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Abstract. The present investigation aims at the construction of a 
sequential decision procedure derived from a partially observable 
Markov decision process (POMDP) model. An optimal clinical 
management strategy based on a risk assessment of patients is to be 
found. A decision theoretic cost model different from the general 
approach has been selected for this clinical management (and 
classification) task: costs were determined by specifying a mini-
mum acceptable sensitivity and specificity of the overall procedure. 
The aim is to find the earliest possible decision epoch where a final 
decision can be made under these quality restrictions. Solution 
method is non-linear optimisation combined with a robust partial 
classification method. The probabilities necessary for the model are 
estimated from data of a clinical study in liver transplantation 
patients. Decision epochs were at donor organ assessment, imme-
diately before surgery and postoperatively in the intensive care 
unit. Parameters obtained within decision epochs were combined to 
scores by artificial neural networks (ANNs). The encouraging 
results show the applicability of the model in the clinical setting.  

1 INTRODUCTION 
Our aim is to improve cost-effectiveness in medical supply, 
especially in diagnostics and therapy. One example is the demand 
for cutting costs in clinical and laboratory tests, while maintaining 
the present high diagnostic level. A common problem for patient 
management in intensive care is the prognosis of the patient. While 
for some patients it is necessary to follow a substantial part of the 
clinical course to adequately assess the final prognosis, for others 
this assessment can easily be made very early because all clinical 
parameters point to the same direction. This situation is found in 
liver transplantation patients, a field where the high risk decision 
can be modelled in a decision-theoretic framework. The aim was to 
construct a decision procedure to determine if a patient is a high 
risk patient or not and to estimate the probabilities used in the 
model from the data. Thus it is shown that the model can be 
applied in the clinical setting.  

The data for the investigated decision problem come from a pro-
spective longitudinal cohort study in liver transplant patients (Do-
nor) covering a five year observation period. 24 clinical tests in-
cluding 9 subjective assessments were included in the study. A 
database of 257 organs (cases) was available for analysis. Risk was 
defined as a transplant survival of less than 30 days. The sequential 
decision problem was to determine the risk for the organ (patient) 
as early as possible, (or at the lowest cost), and includes three 

steps: 1. selection of the donor, 2. after organ harvesting, and 3. 
three days after the recipient operation. Possible therapeutic 
consequences are at the first step, rejection of the donor, at the 
second, rejection of the organ for transplantation and, at the third 
step, optimisation of intensive care management. All donor organs 
included in the study were assessed as principally suited for 
transplantation. General criteria were: donor age under 60 and a 
stay in the intensive care unit less of than one week [3].  

2 THE PARTIALLY OBSERVABLE MARKOV 
DECISION PROCESS 

In the following, first the framework of the partially observable 
Markov decision process (POMDP) will be briefly described. Then 
the focus will be on the application domain, the management of 
patients after liver transplantation, and a model will be described 
that was built to represent the problem. Some issues of problem 
solving will be discussed after this. Finally, it is shown how the 
problem-solving procedure for POMDPs could be adapted to deal 
with additional structure.  

A POMDP is a sequential decision model describing a stochas-
tic control process with partially observable states and has the 
following key ingredients: a finite or infinite set of decision epochs 

{ },...3,2,1:=E , a finite set of states Θ, a finite set of actions A 
independent of Θ, a finite set of observations X, a function 

]1,0[: →Θ××Θ AT  representing state and action dependent 
transition probabilities that describe the dynamic behaviour of the 
modelled environment, a function ]1,0[: →××Θ XAO  repre-
senting observation probabilities that model the relationship among 
observations, states and actions, and a function 

ℜ→Θ××Θ AL :  denotes a loss (cost) model assigning immedi-
ate losses to state transitions and models payoffs associated with 
such transitions. The Markov property simplifies the model in a 
way, that losses and transition probabilities depend only on the 
current state and action and not on the past.  

