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Abstract. Knowledge representation systems, including ones basedequence of rules in a simple variant of the sequent calculus. Each
on Description Logics (DLs), use explanation facilities to, amongrule application in this sequent calculus can then be explained in
others, debug knowledge bases. Until now, such facilities wergerms of one or more steps — some optional steps are omitted when-
not available for expressive DLs, whose reasoning is an un-naturaver possible, to produce a simpler proof — resulting in a parsimo-
refutation-based tableau. We offer a solution based on a sequent calious yet understandable proof presentation (Section 3).

culus that is closely related to the tableau implementation, exploiting

its optimisations. The resulting proofs are pruned and then presente . .
as simply as possible using templates. éi Subsumption Proofs with Tableaux

In order to solve asubsumptiorproblem using a tableaux-based
1 Introduction procedure — which solves unsatisfiability problems — the subsump-

. . . . tion has to be reduced to an equivalent satisfiability problem. That
The usability of knowledge representation systems, including ONeg it we want to check that a concept expressigris subsumed

based on Description Logics (DLs) is considerably enhanced by thgy, » ¢oncept expressioh, we should check whether the concept
ability to explain inferences to knowledge-base developers who ar M =D is not satisfiable. sinc€ T D iff C 1M —D C L. For

pot fa}miliar with thg impIementaFion. of the reasoner [10]. qu DLs, example, in order to prove that 1)
inferring subsumption relationships is a fundamental reasoning task
and its explanation is relatively natural for systems based on strud3friend. T MVfriend.~(3child.—-Doctor LI 3child.Lawyer))
tural subsumption algorithms [10]. However, such algorithms are un- = (3friend.(Vchild.(Rich L Doctor))),
able to deal with a more complex language sucld€’. Tableaux- itis necessary to prove that the following concept does not have any
based systems, on the other hand, can deal Wifi€ (and much  model:
more complex languages), but the reasoning method does not lead t0 Ifriend. T M
a natural explanation of subsumption inferences because it is based Vfriend.~((3child.—Doctor) LI (3child.Lawyer))r
on a “refutation/unsatisfiability” approach; for example, it would  —3friend.(Vchild.(Rich LI Doctor)).
probably not be useful to have the subsumptiéh(CMD) C VR.C Moreover, tableaux algorithms typically transform the resulting
explained by the fact thgv/R.(C'T1.D)) M3R.~C'is not satisfiable.  concept into negation normal form using a combination of deMor-
This problem is not restricted to DL-based systems: in other argan’s rules and modal normalisations (e-ga,R.C iff VR.—C) [4].
eas of theorem proving, there is a desire to provide explanations dfor example, the above concept would be immediately transformed
why theorems hold, yet the proof techniques (e.g., resolution) arénto the following concept, which should be then checked for unsat-
not “natural”. The solution in such situations [9, 7] has been to findisfiability:
ways to transform proofs from their original form into some more  Jfriend. T 1N
“natural” form, such asatural deduction(ND) proofs. From the Vfriend.((Vchild.Doctor) M (Vchild.—~Lawyer))
beginning, ND proofs have been claimed to be easier to present t0 Vfriend.(3child.(—Rich M —Doctor)).
users, and natural language generation systems have even been builThus, the structure of the original problem is completely lost, and
to produce sophisticated English output from ND proofs (&#8RB-  the explanation of the proof steps generated by the tableaux proce-
MOBIL project [8]). Related to ND proof systems aegjuent calculi  dure wouldn't be understandable by the user. These problems can be
introduced by Gentzen. Such calculi axiomatise the entailment relagvercome using a combination laizy unfoldingandtagging
tion, which has an obvious parallel with the subsumption relation. Lazy unfolding is an optimisation technique, widely used in imple-
However, most sequent calculi include reasoning rules and notamented systems, that has the effect of delaying the normalisation of
tion that are less than natural in the case of DLs, such as moving focompound concepts until itis required by the progress of the tableaux
mulze from one side of the turnstile to the other. Just as importantlyexpansion [5]. In the generation of the proof, the combination of a
itis undesirable to have an explanation component that is dissociatagbrmalisation and a subsequent expansion rule corresponds to a sin-
from the implementation of the reasoner (the tableaux technique, igle proof step. For example, normalisinga M b) to —a L —b, fol-
our case). This is both because of efficiency and the possible devidowed by an application of the tableauxrule, would be seen as a
tion between implementation and explanation [14, 10]. single proof step explained by some sort-of-rule.
We propose using a slightly extended tableaux algorithm that, by Secondly, by tagging the subsumer concBptluring the initial
keeping track of the “undesirable” steps involved in both the reductransformation of the subsumption probléiiC D into the satisfia-
tion of the subsumption problem to an unsatisfiability problem allowsbility problem C' 1 —=DT, where' indicates the tagged concept, and
the structure of the original subsumption inference to be preservegy consistently tagging all concepts derived from it by applications of
(Section 2). Interestingly, the tableaux proof can be represented astableaux rules, it is always possible to determine whether a concept
I - —— in a particular stage of the tableaux was derived from the subsumer,
'ﬁgf’éidcgéf;’?ﬁﬁ;eériggﬂce’ Rutgers University, USA i.e., its negation plays the role of subsumer in the explanation step.
2 Dept. of Computer Science, University of Manchester, UK We will assume an unlabelled (often calledce basedn the DL
{franconi  |horrocks }@cs.man.ac.uk literature) tableaux based procedure #o€C [4], modified with the




