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Abstract. It often occurs that a system can be described by sev-
eral competing models. In order to distinguish among the alterna-
tive models, further information about the behavior of the system
is required. One way to obtain such information is to perform suit-
ably chosen perturbation experiments. We introduce a method for
the selection of optimal perturbation experiments for discrimination
among a set of dynamical models. The models are assumed to have
the form of semi-quantitative differential equations. The method em-
ploys an optimization criterion based on the entropy measure of in-
formation.

1 Introduction

Scientists and engineers are frequently faced with situations in which
a given system can be described by several competing models. When
analyzing the synthesis rate of a product in a catalized chemical re-
action, one may end up with several equations that all satisfy a set of
measurements [13]. For the mitotic clock of early embryos, a dozen
of models predicting the observed periodic behavior of the concen-
trations of key proteins has been suggested [9].

In order to identify which of the given models best describes the
actual situation, new observations have to be made. These can be
obtained by performing supplementary perturbation experiments. In
a perturbation experiment the structure of the system and/or the ex-
perimental conditions are changed. An experiment discriminates be-
tween the competing models, if the predictions of some of the candi-
dates, which have been properly modified to reflect the experimental
change, fit the newly obtained data whereas others do not. The prob-
lem of model discrimination can then be defined as the problem of
selecting an experiment that gives rise to observations matching the
predictions of as few of the models as possible.

Incomplete knowledge about the system to be understood does
not always permit the formulation of detailed quantitative mod-
els. In what follows we assume that the models are given in the
form of semi-quantitative differential equations. Appropriate semi-
quantitative simulation techniques are used to derive interval predic-
tions for the model variables. As measurements obtained in the ex-
periments may be imprecise, they are considered to be intervals as
well.

We present a method for the systematic choice of perturbation
experiments for the discrimination of semi-quantitative dynamical
models. Experiments are selected on the basis of a generalization of
an entropy criterion suggested by Box & Hill [2], which measures
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the information increment provided by each experiment. The con-
cept of entropy as a discrimination criterion has also been used in
statistics (e.g. [10]), and in model-based diagnosis (e.g. [4, 12]). A
novel aspect of our work is that we extend this concept to the case
of perturbation experiments and to situations in which experimental
systems are described by semi-quantitative dynamical models.

The in-principle applicability of our approach is illustrated on a set
of competing models of an oscillatory, second-order system. We will
consider six models of a mass-spring system and illustrate the choice
of suitable perturbations to discriminate between the models. The
principles involved in this example are applicable to the investigation
of more complex and less understood oscillating systems.

The presentation starts with a description of the problem of model
discrimination. A number of basic concepts are introduced and the
relationship between models and experiments is given. The criterion
for choosing a maximally-discriminating perturbation is described in
Sec. 3. In Sec. 4, the application of the method is illustrated on the
example. Sec. 5 discusses limitations and extensions of our method,
in the context of related work in statistics and model-based diagnosis.

2 Model discrimination by perturbation
experiments

The systems we will be concerned with in this paper are (physical)
systems controlled in experiments, also called experimental systems.
An example of an experimental systems is a cell culture allowed
to grow under controlled environmental conditions, including nutri-
ent supply and temperature. Control over an experimental system is
achieved by creating and maintaining its structure and by regulating
the experimental conditions under which the behavior of the system
evolves.

Suppose a set M of models of an experimental system has been
proposed. Let p(mi) be the a priori probability of mi ∈ M being
the correct model of the system. The probabilities can be derived
from preliminary observations on the system behavior or theoretical
considerations. If no prior knowledge about the relative plausibilities
of the models exists, equal probabilities are assumed. We say that the
models in M are competing. M is assumed to be complete, that is,∑

