for an analytic treat-
ment of the performance profiles in the form of an axiomatic descrip-
tion. This has the advantages of not needing expensive and unreliable
empirical performance observations, and of giving more insight in
the actual behaviour of the PSM.

We have found that this formulation can always be structured in
the same way. To describe the anytime functionality, four axioms are
needed, each of which describes a different aspect of the anytime
behaviour, as follows:

Initial behaviour: The initial period during which the behaviour of
the method is constant. Many anytime algorithms start producing
some output immediately, but the example in section 4.1.2 shows
that some methods need an initial “startup period” before they start
producing intermediate output.



Growth direction: This is the direction in which the quality of the
intermediate output changes with increasing runtime.

Growth rate: The amount of increase in quality at each step during
the computation. This increase in quality can be constant at each
step, but may also vary during the computation

End condition: The amount of runtime needed for the method to
achieve its full (ie. traditional) functionality. After this point, the
quality of the output no longer increases, since the maximum qual-
ity has been achieved.

In [4] we have put forward the hypothesis that this scheme of four
axioms would be suitable to describe a wide class of anytime be-
haviours. One of the results of this paper is the confirmation of this
hypothesis, by showing that this scheme can be used to describe the
anytime behaviour of a number of different and realistic PSMs from
the literature.

4 Example anytime descriptions of PSMs

In this section we apply the above scheme for describing perfor-
mance profiles of PSMs to a number of concrete PSMs. These meth-
ods are all described in a modern KBS textbook [9, Part I11].

4.1 The classification task

In a classification task, we are given a set of candidate classes and
a set of observed properties of a particular individual, and we must
compute which candidate classes satisfy the classification criterion
on the given properties. The details of the classification criterion can
vary, and are not relevant to our discussion (see [9, Ch. 7] for the
definition of various classification criteria such as candidates which
explain, match or cover the given observations).

Slightly more formally, the classification task has as inputs a set of
candidate classes Cs and a set of observations Obs, and must compute
all classes from Cs that satisfy the classification criterion on Obs:
{C;|C; € Cs A criterion(C;, Obs)}.

4.1.1 Linear candidate confirmation (MC1)

A trivial PSM for the classification task is to iterate over all candidate
classes, and add them to the output if they satisfy the classification
criterion®;

l\/Cl(Cs, bs) :

output = 0

candidates = {G; | G € Cs [Adi < n]
for C; € candidates
do if criterion(C;, Obs)
then out put = out put +C;
done
return out put

The algorithm MC1 is as given without the additional boxed text.
If the boxed text is added to the codwe obtain an anytime version
of MC1 that we will indicate with M C'1. The additional parameter
n indicates that the algorithm will terminate after n steps (clearly
larger values of n require more runtime). This implies that we model
our PSMs as contract-algorithms with the amount of available run-
time specified in advance. We can do this without loss of generality,
since [8] shows that such contract-algorithms can be converted to
interruptable algorithms at the cost of a constant factor of 4.

3 This method is called MC1 in [9, Ch. 7].

Following the guidelines from the previous section, the gradual
functionality of M C1 can now be specified as follows:

MCl1-initial: Initially no solutions are computed:
MC1(0,Cs, Obs) = 0

MC1-direction: The solution set only grows (and never decreases):
Wl(n, Cs, Obs) C Z\Tle(n + 1, Cs, Obs)

MCl1-rate: Each additional step adds at most one solution:

|MC1(n + 1,Cs, Obs)| — [MC1(n, Cs, Obs)| < 1

MC1-end: After considering all candidates, we have obtained the
full functionality:
n > |Cs| = MC1(n,Cs,Obs) = MC1(Cs, Obs)

Assuming a uniform distribution of the solutions over the candi-
date set, the theoretically derived performance profile determined by
these axioms is shown in figure 1a®.

4.1.2 MC1 with forward filtering (MC2)

This method is equal to MC1, but first applies an initial forward rea-
soning step, in which some of the observations are used to filter the
set of possible candidates. The method MC1 is applied to the re-
sulting candidate set. Instead of a single set of observations, MC2
receives two sets of observations as input, one to be used in the for-
ward filtering step, the other to be used in the candidate confirmation
step:

NCZ(CS, bsq, Gbsa):

output = @

candidates = {C]| C; efilter(Cs, Cbsy) }
for C, € candidates
do if criterion(C;, Qbsy)
then out put = out put +C;
done
return out put

Following the guidelines from the previous section, the gradual
functionality of MC?2 can now be given informally as follows:

The performance profile of MC2 is shown in figure 1b. It shows a
constant increase in quality (similar to MC1), but only after an initial
period needed for the filtering step.