{3friend.T,Vfriend.—((3child.—Doctor) L (3child.Lawyer)),

(=) X,at a,Y
—(3friend.(Ychild.(Rich LI Doctor)))'}.
) X,a,-a Y X F oa,-a,Y (r1) i . .
Because the concept triggering the tableaux rule was not tagged, this
L X, Ly XrTy () corresponds to a sequent step using thg Kule (step 2 in Figure 2).
an) Sl ) Xbay _XEBY (.,  The tableaux algorithm would then normalise
(t-n) 2omet f(aﬂb){’;b B Y £r :?(;;;;’3{ (r=A) —(3friend.(Vchild.(Rich LI Doctor)))’
vy et Y o X bEY ) (rv)  to giveVfriend.(~Vchild.(Rich L Doctor))', and apply the3-
X, 5a,-b F Y X F -a,Y X kb, Y ruleto 3friend. T, generating the sub-problem consisting of
(I=v) X, =(alb) F Y X F =(a0b), Y (r=v) . .
; X,a kY X Foa,Y {T,((3child.—Doctor) U (Ichild.Lawyer)),
= X,~maFY X F=ma,Y =) —Vchild.(Rich LI Doctor)'},
10) X0 ey X koY (o)
el Xy where —Vchild.(Rich LiDoctor)' is tagged because it was de-
(t=0) X, Vrb F Y XF 35,7 (r=0) rived from a tagged concept. Because the triggering concept was not
where X’ ={a | Vr.a € X}U{-a|-3r.a € X},and tagged, this corresponds to a sequent step usind€heaile (step 3
Y'={a|3IraeY}U{-a|-VraecY} in Figure 2).

The next step in the tableaux algorithm would be a nor-
malisation of —((3child.—Doctor) LI (3child.Lawyer)) to give

. . . . —(3child.—Doctor) M —(3child.Lawyer), followed by an appli-
addition of lazy unfolding and tagging. As a notation for the proof -4iian of ther-rule leading to the set

generated by the modified tableaux procedure, we introduce here a

simple sequent calculus. Sequent calculi #o£C can be obtained

from the modal logic literature [3] by exploiting the correspondence —Vchild.(Rich L Doctor)'}.