mi∈M p(mi) = 1.
In this paper we will model experimental systems by means of

semi-quantitative differential equations (SQDEs), that is, qualitative
differential equations (QDEs) enhanced with numerical information.
The quantitative information completing a QDE takes the form of
numerical ranges added to landmarks and of envelopes for monotonic
function constraints [1]. Fig. 1 shows two SQDEs describing a simple
mass-spring system. The models assume that the forces playing a
role in the experiment are a spring force and a friction force, but they
differ in the precise nature ascribed to the former.
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Figure 1. Damped mass-spring system and two QDEs m1 and m2 describing the system (for the notation, see [14]). The variables refer to the position x,
velocity v, acceleration a, mass m, gravity constant g, initial spring elongation l and friction constant c. The following intervals complete the QDEs to SQDEs:
range(m) ∈ [2.95, 3.05], range(g) = [9.83, 9.83], range(l) = [5.8, 6.0], range(c) = [0.3, 0.4]. The initial values for the position and the velocity are

[0.9, 1.1] and [0, 0], respectively. The constant k is specified by range(k) = [6, 6].
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Figure 2. SQBs derived from m1 (Fig. 1). The SQB in (b) is obtained after a perturbation of m1, increasing the initial velocity to [1.9, 2.1].

To distinguish between the models, additional information about
the system is required. This information can be obtained by per-
forming a suitably chosen perturbation experiment. In a perturbation
experiment the system structure or the experimental conditions are
modified. The changes have to be reflected on the competing mod-
els in such a way that the operations on a model correspond with
perturbations of the experimental system (Fig. 3).
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Figure 3. Correspondence between perturbation experiments and model
perturbations.

In order to predict the consequences of a perturbation, we employ
the semi-quantitative simulation techniques Q2 and Q3 [1, 8]. Q2 and
Q3 exploit the semi-quantitative information in an SQDE to refine a
qualitative behavior tree produced by QSIM. More specifically, they
rule out qualitative behaviors or transform qualitative behaviors into
semi-quantitative behaviors (SQBs) in which the qualitative values
are annotated with numerical ranges. Fig. 2 shows the oscillations
predicted by model m1, before and after a perturbation that consists
in releasing the object with nonzero initial velocity.

A semi-quantitative behavior is a prediction of the interval value
of the variables at the distinguished time-points, the time-points at
which some variable changes its qualitative value. For instance, the
SQB in Fig. 2(a) shows that at t3, the time-point at which x reaches
its maximum for the first time, the value of x lies in the interval
[−0.94,−0.51].

In addition to predictions of the value of a variable at a time-point,
we might be interested in the difference in value of a variable be-
fore and after a perturbation. Predictions of the relative interval value
of variables can be obtained by subtracting the predictions at corre-
sponding distinguished time-points in the behavior before and after
a perturbation, so-called meaningful pairs of comparison [3]. As a

consequence of the use of semi-quantitative information, these pre-
dictions may be weaker than necessary. We use the comparative anal-
ysis technique SQCA to obtain more precise predictions [14]. The
information in Fig. 2 allows one to infer, by subtracting ranges, that
the difference x̂ − x at the pair of comparison 〈t3, t̂4〉 lies in the
interval [−0.97,−0.19]. x̂ and t̂ refer to variables in the perturbed
system. Application of SQCA refines this prediction by narrowing
the interval to [−0.93,−0.19].

The amplitude in the behavior of the perturbed mass-spring sys-
tem, or the difference in amplitude in the behaviors of the perturbed
and unperturbed systems, are examples of behavioral features that
help in discriminating competing models of a system. A predicted
behavioral feature is an interval value calculated from a set of pre-
dictions by means of an arithmetic function. This may simply be a
predicted value or a relative value, as in the case of a predicted am-
plitude. A less trivial feature is the frequency of an oscillation, which
can be calculated from the interval ranges of the distinguished time-
points of two successive maxima.

Predicted behavioral features need to correspond with observed
behavioral features of the system. That is, it should be possible to
relate a predicted behavioral feature to some direct or indirect mea-
surement of quantities of the system. As measurements will be as-
sumed to have the form of confidence intervals, observed behavioral
features are intervals.