Following the guidelines from the previous section, the gradual
functionality of MC?2 can now be specified as follows:

MC2-initial: Unlike MC1, MC2 does not immediate produce in-
termediate solutions, since it first completes the forward filtering
step. If ny indicates the duration of the filtering step, then:

n < ns — MC2(n, Cs, Obsy, Obsy) = 0

MC2-direction: similar to [MC1-direction].

MC2-rate: similar to [MC1-rate].

MC2-end: The total required runtime of MC2 is the sum of the two
stages. The duration of the filtering step is n ¢, and the duration of
the confirmation stage is determined by the number of candidates
that remain after the filtering step:

n > | filter(Cs, Obs1)| + ny —
MC2(n, Cs, Obs1, Obss) = MC?2(Cs, Obs1, Obs)
The performance profile determined by these axioms is shown in

figure 1b. It shows a constant increase in quality (similar to MC1),
but only after an initial period needed for the filtering step.

4 Our graphs are plotted as continuous functions, but in reality the increases
in output quality are stepwise.
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Figurel. Performance profile of MC1, MC2 and MC3.

MC2 is only attractive if the costs of the filter step (ny) are
outweighed by its savings (which equal the reduction in the can-
didate set: |Cs| — |filter(Cs,Obs)|), ie. when ny < |Cs| —
| filter(Cs, Obs)|, or equivalently ns + | filter(Cs, Obs)| < |Cs|.
Now notice that this states precisely that the end time of MC2 is less
then the end time of MC1 (see axioms [MC1-end] and [MC2-end]).

4.1.3 Hierarchical classification (MC3)

The first realistic PSM that we will discuss is hierarchical classifi-
cation (used among others in the MDX system [2]). This method no
longer does a linear traversal of the candidate set. Instead, the can-
didate set is organised as the leaves of a tree. The nodes in this tree
are “abstract classes”, representing abstractions of sets of candidates.
The PSM recursively descends down the tree, at each level deciding
if the abstract classes still satisfy the observations. If yes, the method
continues to descend down that part of the tree, if no, the entire tree
below the abstract class is pruned. At each step of the PSM, the in-
termediate solution is the set of all candidates (= all leaves) that can
be found under the currently considered abstract classes.

NC3(Tr ee, Qbs):

out put = | eaves(Tree)
current = {Tree}
next = []

while current # 0

do for ¢ € current

do if not criterion(c, Qbs)
then output = output - |eaves(c)
el se next = next + children(c)
done
current = next - ¢
next = @
done

return out put

The gradual functionality of MC3 can be characterised as follows:

MC3-initial: Initially, all candidates are still potential solutions:
]\/4\53(0, Tree, Obs) = leaves(Tree)

MC3-direction: an extra computation step can only decrease the set
of potential solutions:
]\7[\53(n +1,Tree, Obs) C M\C’/S(n, Tree, Obs)

MC3-rate: Taking b as the branching factor of the tree, and assum-
ing that at each level of the tree, at least 1 of the abstract classes
satisfies the criterion, and assuming a balanced tree, then each step
reduces the candidate set by a factor b (assuming a uniform reduc-
tion rate while descending the tree):
|W3(n, Tree, Obs)| > |W3(n+1, Tree, Obs)| >

b
MC3-end: MC3 needs as many steps as there are levels in the tree
n > mazdepth(Tree) —
MC3(n,Tree, Obs)=MC3(Tree, Obs)

Using the performance profiles. We have now defined anytime
performance profiles for three different classification methods. We
give three examples how these profiles help us with choosing which
method to apply. First, the profiles tell us how we can trade compu-
tation time for solution quality. For example, fig 1c shows that the
increase in quality of MC3 (ie the decrease in the candidate set) is
exponential while for MC1 and MC2 this linear. If it is important to
quickly obtain a good approximation of the final solution, then MC3
is more attractive than MC1 or MC2.

Secondly, MC1 and MC2 are incomplete (but sound) approxima-
tions of the final solution. The intermediate solutions of MC3 on the
other hand are unsound (but complete) approximations of the final
solution, since MC3 approaches the solutions from above, rather than
from below.