betweenALC and the multi-modal propositional logi& ), with Because the triggering concept was not tagged, these two steps

the subsumption relation being encoded as the entailment relation icorrespond to a sequent step using tiieV) rule (step 4 in

a sequent. Note that there have already been attempts (e.g., [13]) Figure 2). The tableaux algorithm would then normalise all the

produce sequent calculi for DLs based on such calculi from predinegated concepts to givehild.——Doctor, Vchild.—Lawyer and

cate logic. However, the result does not bear a direct relation to ouBchild.—~(Rich LI Doctor)' respectively. Th&-rule would then be

tableaux proof system, nor has it been used to generate short eapplied to the last of these concepts, generating

planations. In order to devise the sequent notation, we exploit the

well known fact that in classical logic it is possible to obtain a se- ) ) : )

quent proof directly from a standard tableaux satisfiability aIgorithmyBecause the triggering Concept was tagged, this expansion corre-

where applications of tableaux rules correspond with steps in the s&Ponds to one of the sequent right rules, and the preceding normali-

quent proof, and clash detections correspond with termination axSation step means that it corresponds to a sequent step usimgithe (

ioms (e.g., [12]). rule (step 5 in Figure 2). _ o
The calculus is shown in Figure 1. Please note that the proposed The tableaux algorithm would then proceed with a normalisation

system is not strictly original (see, e.g., [2]); what is important here is0f =—Doctor, corresponding to a sequent step using the-j rule

the way a sequent proof can be correlated with a tableaux procedukgtep 6 in Figure 2), and a normalisation-gfich L Doctor)', fol-

for ALC, since all the implemented systems for expressive Descriplowed by an application of the-rule to give

tion Logics make use of tableaux procedures. In order to parallel the

behaviour introduced by lazy unfolding and tagging in the table"’“”%Nhereﬁl-‘tich and—Doctor are both tagged. The combination of the

calcglus, wegkenlng and n_egatlon rules do_ not e.X'St' If a negat'p'fhggering tagged concept and the normalisation step means that this
rule is used in an explanation of subsumption, this would result in t expansion corresponds to the') sequent rule
shifts of subsumers to subsumees and vice versa. On the other han%SFinally the tableau algorithm detects a clash b.etV\lRRﬁzor and

new rules are introduced which explicitly consider negation in front . ;

of every construct. In order to pargllel t}i/1e behaviourgof\themd ~Doctor'. BeanS&POCtorT Is tagged, this corresponds o the se
J-rules in the tableaux calculus, the applicability condition of the S?eeg; termination axior, Doctor - Doctor, Y (step 7in Fig-
O- and<-rulesis explicitly considered. The condition states that the ’
rule is applicable if all the homologous universal and existential for- )
mulee are “gathered” together on the left and right hand sides of thd The surface structure of explanations

igﬁ:femalg dzrt}?)nrgle t(;?%?:;gntgiigﬁ ':réh:goapif’/gid only once. Otl'he sequent calculus proofs obtained from the theorem prover pro-
We \;viII now see how the tableaux al orithmgwoul-d demonstrateVide the framework for an explaination, but there are some problems
> ) 9 with these proofs that would limit their usefulness as explanations to
the above-mentioned subsumption (1). be given to end-users
We want to parallel the steps in the tableaux algorithm with the 9 :

corresponding sequent steps for the same proof (Figure 2). The s _One problem relates to the contents of the proof tree itself: there
ponding seq ps P 9 ) &an be several fragments of proofs which are irrelevant and would
quent notation will be used in the next section to devise the expla-

nation. The proof starts by proving the unsatisfiability of the set ofonly clutter the exlanation. These can occur because of manipulations
concebts P yp 9 applied to concept fragments that end up being irrelevant. For exam-

ple, in showing that—AMVr.CM3r.D is subsumed byr.(DUE),
{(3friend. T MVfriend.~((3child.~Doctor) L (Ichild Lawyer)))ll IS unnecessary to apply ru(e-—), nor is it useful to carry the con-
—(3friend.(Vchild.(Rich LI Doctor)))T}, ceptC, when a_pplylng rule_l(<>). The s_olutlon is to simplify the se-
guent proof using a recursive analysis of the relevance of each com-

An application of the tableaux-rule to the first concept leads to the ponent. This procedure has similarities with non-modal proof con-
set densation techniques used in theorem proving (e.g., see [11]).

Figure 1. Rules forALC

{T,(3child.—Doctor), ~(3child.Lawyer),

{——Doctor, ~Lawyer, ~(Rich LI Doctor)}.