In POMDPs process states are hidden to the doctor and deci-
sions can be based only on observations and past actions. This is 
important when the optimal policy for all possible situations a 
doctor may encounter should be found. At each decision epoch k, 
the doctor selects - based on previous observations resulting in a 
belief state - an applicable action Aa ∈  that again results in an 
observation )(ax  and a new belief state. This defines a decision 
rule kδ . A policy π  provides the doctor with a prescription of 
choosing an action for every future state and can be considered as a 
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sequence of decision rules. For a given POMDP the objective is to 
construct a policy that minimises the expected cumulative risk over 
some horizon of interest. POMDPs are, in essence, Bayesian deci-
sion processes [4].  

In a (perfectly observable) Markov decision process (MDP) (E, 
Θ, A, X, T, L ) (see [4]) with a finite number of states that are al-
ways known, the optimal policy can be found efficiently using 
dynamic programming techniques. However, in a POMDP under-
lying states are not known with certainty and the POMDP must 
first be transformed into an equivalent belief-state MDP (see [4]). 
A belief state assigns a probability to every possible state Θ∈ϑ  
and there is an infinite number of belief states one may encounter. 
The optimisation task predominantly is complicated by the infinite 
number of possible belief states. 

A new belief state b’ can be calculated from the current belief 
state b by Bayes rule when action a is performed and observation x 

is observed as follows: 
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where b, b’ denote belief states and )(ϑb , )(' ϑb  the probability of 
the state Θ∈ϑ  in respect to that belief state. The denominator 

),|( baxP  can be treated as a normalising factor causing the 
components of b’ to sum up to 1.  

In the present paper a finite horizon problem is considered. It 
includes a finite number K of possible decision epochs where a 

policy is adopted which minimises the expected risk ( )∑ =

=

Kk
k kE

0
ρ , 

such that kρ  is the risk obtained at time k. It is also very common 
to define a reward model where rewards are viewed as negative 
losses. Then expected rewards are maximised instead of risks being 
minimised. In the medical domain it seems to be more appropriate 
to model the problem in terms of risks than in terms of rewards.  

3 THE DECISION PROCESS 
The sequential decision problem mentioned in the clinical data 
description is a special formulation of a more general sequential 
decision problem. It consists of several (K) decision epochs. Addi-
tional information is assumed to be supplied by clinical tests or by 
clinical scores. They will be comprised under ‘actions’ resulting in 
observations. Now the decision process runs as follows: 

A doctor is supposed to decide a patient’s further therapy based 
on the actual (risk) state being unknown to him/her. The clinical 
state of the patient is described by the set Θ of discrete, stochastic 
variables. However, the doctor only can observe the belief state at 
decision epoch k, and can use this observation to optimise subse-
quent decision making. (Note, that the observation function O is 
independent of time.) On each decision epoch (but the last) the 
doctor has to decide on three possible actions, first if the decision 
process should continue by an test action a and observation of the 
results x(a), or second he or she can act as if the patient is to be 
classified as under risk, or third not under risk. Assume a prior 
distribution on Θ at the initial decision epoch k = 0, reflecting the 
doctor's prior beliefs on the clinical state of the patient. Given a 
sequence of action choices for all decision epochs, and a probabil-
ity distribution over the set of possible state sequences, the ex-
pected loss of the sequence of action choices can be computed. If 
the minimum expected risk (including expected costs for future 
observations) is for acting as if the patient is at risk (not at risk), 
then the appropriate therapy will be maintained over all subsequent 

decision epochs and no future observations will be considered. If 
the physician decides on observation, he or she performs an action 
a1 (clinical test) and makes an observation x(a1).In this case he has 
to decide again for finally selecting the appropriate therapy (and 
classifying the patient) or performing another action a2 with obser-
vation. At the last decision epoch no observation is possible. A 
final decision for a therapy based on risk or non-risk is to be made.  

The objective is to find an optimal decision-theoretic plan or a 
policy π, i.e. to select actions during the decision process in a way 
such that the expected risk is minimised. Prior to the first action 
choice, a policy π is composed, which prescribes an action choice 
for each decision epoch k < K, given the history of past actions and 
observations. At each decision epoch the doctor also incurs a loss; 
the losses associated with subsequent epochs in a realisation of the 
decision process are combined by a risk function. When the deci-
sion criterion is not the minimum expected risk, but the earliest 
possible decision on average, this can be achieved by setting all 
test costs equal to 1. This results in a decision criterion which 
simply minimises the average number of decision epochs and is the 
approach chosen for this paper. 