Thirdly, we see that not all methods start to produce approximate
solutions immediately. If such a property is important (e.g. in a set-
ting where some solution is always required but no guarantees can
be given on the available runtime), then MC2 is unattractive.

4.2 The parametric design task

We now turn to a very different type of task, namely the task of para-
metric design. In this task we are given a set of parameters and a set
of constraints, and have to compute an assignment for each parameter
such that these assignments are consistent with the given constraints.

Slightly more formally, given a set of parameters Ps and a set of
constraints Cs, we have to compute a set of parameter assignments S
with S = {(P;, Vi)|P; € Ps} such that consistent(Cs, S).

In the next two sections, we give two problem solving methods for
performing this parametric design task.



4.2.1 Param. design by constraint clustering (XCON)

XCON [6] is a method for parametric design based on dividing the
constraints in clusters. The constraints within a cluster have many
mutual dependencies, but no dependencies exist with constraints in
other clusters. This makes it possible to solve the problem in separate
steps, with backtracking occurring only within each step (namely per
cluster), and not between steps.

The XCON method simply iterates over the constraints clusters
C's;, solves each cluster separately (no details for this step are given
in the definition below), and adds the assignments found for each
step to the current output:

XCI]\I(PS, [Csy, ..

output = 0

for i=1to k
do CurrentPs = rel evant (Ps, Cs;)
S={(P;, V;) | P;€CurrentPs}
such that consi stent (Cs;, S)
output = output U S
done
return out put

.,CSk])Z

The gradual functionality of XCON can be characterised as fol-
lows:

XCON-initial: Initially no assignments have been computed.
XCON(0, Ps,[Csy,...]) = 0
XCON-direction: The set of assignments that is computed grows
monotonically.
XCON(n, Ps,[Cs1,..]) C XCON(n+1, Ps,[Csy,..])
XCON-rate: The maximal number of new assignments for a cluster
is the number of variables of the constraints in that cluster. This is
a maximum, since some parameters might have been computed in
earlier steps (clusters).
|XCON(n + 1, Ps,[Cs1,..])| — | XCON (n, Ps,[Cs1,..])|
< |vars(Ps, CSn+1)]
XCON-end: The complete functionality is obtained after & steps,
with & the number of constraint clusters in the input.
n>k—
XCON (n, Ps,[Csi,..,Csk]) = XCON(Ps,[Csi, .., Csi])

These axioms determine the performance profile, as shown in fig-
ure 2a. The graph shows a stepwise increase of the output quality in
k steps.

4.2.2 Parametric design by propose and revise (P&R)

Another well known method for parametric design is Propose & Re-
vise (P&R). The P&R method iterates over the set of parameters. In
each step, P&R takes a new parameter and proposes a likely value
for that parameter. This new assignment becomes part of the current
partial design. If this partial design is consistent with the constraints,
a next step can be taken. If the partial design violates the constraints
then it will be revised such that it becomes consistent with the con-
straints. After fixing the partial design the process continues with the
next parameter.

For XCON we used the set of assignments as the quality measure
for the computation. This same measure cannot be used for P&R.
Unlike XCON, P&R assignments in earlier steps might have to be
revised in later steps. As a result, the set of assignments does not
grow monotonically. For this reason, we use another quality measure
for P&R, namely the set of assigned parameters instead of the set

of assignments (ie parameters plus their values). This set does grow
monotonically, since parameters might be revised, but once assigned,
a parameter is never left without a value in later stages of the compu-
tation.

P&R( Ps, Cs):

output = 0

for i=1to | Ps|
do V; = propose(output, P;)
output = output = (P;, V)
if —consistent(Cs, out put)
then output = revise(Cs, out put)
done
return out put

P&R-initial: Initially no assignments have been computed.
P&R(0, Ps,Cs) = 0
P&R-direction: Unlike XCON, the set of assignments does not
grow monotonically in P&R, but the set of assigned parameters
does. The set {P;|(FP;, V;) € ﬁ&?R(n, Ps,Cs)} contains all pa-
rameters that have been assigned a value after n steps. The mono-
tonic growth is then:
{Pi|(P:, Vi) € P&R(n, Ps,Cs)} C
{P,|(P;,V}) € P&R(n+1, Ps,Cs)}
P&R-rate: P&R iterates over the set of parameters, therefore each
step yields exactly one additional assigned parameter:
[{P:|(P:, Vi) € P&R(n + 1, Ps,Cs)}| =
[{P:|(P;, Vi) € P&R(n, Ps,Cs)}| + 1
P&R-end: The method needs as many steps as there are parameters:
n > |Ps| = P&R(n, Ps,Cs) = P&R(Ps, Cs)

These axioms determine the performance profile, as shown in fig-
ure 2b. The set of assigned parameters grows at a constant rate during
the computation.