{Doctor, ~Lawyer, -Rich’, ~Doctor'},



Jfriend. T MVfriend.—((3child.—Doctor) LI (Ichild.Lawyer)) Relevant( INotNot(A,Pf) ) =
I 3friend.¥child.(Rich UDoctor) let (Pf1,Lhs1,Rhs1) = Relevant(Pf) in

n) @) if (A € Lhs1)
Jfriend. T, Vfriend.—((3child.—Doctor) Ll (3child.Lawyer)) then (INotNot(A,Pfl), Lhsl — {A} U {——A}, Rhsl)
F 3friend.Vchild.(Rich U Doctor) else (Pf1,Lhs1,Rhs1)

(1) )

T, =((3child.—Doctor) LI (3child.Lawyer))
F  Vchild.(Rich Ll Doctor)

Similarly, in dealing withrNotAnd(A, B, Pf), if neither—A nor—B
was useful in the sub-proof then the rule can be skipped:

(GaY) 3) Relevant( rNotAnd(A,B,Pf) ) = _
T, =(3child.—Doctor), —~(3child.Lawyer) let (Pf1,Lhs1,Rhs1) = Relevant(Pf) in
F  Vchild.(Rich Ll Doctor) if (-A € Rhsl) orelse(—B € Rhs1)
(r0) 4 then ( rNotAnd(A,B,Pfl), Lhsl,
; Rhsl — {-A,-B} U {—(AMB)} )
—-D —L F RichUD
(=) octor, “hawyer T MichPocter 5) else (Pf1,Lhs1,Rhs1)
Doctor, —Lawyer F RichLlDoctor For example, by applyinRelevant to proof 3.1, we would obtain
(rv) (6) the proofrNotAnd(Rich,Doctor, ident(—Doctor)), plus the sets
Doctor, —Lawyer - Rich, Doctor {—=Doctor} and{—(RichMDoctor)}, representing the relevant parts
(=) ' ' @) of the sequent derived by the proof.

Finally, we need to consider the modal rules. First, observe that
modal rule applications appearing in our proof can no longer be “use-
less”, so our main task will be to thin out the terms that are carried
into the sub-proof.

For example, in proving that

TRUE

Figure 2. Sequent proof.

The other problems are related to the presentation of the sequent Vehild Adult. Jehild.~—Doctor
rules to users. The solution here mainly involves the use of templates E Hcﬁild Do’ctor Eéhild Rich
to generate a surface explanation (in one or more steps) of each se- ' s ' .
quent rule application. rule (<) would gatheeveryrestriction on rolehild, producing the

subgoalPerson, -—Doctor F Doctor,Rich. However, the only
relevant parts from both sides are those dealing détttor, so we
; g will want the sequent produced to be orllghild.——Doctor +
3.1 Simplifying proofs D hol e Seduentp v

When applying modal rules we need to track the precise form of

The sequent proof tree found by the theorem prover will be assumeﬂﬁe relevant subconcepts. We therefore distinguish in the antecedent
to be presented as a term, where the term constructor will be the rule- of the top sequent those terms that come from formulee of the

name, and its arguments will include the important meta-variable$o,m i« from those that come from formulze of the forr@r.a:

@1

appearing in the sequent rule, as well as any sub-proofs. ~ jikewise for the succedent’. Thus the {©) rule needs a list of four
For example, consider a proof that starts with the application ofargumentsiLa, Lns, Rs and Rna, such that the antecedeit’ =
the (~—M) rule to La U Lns and the succedent’ = Rs U Rna, where, for example,
. La={a|Vra € X}andLns = {-a | —-3r.a € X}. Each of
—Doctor, ~—Lawyer  —(Rich[lDoctor), these sets may be diminished by the “relevance”llis1 returned
leading to-Doctor, ~—Lawyer - —Rich, —Doctor, followedby DY the recursive call on the sub-proof:
an application of [=—), and then the termination axiof+) with Relevant( ISome(p,B,[La,Lns,Rs,Rna],Pf) ) =
—Doctor. This would be encoded as the term let (Pf1,Lhs1,Rhs1) = Relevant(Pf) and
(Lal=La N Lhsl) and (Lnsl=Lns N Lhs1) and
NotAnd(Rich. Doctor. INONOL(L ident(—Doct ~ (Rs1=Rs N Rhsl) and (Rnal=Rna N Rhsl)
rNotANd(Rich, Doctor, INotNOY(Lawyer, ident(-Doctor))) in (ISome(p,B,[Lal,Lns1,Rs1,Rnal],Pfl),
where, for example, the type of proof constructibtNot is De- {Ip.B}JU{VP.A|A € Lal} U{~3p.A| A € Lnsl},
scriptionx Proof. {Ip.A|AeRsl}U{-Vp.A|—-A € Rnal}