The results of a perturbation experiment can be used to recom-
pute the probabilities of the competing models. Models of which the
predictions do not agree with the observations will have an a poste-
riori probability equal to 0. The model discrimination problem can
now be intuitively stated as follows: find the experiment with values
for the observed behavioral features that make a maximum number
of models improbable. In the next section, we elaborate this intuition
by means of an approach based on concepts from information theory.

3 Method for the selection of perturbation
experiments

We will be interested in finding the perturbation yielding the highest
increment in information [2]. Consider a behavioral feature Y , with



interval values in D ⊆ R. Let e ∈ E be a perturbation experiment,
whose outcome yields a value Y e = [ye − ε/2, ye + ε/2] of the be-
havioral feature, where ye is the midpoint of the interval Y e and ε is
the size of the confidence interval for Y . The information increment
of e is formulated as

∆H(e) = −
∑

mi∈M

p(mi) ln p(mi) +

∑
mi∈M

p(mi | Y e) ln p(mi | Y e), (1)

where p(mi) and p(mi | Y e) are the a priori and a posteriori proba-
bilities of mi. ∆H reaches its maximum when the a posteriori proba-
bilities of all models but one are 0. A minimal value is attained when
the a posteriori probabilities are equal.

The p(mi | Y e)s in (1) are not known, since they are determined
by the outcome of the experiment. However, we can express the ex-
pected value of ∆H in terms of the probability distributions g

{e,Y }
i

of the behavioral feature Y . For brevity, ge
i instead of g

{e,Y }
i will be

used if no confusion about the behavioral feature being considered
is possible. The value of Y predicted by mi under perturbation e is
an interval V e

i ⊆ D, with distribution ge
i : D → R≥0 defined as

follows
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where | · | denotes an interval length. ge
i (y) expresses the probability

that the empirically-determined value of Y is [y − ε/2, y + ε/2] if
model mi is the correct model. (2) can be replaced by the following
equivalent expression, where the ge

i s are defined as piecewise-linear
functions:
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(3)

and V e
i and V e

i denote the lower and the upper bound of V e
i , respec-

tively. Fig. 4 illustrates the function ge
3 for an experiment e consisting

of replacing the object in the mass-spring system by a lighter object.
The behavioral feature in this case is the interval value for the ampli-
tude of the system.
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Figure 4. A plot of the function ge
3 for the amplitude of the mass-spring

system in an experiment consisting of replacing the object by a lighter object
(e4 in the next section). The prediction of model m3 (Fig. 6) perturbed

according to this experiment is Ve
3 = [0.46, 0.67], and ε = 0.1.

Call the expected value of the information increment ∆J(e). By
definition,

∆J(e) =

∫
y∈D

∆H(e)ge(y)dy, (4)

where ge(y) =
∑

mi∈M p(mi)g
e
i (y). By substituting the expres-

sion for ∆H(e) in (4) we get,

∆J(e) =
∑

mi∈M

p(mi)

∫
y∈D

ge
i (y){

∑
mj∈M

p(mj | Y ) ln p(mj | Y )

−
∑

mj∈M

p(mj) ln p(mj)}dy, (5)

where Y = [y − ε/2, y + ε/2] and

p(mj | Y ) =
p(mj)g

e
j (y)

ge(y)
(6)

via the Bayes rule. Combination of (5) and (6) gives, after algebraic
simplification,

∆J(e) =
∑

mi∈M

p(mi)

∫
y∈D

ge
i (y) ln

ge
i (y)

ge(y)
dy. (7)

The optimal next experiment to perform is the one for which (7)
is maximized. Intuitively, the criterion favors experiments for which
the corresponding model perturbation results in predicted intervals
for the behavioral feature that overlap as little as possible. On aver-
age, less overlap of the intervals will increase the chance that a mea-
surement of the feature discriminates between the models. This can
be illustrated by means of the predictions of the relative amplitude
by three alternative, equiprobable models of the mass-spring system.
Consider the case of a perturbation e1 replacing the medium with
an almost frictionless medium (setting c to 0), and a perturbation e3
increasing the mass to [11.95, 12.05] (see Fig. 5). The expected in-
formation increment is higher for e3, as the predicted intervals have
less overlap.
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Figure 5. Two sets of predicted behavioral features (relative interval values
for the amplitude). In (a) V e1

2 , V e1
3 and V e1

5 are obtained from m2, m3 and
m5, with perturbations according to e1 (see next section). In (b) V e3

2 , V e3
3

and V e3
5 are obtained from the same models with perturbations according to

e3. ∆J(e1) = 0.0176 in (a), and ∆J(e3) = 0.1246 in (b).