In [5] a loss model has been proposed that departs from the 
general approach in decision theory. Application of decision theory 
is based on elicitation of losses/utilities or costs attached to the 
possible outcome by doctors or patients. For ease of calculation in 
applications of decision theory often the patient's loss and the costs 
of the tests will be assessed on the same scale, e.g. in cost-benefit-
analysis. This may be unacceptable to some patients. To avoid this 
complication, in [5] and also in this paper a different approach to 
obtain the loss functions is taken. The losses are determined by a 
priori fixed sensitivity and specificity of the overall procedure. 
Instead of minimising the whole risk function, this function is split 
up into two parts: the loss of the patient and the test costs. Then 
first the patient's loss is limited by a fixed threshold, and then the 
costs of the tests are minimised under this restriction.  

4 THE DECISION MODEL 
It this application area 24 clinical tests (observations in POMDP 
terms) were available in the clinical data set. However, they cannot 
assumed to be independent. In the case of dependency the problem 
of determining an observation function O and the calculation of the 
new belief state is hardly feasible given the situation of 24 obser-
vations and available data of 257 patients. Therefore, it proved to 
be useful to restrict the complete model and to define a set of deci-
sion epochs where a decision was possible, i.e. not for each of the 
24 observations (clinical tests) a decision epoch was assumed, but 
decision was delayed until all donor parameters, all preoperative or 
all postoperative parameters were measured or assessed.  

Peek [2] modelled in a similar context the decision process by a 
causal probabilistic network. Here a different approach is selected 
possibly coping both for the dependencies in the data and because 
of the limited data base for the combinatorial complexity for 
possible series of actions: all observations done up to a decision 
point will be combined to scores based on three artificial neural 
networks (dotted circles in figure 1). Thus the probabilities needed 
for the POMDP model are implicitly estimated by neural networks. 

Artificial neural networks (ANN) can be considered as a wide 
class of flexible non-linear regression and discriminant models. 
They consist of an often large number of "neurons", i.e. simple 
linear or non-linear computing elements, interconnected in often 



 

 

complex ways and organised into layers. (See e.g. Ripley [6]). 
Here the interest is in classification models (Feed-Forward-Neural-
Networks) because the POMDP models a classification rule. The 
Gold standard is given by 30 days survival of the patient. The ANN 
is modelled with as many output units as are states in the POMDP. 
For each state a (ANN-)score will be determined by the output 
function of the output neuron corresponding to the state. The out-
put neurons are modelled using a logistic activation function. 

The underlying Markov process is as follows: Assume the pa-
tient is in a non-risk state. If a bad organ is transplanted, he might 
get into a very bad state. If, however, the doctor decides to  discard 
this organ, the patient would remain in this state and the decision 
process is finished. If he gets a good organ he also remains in the 
good state, etc. Unfortunately this process cannot be observed, 
because the Gold standard (30 days survival) does not cope for 
short-term dynamics in the process. Thus an approximation has to 
be made by assuming that the patient does not switch states. Then 
the underlying process is no longer a real Markov process, but the 
belief MDP still is a Markov process. 

 
States 
The patient can be in two states: risk and non-risk. The organ is 
assumed not to switch states, i.e. will remain in one state for the 
whole decision process. This is due to the fact that risk is clinically 
defined as survival of less than 30 days. This definition does not 
allow for a determination of transitions. An alternative would be to 
judge rejected organs as risky, and non-rejected organs as safe and 
to allow for transitions after transplantation. But this was not 
agreed to be a Gold standard by the clinicians. Of course, the 
model itself is flexible enough to cope with transitions. However, 
here the clinical interest is not to model short term transitions in the 
intensive care unit, which can be seen as a system partially under 
control, but to get information on how to act early on long term 
events that can not be foreseen from clinical practice. Thus, it was 
not the aim to model short term dynamics but long term risk as an 
additional information to the clinician for strategic decision making 
in intensive care. Therefore, the transition probabilities are quite 
simple, because the organ (patient) always remains in the same 
state: 1)',,( =ϑϑ aT  if 'ϑϑ =  and 0 else independent of the action. 

Observations 
There are a total of 24 possible clinical tests, grouped in three 
scores, resulting in three observations of the restricted model.  