We now describe a functioRelevant, which takes a proof and
simplifies it so that only relevant proof steps are kept and, for modals a result, the sequent proof of (3.1), represented by
rules, only those descriptions that are relevant to later parts of the 1d e .
proof are carried into the sub-proof. This is accomplished by com- lSOme(fﬁégl\?ét(Dnggzﬁfaé{nﬁ%g :3&%%3 octor,Rich},f],
puting two such sets of relevant terms (one for each sidg-of '
for everystep of the proof. The functioRelevant takes as argu- s reduced to
ment aProof, and returns a three-tuple: the revised proof, plus the .
above-mentioned two sets of concept terms, from which the current ISome(;:ﬁééLl\?é?(EDo:to% é%gb{DotCto)l)r)} 01,
sequent can be reconstructed. The function is defined by case analy- o octor, octor)) o
sis of the proof step constructors, and is presented for some represen-In the original example, from Section Relevant elimi-
tative cases using pseudo-ML code, with pattern-matching notationfates—3child.Lawyer from the application ofr0, by replacing
Starting with the termination rules, we have, for example {;”ﬂDoctorﬁLaWyer} with {ﬂaDoctor} in the original p?])o%f step
. . hild, (Rich L Doct , ¥, {——Doctor, -L , 0,01, 2).
Relevant( ident(A) ) = (ident(A) , {A}, {A}) rAll(child, (Ric octor), [0, { octor, “Lawyer} 1)

Relevant( I1Bot() ) = (I1Bot() , 0, 0)
Relevant( IContrad(A) ) = (IContrad(A) , {A, —A},0) 3.2 Generating surface explanations from pruned

The code foriNotNot(A, Pf) would first recursively process its proofs.
sub-proofP’f (see thdet statement in the following pseudo-code); if The following problems arise when trying to offer the (reduced) se-
it turns out that the concept was not needed (to detect a termina- guent proof as an explanation:
tion) in the sub-proof, them—A itself is irrelevant to the proof, and o
the step is skipped. Otherwise, the sub-proof explains wherd the 1. The use of the comma as a separator on the antecedent side is
used, and makes us be interested in explaining where-thécame semantically equivalent to conjunction, while on the succedent it
from. is disjunction; this is quite confusing to non-initiates. On the other



As promised, rulesif\) and V) are not explicitly reported, so

NotN ——a= a

(Hotht - B thatExplain(a C 3, IAnd(A, B, Pf)) just invokesExplain(a’ C 3,
(NotAnd) — —(amb---)=—atl=b-- =(allb-)=—an=b-- - (NotOr) Pf), wherea’ may have conjunction nesting removed framRules
(NotSome) —3r.a=Vr.-a —Vr.a=3r.-a (NotAll) (Iv) and ¢ A) represent case analysis, and offer the user a choice of
(AndAll)  Vr.ar¥rbe-- =¥r.(aMb---) Jr.al3r.be- = 3r. (allb---) (OrSome) which branch of the proof to follow (or stacks the proofs for both
(SomeBot) Ir.l=1 vr.T=T (AllTop) cases).