If several behavioral features Y1, . . . , Yk are taken into account,
the formula in (7) remains unchanged, except for replacing y by y, D
by D = D1×. . . Dk , the distributions ge

i (y) by joint probability dis-
tributions g

{e,Y1,... ,Yk}
i (y), and the integral by a multiple integral.

Intuitively, the criterion now tries to maximize the non-overlapping
parts of the k-dimensional boxes in D that are defined by the values
for the behavioral features predicted by the mis.

The soundness of the simulation algorithms referred to above
guarantees that the models will never be falsely discriminated. If
the measurement of the corresponding observed behavioral feature
is correct, this implies that a model will never be rejected on false
grounds. However, as a consequence of the incompleteness of the al-
gorithms, competing models may fail to be discriminated while they
should be.

On the basis of the selection criterion, a simple algorithm can be
imagined to identify the model from M (if any) that best describes
the real system by means of a minimal number of experiments. Let θ
be a number between 0 and 1, determining the threshold above which
we consider a model to be the best representation of the system. That
is, mi is assumed to best describe the system if p(mi) ≥ θ. Let
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Figure 6. Models m3-m6 together with m1 and m2 in Fig. 1 form a set of competing models for the mass-spring system. Models m1 and m3 assume linear
spring force. Models m2 and m4 assume soft spring forces (the stiffness of the spring decreases with the displacement), while the spring force in m5 and m6

is hard (the stiffness increases with the displacement). In m1, m2 and m5 the acceleration depends linearly on the velocity. The models m3, m4 and m6

assume quadratic dependency. The meaning of the variables and the constraints for QV (ẋ) and QV (v̇) is the same as in Fig. 1.

e1 e2 e3 e4 e5

m1 [0.9, 1.1] [0.12, 0.39] [0.8, 1.01] [0.63, 0.97] [1.13, 1.48]
m2 [0.9, 1.1] [0.11, 0.38] [0.81, 1.01] [0.62, 0.88] [1.57, 2.02]
m3 [0.9, 1.1] [0.29, 0.52] [0.88, 1.01] [0.46, 0.67] [1.24, 1.65]
m4 [0.9, 1.1] [0.34, 0.55] [0.8, 1.0] [0.41, 0.62] [1.22, 1.64]
m5 [0.9, 1.1] [0.18, 0.43] [0.81, 1.01] [0.64, 0.86] [1.34, 1.77]
m6 [0.9, 1.1] [0.23, 0.51] [0.83, 1.02] [0.41, 0.62] [1.09, 1.47]

(a)

∆J(ei)
e1 0
e2 0.5315
e3 0.0934
e4 0.7499
e5 0.6504

(b)

∆J(ei)
e1 0
e2 0.3163
e3 0.1239
e5 0.1694

(c)

Table 1. (a) Predictions for feature f1, the interval value for the amplitude derived from the models for the perturbations e1, · · · , e5. (b) The values of ∆J
computed for all perturbations, and (c) some values of ∆J after application of e4 (see text).

p(mj) be the a priori probabilities of the models and E a set of pre-
defined perturbation experiments.

while (∃mi ∈ M : p(mi) 	= 0 and ∀mi ∈ M : p(mi) < θ
and not E empty) do

determine e ∈ E for which ∆J(e) is maximal
perform experiment corresponding to e, determine Y e

compute the a posteriori probabilities p(mj |Y e)
set p(mj) to p(mj |Y e)
remove e from E

The algorithm selects perturbation experiments until one of the fol-
lowing happens: a model has a sufficiently high probability, all mod-
els have zero probabilities, or all possible experiments have been ex-
ecuted. If the algorithm terminates with p(mi) = 0 for all models,
obviously the assumption for completeness of M is violated.