 
Actions 
Two sets of actions are defined: 
1. Therapeutic actions as surgery, actions defining intensive care 

management, etc. There may be several clinical actions 
necessary at one decision epoch, and therefore they consist of 
actions necessary for risk patients and those necessary for non-
risk patients. The sets may be different after each decision 
epoch (donor organ, immediately preoperatively and 
postoperatively). Assuming that at least one observation has to 
be taken, there are six therapeutic actions forming the set 

{ }332211 no_risk,risk,no_risk,risk,no_risk,risk=:treatA , 
each element representing a bundle of necessary therapeutic 
actions for the specific situation. When the physician once 
selects an action from treatA , the remaining selections are 
determined and have to be from this set, for subsequent deci-
sion epochs and for the same risk, e.g. after selecting 

2no_risk  only 3no_risk  is admissible.  
2. Test actions represent both an action (ordering a test etc.) to 

observe a clinical parameter and the necessary therapeutic ac-
tions to maintain the present clinical status of the patient. A 
side effect is a delay in the therapeutic (risk) classification. In 
the liver transplantation domain, performing the same test 
twice provides no additional information. Therefore, each test 
is assumed to be applied at most once. Then three test actions 
are possible, each provided by an ANN score including the 
former tests. 

 
Losses 
Each test score (ANN score) has to be assigned a specific cost (e.g. 
monetary) which is assumed to be the loss of the corresponding 
action. Therapeutic actions being inappropriately assigned to the 
patient result in a loss the patient incurs when incorrectly treated. If 
the therapy is appropriate for the present state of the patient, the 
loss is 0. Because of the relation of long-term risk (30 days sur-
vival) to the short-term dynamics of the decision process it is rea-
sonable to assume, that for all therapeutic actions for inappropriate 
treating the patient as risk patient 
( { }321 risk,risk,risk=:_ risktreatA ) the same losses apply. The 

same is true for { }321 no_risk,no_risk,no_risk=:isktreat_no_rA , 
however, the losses may have a different value compared to the 
former. The losses for the therapeutic actions are implicitly deter-
mined by the given constraints in the loss model.  

The observation function O must be estimated from the data 
(modelled by the ANNs) except for actions from treatA  where no 
observations are taken and the value of the function equals 1. 

5 A SOLUTION METHOD FOR  
THE CONSTRAINED POMDP MODEL 

Before the POMDP model can be applied in the clinic two prob-
lems have to be solved, the implementation of the proposed here 
loss model and the estimation of the observation function. The 
POMDP provides a means to help the physician to act in an opti-
mal way and thus supports the clinical management. At the same 

risk1 risk2 risk3

no risk1 no risk2 no risk3

decision step:        1                               2                           3

trace of a 
sample 
patient

 

Figure 1. The complete POMDP model (simplified to a finite number of
states). For actions within dotted circles all sequences are possible.
Unlabeled states correspond to  observations (test actions). Within
dotted circles all sequences are possible. A trace of a sample patient
with final risk decision after step 2  is indicated by grey arrows.  



 

 

time in the model investigated here an adequate management as-
sumes the classification of the patient– at least at the last decision 
epoch – into the correct risk class (risk or no risk). This fact can be 
validated by the Gold standard – 30 days survival. Thus the 
POMDP can be considered as a classification procedure, and for 
each state conditional probabilities )|( ssP ¬  can be determined. 

)|( ssP ¬ is the probability that the patient who is in state s ac-
cording to the Gold standard was classified into a different state by 
the POMDP procedure. The loss model now can be implemented 
by constraining the conditional error probabilities, in this specific 
setting let ),0|1( πP  be the probability that a non-risk patient is 
classified as a risk patient by policy π , and ),1|0( πP  the 
probability that a risk patient is classified as non risk, respectively. 
Then the loss model leads to a constrained POMDP as a POMDP 
with the additional condition that given conditional error 
probabilities α  and β  for all policies π  απ ≤),0|1(P  and 

βπ ≤),1|0(P  are true. Admissible policies for the constrained 
problem are identified by considering only those satisfying both the 
constraints. Then an optimal policy for the constrained problem 
can be defined in a similar manner as for the POMDP.  