Concerning axiom [P&R-direction]: This axiom does not require
that partial assignments are a subset of the final assignments (ie par-
tial assignments are allowed to be unsound). However, in the VT
application which used the P&R method, it turns out that the domain
knowledge used in the propose step is so good that revision is almost
never needed: on test-cases with 1000-2000 parameters (and there-
fore as many propose steps), there were only some 10-20 violations
(and therefore as many revision steps), ie only 1% of the proposed
values were wrong [5]. Thus, although the soundness of XCON'’s ap-
proximations (expressed by XCON’s axiom [XCON-direction]) can-
not be guaranteed for P&R, in practice P&R comes very close.

Using the performance profiles. Again, the performance profiles
for the different methods can be used for selecting problem solving
methods. It follows from axioms [XCON-end] and [P&R-end] that
P&R divides the process in | Ps| steps, and XCON in & steps (k the
number of constraint clusters). Since every cluster will assign at least
one additional parameter, we have |Ps| > k, so P&R divides the
process in much smaller steps then XCON. If it is important that
new solutions are produced at a constant rate during the computation
process (e.g. because of interface requirements with users or other
programs), then P&R is more attractive from an anytime perspective.

5 Conclusions & Future Work

Conclusions We have given axiomatic descriptions of anytime be-
haviour of PSMs. This is unlike existing work on anytime algorithms,
which obtains performance profiles by simulation and measurement.
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Figure2. Performance profile of XCON and P&R

Such empirically obtained profiles are dependent on the quality of
the simulations, which are often expensive, and also not very reliable
since they depend on the particular input distribution used for the
simulations. Notice that the qualitative profiles given in the various
graphs can be derived from our axiomatic descriptions (sometimes
after making some plausible additional assumptions), while the con-
verse is not true. On the other hand, our axiomatic descriptions are
often limited to giving an upper- or lower-bound on the rate of the
quality improvement, whereas empirical performance profiles do ob-
tain values for the improvement rate.

We have given a scheme for constructing such an axiomatic de-
scriptions: each description should consist of four statements, de-
scribing initial behaviour of the PSM, direction of quality change,
rate of quality of change per time unit and the time at which the op-
timal output quality is obtained. This regularity in the description of
the dynamic behaviour of PSMs confirms a hypothesis put forward
in our earlier work [4].

Our axiomatic description of performance profiles is based on
our earlier and more general proposal for describing gradual prop-
erties of PSMs [11]. It turns out that performance profiles can be
described in our framework for describing gradual properties. This
was not obvious beforehand because the framework must be used
in a slightly non-standard way. It was designed to deal with func-
tional properties (I/O-pre/post-conditions), while anytime behaviour
is a non-functional property (concerning also the computation time,
and not only the 1/O relation).

We have applied our proposal to a number of well-known and real-
istic problem solving methods. To our surprise, many existing meth-
ods display a natureal anytime behaviour, although they were never
designed for this purpose. All of these anytime behaviours fitted nat-
urally in our proposed description schema.

Future Work In the axioms in this paper, we give only upper- or
lowerbounds for the rate of quality improvement (the third axiom in
our general scheme), Instead of such upper- and lowerbounds, we
would like to give more precise expected values for the improvement
rate.

We could investigate the use of temporal formalisms for specifying
the behaviour axioms (see e.g. [10] for a survey), instead of “encod-
ing” them in predicate logic via an additional parameter n that we
had to add to each PSM in order to represent run-time.

Finally, in [4] we have developed some simple techniques for
proving dynamic properties of KBS, and we used the interactive the-

orem prover KIV [7] to verify a simple PSM (in fact, MC1). All
the formal definitions in this paper (both program code and axioms)
have been given in a syntax already very close to that used in the
KIV systems. We expect that our techniques can be applied to ver-
ify the axiomatic anytime descriptions given in this paper, yielding
machine-assisted formal proofs of the anytime behaviour of realistic
PSMs.
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