4 Example and evaluation

Consider the six models of a mass-spring system listed in Fig. 1 and
Fig. 6 [11]. The models differ in the terms for the spring and the
friction force. The experiment consists in stretching and then releas-
ing the spring. Assume the following perturbation experiments can
be performed. e1: replace the medium by an approximately friction-
less medium (c = 0); e2: replace the medium by a more compact
medium (c = [2.85, 3.15]); e3: test with a heavier object having mass
[11.95, 12.05]; e4: test with a lighter object having mass [0.7, 0.8];
e5: release the object with initial velocity [1.9, 2.2].

We consider four behavioral features: Y1 is the interval value of
the maximum distance from the rest position (the amplitude); Y2 is
the interval value of the frequency of the system; Y3 is the relative
interval value of the maximum amplitude for the perturbed and the
original system; and Y4 is the relative interval value of the frequency.

Values for Y1 to Y4 have been derived from the perturbed mod-
els by means of semi-quantitative simulation and comparative anal-
ysis. The predicted intervals for the amplitude are shown in Table
1(a). The first perturbation gives rise to identical predictions from all
models. It is evident, even without looking at the value of ∆J(e1),
that the corresponding experiment will never distinguish between the

models. The rest of the perturbations also do not give distinct inter-
vals for this feature, but the predictions are not entirely overlapping.
Hence, the measurements in the corresponding experiments may dis-
criminate between at least some of the models.

Assume the amplitude of the system to be the only quantity mea-
sured in the experiments. Suppose the models have equal a priori
probabilities p(m1) = . . . = p(m6) = 1/6 and θ = 0.75, that is, a
model is considered best if its probability is larger than 0.75. At the
first step of the algorithm, e4 is chosen since it maximizes ∆J (see
Table 1(b)). Assume the experiment is executed and a measurement
[0.4207, 0.5207] is obtained. The measurement is not consistent with
the predictions derived from m1, m2, and m5 for this perturbation,
so that the a posteriori probabilities of these models become 0. The
a posteriori probabilities of the other three models after the experi-
ment are p(m3) = 0.2330, p(m4) = 0.3835 and p(m6) = 0.3835.
In the next iteration, e2 is selected (Table 1(c)). Assume the mea-
surement [0.3080, 0.4080] is obtained which gives rise to the poste-
rior probabilities p(m3) = 0.2794, p(m4) = 0.3428 and p(m6) =
0.3778. Next, e5 is chosen. A measurement [1.1340, 1.2340] causes
p(m3) = 0 and the algorithm terminates, giving m6 as the best
model of the system with p(m6) = 0.8964.

In order to evaluate the performance of the method we have
adopted the following strategy. First, one of the models (m6) was
arbitrary selected. “Experimental” data was then produced by gener-
ating random intervals within the predictions of m6. The length of
the random intervals was set equal to the size of the confidence inter-
val of the behavioral feature (ε = 0.1 in the case of the amplitude).
Finally, the algorithm of the previous section was applied given these
data. This procedure was repeated 20 times and the results analyzed.

In only 15% of the cases the model that was used to generate the
data was identified as the single remaining candidate. In the rest of
the cases the algorithm terminated with two to three candidate mod-
els that could not be discriminated. On average, for the identification
of the model 4 experiments were necessary. For comparison, when
the size of the confidence interval was taken to be 0.01, in 40% of
the cases m6 was identified with average number of experiments 2.5.
The results show, not surprisingly, that when the measurement error
is smaller, better discrimination is achieved.

Now suppose all four features are considered, the other circum-



stances remaining the same. In this case, e5 maximizes ∆J and it
is selected as the best experiment (see the table below). Values of
[1.134, 1.234] and [4.12, 4.22] for the amplitude and the period of
the perturbed system, for instance, give rise to the posteriori proba-
bilities p(m1) = . . . = p(m5) = 0 and p(m6) = 1.0.

e1 e2 e3 e4 e5

∆J(ei) 0.4049 1.1429 1.5548 1.5285 3.1811

The above evaluation procedure was again applied 20 times, now
for the situation that all four features are taken into account. We
found that the average number of experiments necessary to identify
model m6 was 1.1. In only two of the cases a second iteration in the
algorithm was necessary. In all cases complete discrimination was
achieved.