Finally, we come to modal rules. Let us consider
(SomeAndAll) 3r.amVr.b = 3r.(aMb)MNVr.b
Explain(a C 3, ISome(r, B, [Lal, Lnsl, Rsl, Rnal], Pf)).
Figure 3. Rules for concept equivalence used in explanations
If Lnsl is not empty, then we first apply equivalence rule
NotSome) to the elements of which appear i{—3r.C' | C €

hand, if we do not use the comma notation, inferences dealin nsl}. Similarly for Rnal. This leaves us an explanation of the

with the_comrrutatlwty Iand associativity of s_||mple propositional ¢~ Explain(c T 8, 1Some(r, B, [La2,®, Rs2, 0], Pf)). If La2 is
connectives clutter explanations unnecessarily. non-empty, then we apply equivalence ru{@dAllj (unlessLa2

2. Several rules are identical on the left and right hand side, ané a singleton) angSomeAndAll) to the subsumee to gather tie
might therefore be better presented as single rules for massagingstrictions and absorb them infe. B. This leaves us with an expla-
concepts into an equivalent form (e.g., using de Morgan’s rules). nation of the formExplain(a C 3, ISome(r, B, [, 0, Rs2, 0], Pf)).

3. The inference rules for modal formulae are quite complex andf. 2252 contains more than one element, they can be gathered into a
their validity is entirely non-obvious (and hence not a proper ex-Single 3-restriction using th¢OrSome) equivalence rule. We now
planation step), since it is based on model-theoretic arguments if12Ve tWo cases
accessible to naive users. This is in contrast to a structural sube Rs2 is the empty set. In this case the subsumee must be in-
sumption rule such @%,which is self evident. coherent, so we sayTo prove thata T 3, we will show

~ that 3r.B is incoherent, and hence is subsumed by everything.

For this, it is sufficient to show thaB is incoherent”” If we

wanted, we could now introduce a variant®fplain(-, -), call it

4. Proofs could, in general, be exponential in size. However, based
on experience with CassIc, in explaining a subsumption of the

form A C C N D, experience with CASsIC suggests that users Explainlncoh ;

; plainlncoherent(B, Pf), which knows that the proaPf only
often see one of the subsumptions C C'or A C D), and only deals with the Ihs, since it had an empty relevant rhs. Or we can
want the other one explained. Since the problem is irAZE, continue withExplain(B C L, Pf).

this means that single branches are at most polynomial in size.
e Rs2 contains a single concept. In this case, we can use
To resolve these problems we propose an approach based on the(StructSome) to provide a simple explanatiot#*The subsump-
following idea:Each proof step in the sequent calculus is expressed tion can now be proven by showing thatestrictions for roler
in terms of zero or more explanation rules (ERs) to be introduced, subsume. To provér. X C 3r.Y, it is sufficient to proveX C Y.
plus some choice on how to proceed with the rest of the explanation. So in this case we are reduced to showiigC C” . The first
To be clear, henceforth we will use instead of - to indicate sentence is omitted & has no conjuncts. -
the subsumption relationships that are being explained, and refer to
the antecedent and succedent as “Ihs” and “rhs” of the subsumption. Returning to our original example, we were asked to explain
First, we make conjunction and disjunction explicit on the Ihs and i } ) i
rhs, replacing the commas. However, we will leave implicit all ma- (3friend. T M Vfriend.~(3child.~Doctor LI 3child.Lawyer))
nipulations relating to associativity and commutativity of these oper- = (3friend.(Vchild.(Rich U Doctor))),

ators. Therefore,. sequent rulég) and ¢V) will not appear in the The (pruned)  sequent proof is  constructed  with
surface explanation. o ] IAnd, ISome, INotOr, rAll, INotNot, rOr and ident. According
Second, we introduce, in Figure 3, a variety of ERs that replacep our rules, we skipAnd, and explainSome, which here uses ERs

gonﬁepts by Tehquivalelnt ones gsing, If_ord etxample. tltﬂe_familiafr rtules 0fSomeAndAll) and(StructSome). These generate the text
e vMorgan. €se rules can pe applieda to concepts In proor steps. on the |hS, Jfriend. T can be Strengthened