First the local behaviour of the POMDP is considered. For the 
rest of the paper, at least one observation is assumed to be taken. 
At epoch k the doctor decides for three actions, riskk, no_riskk, or 
testk, and divides all possible belief states into three disjoint sets. 
Let ( )bkδ  denote the action resulting in the application of decision 

rule kδ  to the actual belief state b, { }k
)(

0 =(b)|: no_riskk
k b δ=Ω  

and { }k
)(

1 =(b)|: riskk
k b δ=Ω . Furthermore, the expected 

risk ,1,0, =iri  attributed to one of the states risk and no risk 
( Θ∈10 ,ϑϑ ) for an admissible policy π can be written as follows: 
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,1,0,; =≠ jiji for the priors ),( 10 pp=p , where )0|1(L  and 
)1|0(L  are the losses for the non-risk and risk group. Given the 

assumptions of the final model )(' ϑb  can be simplified to 
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The risk function of an admissible policy π is the expected loss  
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under the constraints απ ≤),0|1(P  and βπ ≤),1|0(P . 
It can be shown [5] that an equivalent problem is a non-linear 

optimisation problem with 12 −⋅ K  dimensions. Let 
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k SandSb ηη ≤≤= . Then the problem can be 
formulated as a constrained minimisation problem: 
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The cut-off points of the ANN scores are determined by a rank 

procedure (see Tusch [5]). The optimal *
kα  and *

kβ  can be deter-
mined by a non-linear optimisation procedure. The search for 

optimal cut-offs follows 32 −⋅ K  dimensions, because at stage K  
the cut-offs are equal.  

It should be mentioned that a solution for the constrained deci-
sion problem can not always be found. It depends highly on the 
quality (information content) of the tests scores at the different 
stages, if there is a solution for given α  and β . 

Finally, some technical aspects of artificial neural networks and 
linear discriminant analysis to build scores are considered. One 
important problem in practical applications of neural networks is to 
avoid overfitting, i.e. to determine the appropriate complexity of 
the network. Model selection and regularisation are the two main 
approaches to controlling the complexity of neural networks. For 
model selection the model with the minimum generalisation error 
estimate is selected, which best can be done by bootstrapping for 
non-linear models, but Schwarz's Bayesian information criterion 
(BIC) [7] is reasonable effective for larger samples and much 
cheaper than bootstrapping [6 p.61]. One way of regularisation is 
weight decay which can be viewed as penalised ridging. Regulari-
sation reduces to ridge regression in the case of linear models. For 
reasons of easier interpretation for doctors [5] and reasons of ade-
quate comparison to LDA only augmented multilayer perceptrons 
(AMLP) and radial basis function models (ARBF) were 
considered. Linear discriminant analysis (LDA) can be considered 
as a very simple ANN without hidden units and therefore is suited 
as a means for comparison. LDA is a well known method [9]. To 
cope for overfitting, variable selection for the additional variables 
at each step and the ridge method were applied. 

6 RESULTS 
The data was processed in the same way for the augmented multi-
layer peceptron (AMLP), the augmented RBF (ARBF), and the 
linear discriminant (LDA) model except for variable selection 
applied only to LDA. Discrete variables were dichotomised. As far 
as possible from a clinical point of view, missing values were 
eliminated by imputation, i.e. for continuous variables the mean 
value and for dichotomous (‘yes/no’) the most frequent value was 
imputed.  

The ANNs (AMLP and ARBF) were modelled using SAS and 
the TNN3 macros by W.S. Sarle (SAS Institute, Cary NC) with 
modifications from the author to cope for pruning of  the networks. 
(See  [8].) The final networks had 4 input neurons for epoch 1, 4+2 
for epoch 2, 4+2+3 for epoch 3. Input neurons of previous epochs 
were included to cope for dependencies in the clinical tests. Weight 
decay by MAP Bayesian training with hyperparameters estimated 
by the program was used (see e.g. Ripley [6]). The importance of 
connections to the hidden units of the ANNs was investigated by 
model selection [8]. All models with and without connections were 
compared according to three measures: 1. BIC, 2. 10-fold cross 
validation error rate, and 3. randomly selection of a training and a 
validation set (1:1) and using the validation error rate. The results 
were very similar. The first method (BIC) resulted in a model 
without hidden units which is equivalent to the linear discriminant 
function. When using the methods in the above sequence, an in-
creasing number of hidden units (up to two) was obtained. For 
figure 2 a number of hidden units corresponding to measure 2 was 
chosen. Then ANNs were obtained with one hidden layer on aver-
age (for the three ANN scores). The results are given in figure 2. 