The example illustrates that when more behavioral features are
considered, a higher efficiency may be achieved: measuring only the
amplitude, we needed four experiments to discriminate between the
models, while taking into account all four behavioral features a single
experiment turned out to be sufficient.

Evaluation by means of random data was used to investigate the
performance improvement of the algorithm for experiment selection
with respect to random selection of perturbation experiments. As-
sume the amplitude of the system is the only quantity being measured
(ε = 0.1). After 20 times we again obtained that 4 experiments are
necessary, on average, to identify the correct model. The reasons for
the lack of improvement of our method with respect to random selec-
tion are the large overlap between (some of) the predictions, the high
measurement error assumed, and the low number of experiments pro-
vided. However, selecting the experiments in random order when all
four features were considered, required 3.2 experiments on average
to identify the correct model, whereas selecting the experiments by
our method required only 1.1 experiments.

5 Discussion and conclusion

We have presented a method for discriminating among competing
semi-quantitative models by selecting suitable perturbation experi-
ments. The method chooses a maximally-discriminating experiment
by means of a criterion based on the entropy measure of informa-
tion. The application of this criterion was illustrated in an example
concerning a set of competing models of a mass-spring system.

Information theory has been used in model-based diagnosis to dis-
tinguish among competing diagnoses of a faulty system (e.g. [4]).
Like our method, these methods proceed by making new observa-
tions on the system. However, the work mentioned above is limited to
determining the best measurement point within a given experiment,
while we seek the best experiment that would permit optimal dis-
crimination. Struss [12] has extended the approach in [4] by finding
the best operating conditions that would give rise to the most discrim-
inatory observations. Our work attempts to generalize this method by
employing dynamical models and by extending the concept of dis-
criminating test to discriminating perturbation experiment.

In statistics, the idea of employing the entropy measure as a dis-
crimination criterion has been illustrated for distinguishing between
quantitative algebraic models (e.g. [2, 10]). In [7] the entropy has
been used to design observations discriminating among rival water
quality models. However, these examples are restricted to fully nu-
merical models with precise point measurements. In this paper, we
have shown how the criterion can be generalized to the case that only
imprecise, approximate observations of the system are available.

The idea of planning perturbation experiments for model discrim-
ination based on an entropy measure has also been proposed in [6].
Models of a genetic regulation network are discriminated by vary-
ing the expression level of involved genes or the influence of exter-
nal stimuli. This method, however, is limited to models in the form
of Boolean networks and to binary perturbations. This article gener-
alizes the approach in [6] by employing more advanced dynamical
models and by extending the concept of perturbation experiments.

The work presented here can be extended into several directions.
In practice, the number of possible perturbations will be infinite when
the value of a quantity can be changed continuously. The problem
of model discrimination as defined here should then be generalized.
Instead of selecting a discrete perturbation that has been specified
beforehand, a value for the quantity that maximizes (7) has to be
chosen. An issue neglected thus far are the costs associated with ex-
periments. In practice, the costs for performing an experiment may
need to be balanced against its expected utility. In these cases, the
problem can be reformulated as the selection of an experiment that
maximizes ∆J(e)/h(cost(e)), where h is a function depending on
the intended application: one may be interested in effective experi-
ments without caring about expenses, or prefer less costly tests.

Further research will concentrate on the extension of the method
along the lines mentioned above, its comparison with other model
discrimination techniques (e.g. [5]), and its application to real-world
systems. Currently, we are applying the approach to a model dis-
crimination problem in biology: the regulation of the cell cycle in
early embryos [9]. This system is described by second-order mod-
els and exhibits periodic behavior similar to the oscillations of the
mass-spring example considered here.
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