Each of these rules has an English template describing its applica- ~: > . .
tion, and possibly a “because” clause, which the user may ask for in With ~ V-restrictions  on  role friend to yield
order to explain the rule itself. (This should be unnecessary, except Jfriend (T M —((3child.~Doctor) U (child Lawyer))).
for one rule, marked with * in Figure 4, which may well be treated "€ Subsumption can now be proven by showing that

as alemma.) 3-restrictions for role friend subsume. To prove
For the modal rules, we offer simpler variants, which will be com- ~ Jfriend. X L .Hfﬁlend'yl it is sufficient to proxe

bined with equivalence rules (when necessary) to produce the same X & Y. S0 in this case we are reduced to show-

effect as the corresponding sequent rules. To begin it and ing T I —((3child.~Doctor) U (3child Lawyer)) L

(r—<) are explained as applications of de Morgan’s law followed by Vchild.(Rich L Doctor).

(1) or (rO) respectively. Then, the\qdAll) and OrSome) equiva-  For rAll(child, (Rich LI Doctor), [, {—Doctor}, @, @], ), we use
lences can be used to gather together relevant components on the BRs (NotSome) (combined with the precedingNotOr), and then
and rhs. Finally, the subsumption can be explained using the (mostly)StructAll) to get

structural rules given in Figure 4.

We are now ready to sketch the proof explanation funcksrn
plain(-, -), which, given the subsumptiam C g and its proof, gen- = i Vet
erates some text, possibly offering further sub-explanation(s). Again, |shsuff|_C|ent fo ShOV‘XE C Y. So in this case we are reduced
we consider a variety of sequent rule kinds to illustrate our approach. 1© ShOwing-—Doctor L (Rich LI Doctor).

For a termination sequent rule such @s), Explain(ac T S, (Note that-3child. Lawyer had been pruned from the explanation.)
ident(Z)) would say:“The subsumption now follows because the FromINotNot we get
description Z is subsumed by Z, *and the lhs is a constriction of Z,
since it is a conjunction, while **the rhs is an expansion of Z, since
it is a disjunction”. The sentence fragment starting at * (resp. **) is Finally, skippingrOr, ident produces:

omitted if o (resp.() is a singleton rather than a conjunct. The subsumption now follows because the descriftiertor
Next, consider an equivalence rule, lige-—). Explain(a C 5, is subsumed Hyoctor, and the rhs is an expansion bbctor,
INotNot(Z, Pf)) produces‘Double negation elimination on the lhs since it is a disjunction

leaves Z"

On the Ihs, apply de Morgan’s laws to propagate in negation, to
get (Vchild.~—Doctor). To proveVchild. X C Vchild.Y,

Double negation elimination on the lhs leadestor.



alb

(StructSome) C aCb (StructAll) the original subsumptioryet can be obtained directly from a slightly
Jr.al3r.b Vr.aCVr.b enhanced tableaux algorithnfb) the surface explanation rules are
al(blc) used to provide the simplest explanation ppssible, avoi_ding in most
Vr.aC (VrbU3rc) (AlllsaAllSomes) cases the use of the one ER that, we believe, would itself require

explanation (namelyAlllsaAllSome)).

In some situations, our approach may in fact be better than one
based on naive structural subsumption even for languages where the
latter proof technique is applicable. For example, in showing that
CMNa CE C,astructural subsumption technique first normalises the
EJS, which is unnecessary in this case, yet might involve complex in-
erences if, for exampley contains an incoherence. The same would
apply if C'is a defined concept, when normalisation expands defini-
tions, while our lazy unfolding would find the proof immediately.

assert subsumption relationships between (possibly complex) con: The choice of the surface explanation rules, and especially their
cepts. In many DLs, axioms are restricted to be “definitions’: the left=ndliSh language realization is to some extent provisional in the cur-
hand side is an atomic concept name that does not occur on the IdfgNt Work. This is particularly the case with proofs involving role-