For every epoch of the procedure a linear discriminant function 
was constructed using stepwise variable selection with the standard 

(1) 

(2) 



 

 

criteria of the SPSS statistics program (SPSS Inc. Chicago, Il.). 
Nine variables were selected for the final procedure. Discriminant 
analyses were performed using SAS statistical procedures. 

Figure 2 displays the results for the liver transplantation data set 
in terms of misclassification error and average step count for the 
entire sequential decision rules based on AMLP, ARBF, and LDA 
with constraints α=β and different values.  

7 DISCUSSION 
POMDPs provide a powerful modelling framework for deci-
sion-theoretic planning, with promising applications to multi-stage 
clinical decision problems. Recently, several models have been 
proposed [1,2]. A discussion of these developments is given in [2]. 
The POMDP model provides a considerable flexibility compared 
to other approaches. (See e.g. [10].) The restriction imposed by the 
Markov property, however, might be critical in the investigated 
application domain. To cope for dependencies in the clinical data 
input neurons of previous decision epochs were included into the 
ANNs in a way sacrificing the Markov property. This method is 
feasible (and necessary) only for the smaller number of decision 
epochs that was achieved by restricting the original model. The 
restriction was useful, because the generality of the standard 
POMDP model limits practical application of the framework due to 
the computational complexity of associated solution methods. The 
specialised POMDP form and an algorithm to support a frequently 
encountered type of clinical management problem assumes several 
restrictions on the effects of actions on state development, and on 
the structure of admissible solutions. These restrictions jointly 
reduce the number of action-sequence classes inducing a different 
probability distribution on state sequences. The proposed algorithm 
exploits this property by basing the decisions on clinical scores or 
test results. In this paper, the problem of constructing a sequential 
management decision process is embedded into a classification 
task because therapeutic decisions are based on the underlying 
classification. The classification into two (risk) groups at an aver-
age minimum cost or at the earliest possible time has been investi-
gated by use of a POMDP model and implicitly estimation the 
probabilities by ANNs. The quality of the procedure was main-
tained by specified upper bounds for the conditional errors of the 

entire procedure α  and β . Both α  and β  had to be feasible for 
the procedure, i.e. their possible range depends on the (statistical) 
information provided by the given (ANN) test scores. The aim was 
to construct an optimal (Bayes) policy and to investigate its 
properties on a clinical data set of liver transplantation patients. 
However, the (Bayes) policy is optimal when the distributions are 
completely known. This is a general problem, common to most 
classification procedures. Here a robust data-driven optimisation 
procedure was selected exhibiting a reasonable good cross 
validation error. (10-fold cross validation was chosen because it is 
more effective than a split into test and learning set, especially in 
relatively small data sets [6]).  

In this paper an approach to supervised learning was explored. 
This led to a problem of determining the gold standard for every 
decision epoch. Therefore, it was assumed that donor organs 
(patients) did not switch states. Alternatively, a reinforcement 
learning approach as already anticipated by using ARBF networks 
could circumvent this problem by considering the decision problem 
as an optimal stopping problem. Approximation methods as 
Q-learning or TD(λ)-learning might then be feasible [11]. 

The model, as it has been developed in the paper, has been 
restricted to a very common clinical situation. However, extensions 
are possible. Two possible extensions will be discussed. Firstly, the 
model was restricted to two states. The methodology can easily be 
extended to more states [5]. Secondly, sensitivity and specificity 
were used as constraints. The positive and negative predicted 
value, i.e. the posterior probabilities )(ϑb , may also be used, 
instead of the conditional probabilities (see Tusch [5]).  
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Figure 2.   Comparison of the procedures under constraints α=β=25,  
 30, or 33%. Probabilities for the POMDP were estimated by 
AMLP = augmented multilayer perceptron, 
ARBF = augmented RBF network, 
LDF = linear discriminant function (not admissible for α=β=25%). 