hand side of any other axiom, and is not referred to (either directly oFeit{t'ﬁt'on% h histicated natural | rext
indirectly) in the right hand side. Examples of definition axioms are,, Mthough much more sophisticated natural language text genera-
Doctor L WellPaid andRichKids = Vchild.(Rich Ll Doctor). tion is possible from proofs (e.g. [8]), we believe that for users build-
When the Thox is restricted to definition axioms, reasoning in-N9 DL knowledge bases, a point-by-point explanation of the infer-
volves simply expanding names with the associated Thox defini€NCeS, as done earlier @LASSIC, is sufficient. We are aware that a
tions during a proof. For example, if the conc@dichKids were considerable number of theorem provers have been endowed with the
defined as in the previous paragraph and used in our earlier exarRility to produce explanations from the steps of proofs, and some of
ple instead of/child.(Rich L Doctor), then it could be expanded M. €-0.ILF [1], even offer a service whereby proofs obtained from
10 RichKids M Vehild. (Rich LI D ’ during th 8 Thi seemingly arbitrary axiomatisations can submitted to obtain a surface
0 RichKids M Vchild.(Rich U Doctor) during the proof. This (English explanation, if the proof system can be reformulated appro-

Figure 4. ERs for role-restriction subsumptions

4 Extensions

Implemented DL systems support additional features such as te
minological definitions ThoX and role hierarchies. Explanations
should support these as well.

A Tbox is a set of axioms of the forl@ C D or C = D that

procedure can Bicslpéu_red by simple sequent rules with side condjately. The very specialised nature of concept descriptions in DLs
tions, such as#®=——if (¢ =

v d) € Thbox, and explained by a and modal logics (in contrast to FOL formulas) and of the subsump-
corresponding ER rules such dsi can be strengthened to M 3 tion proof itself, have led us to develop for now our own relatively
becauser = 3 is in the Thox”* Moreover, correspondence with the simple surface generator, rather than trying to find a translation of
tableaux algorithm is maintained because the “lazy unfolding” opti-our proofs into yet another form (e.gLF’s “block proofs”), which
misation behaves in exactly the same way: defined concept names &r@y not be natural in the end. _ )
only unfolded (expanded) as required by the progress of the tableaux We plan to concentrate instead on extensions to more expressive
proof. A very similar technique can be applied with necessary conDLs and their highly optimised implementations, as well as the inves-
ditions on primitive concepts (i.e., whefiis an atomic concept and tigation of proof tactics that produce short or most easily explainable
C C D € Thox). proofs. _ N

Extending the tableaux algorithm to deal with transitive roles andAcknowledgementsWe wish to thank our original collaborators,
role hierarchies requires only a relatively minor extension tothe Deborah McGuinness and Peter Patel-Schneider for their contribu-
rule [5], and a corresponding extension to the modal sequent ruletions, as well as very useful pointers offered by Matthew Stone, Hans
is possible. (This extension leads to some problems with terminatioduergen Ohlbach, and by an anonymous referee. The first author was

in the tableaux algorithm, but this is irrelevant for the explanationsupported by NSF-grant IRI9619979.

component, which receives a completed proof.)

Modern DL implementations also support a variety of of optimisa-
tion techniques. Some (like lazy unfolding) facilitate the generation
of parsimonious explanations. For example, backjumping, a techq{1]
nigue for pruning irrelevant search, complements the simplification
procedure described in Section 3.1, while caching, a technique for
reusing sub-proofs, can be used as a lemma generator. [2]

Other extensions, such as general Thox axioms and semantif
branching optimisation complicate the task of explanation, and will 3]
be treated in future work. (4]

(5]

Explanation of subsumption in expressive description logics was[G]
thought to be hard because the standard proof techniques are tableag
based, and are thus unnatural.

We have proposed a methodology for explaining the subsumption8]
relationship betweeml LC concepts based on (i) a sequent proof for
ALC derived from a tableaux based procedure, (i) a pruning algo- (9]
rithm that eliminates unnecessary steps, and (iii) a set of templat
used to generate “surface” explanations (in one or more steps) fro 0]
each sequent rule application. The significant properties of this prﬁ,]'ll]
posal include the fact that (a) the proof does not move terms fro
one side of the turnstile to the other, thus preserving the structure ¢f]

5 Conclusions

3 It could be substituted with its definition, but retaining the name can lead tq13]
a shorter proof.

4 Such a sequent calculus would, in general, be non terminating. However, ii14]
our framework, finite proofs are generated by the tableaux algorithm, for
which termination is guaranteed.
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