Spatial reasoning in RCC-8 with Boolean region terms
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Abstract. We extend the expressive power of the region connection
calculus RCC-8 by allowing applications of the 8 binary relations of
RCC-8 not only to atomic regions but also to Boolean combinations
of them. It is shown that the statisfiability problem for the extended
language in arbitrary topological spaces is till in NP, however, it
becomes PSPACE-completeif only the Euclidean spacesR*, n > 0,

are regarded as possible interpretations. In particular, in contrast to
pure RCC-8, the new language is capable of distinguishing between
connected and non-connected topological spaces.

1 INTRODUCTION

RCC-8 is alogical formalism intended for representing qualitative
information about relationships among spatial regions in terms of
8 jointly exhaustive and pairwise digoint basic binary predicates.
Typica RCC-8 expressions are: PO(Italy, Alps) (‘ltaly and the
Alps partially overlap’), NTPP(Luzemburg, EU) (‘Luxemburg is
a nontangential proper part of the EU’). RCC-8 was constructed
(independently and almost simultaneously) by two parallel research
streams of spatial KR&R: in the framework of geographical infor-
mation systems [3] (see aso [4, 2, 7]) and as an effective fragment of
the much more expressive region connection calculus RCC [10] (for
a study of its computational behaviour consult e.g. [8, 12, 14, 15]).
The former root of RCC-8 demonstrates its practical applicability,
while the latter tempts to search for more expressive and yet effec-
tive fragments.

One apparent ‘deficit’ of RCC-8 is that it operates only with
atomic regions. We can’t form unions (V) or intersections (A) of re-
gionsto say, for instance, that EQ(EU, SpainVItalyV...) (‘theEU
consists of Spain, Italy, etc’), P(Alps, Italy V FranceV ...) (‘the
Alpsarelocated in Italy, France, etc.'), EC(Austria, Alps A Ttaly)
(‘Austria is externally connected to the apine part of Italy’), and
deduce from these that if EC(X, EU), for some country X, then
EC(X,Y) for some country Y in the EU, or that there is a country
Z such that TPP(Z, EU) (i.e, ' Z isatangentia proper part of the
EU’). Note by the way that the last formula is a correct conclusion
only if we interpret our formulas in Euclidean (or, more generaly,
connected) topological spaces (and if there are non-EU countries): in
a discrete topological space the EU may be an open set with empty
boundary. This simple observation and theresult of [12], according to
which every satisfiable RCC-8 formulais satisfiablein all Euclidean
spaces R™, n > 1, show that the Boolean region terms indeed in-
crease the expressive power of RCC-8.

Themain aim of this paper isto study the computational complex-
ity of spatial reasoning in the language of RCC-8 extended with the
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possibility to form Boolean combinations of regions. (As full RCC
also contains region terms of this kind, the resultant language can
still be regarded as afragment of RCC.) We will show that the satis-
fiability problem for formulas of this language is NP-complete—that
is the same as for RCC-8 formulas [15]—if arbitrary topological
spaces are allowed as possible interpretations, and that it becomes
PSPACE-completeif we consider only connected topological spaces,
or only Euclidean ones.

2 RCC-8

The language of RCC-8 contains individual variables X;, Xo, ...,
caled region variables, eight binary predicates DC, EC, PO, EQ,
TPP, TPPi, NTPP, NTPPi, and the Boolean connectives A, V, —,
and —. The well-formed formulas of this language, or RCC-8 for-
muls, are Boolean combinations of the eight predicates with region
variables as their arguments.

RCC-8 formulas are often interpreted in topological spaces T =
(U, T), whereTisan interior operator on aset U satisfying the stan-
dard Kuratowski axioms: (X NY) = IX N1Y, IX C IIX,
IX C X, IU = U. The region variables are assumed to range
over regular closed sets of T2 Thus an assignment in ¥ is a map
a associating with every variable X a set a(X) C U such that
a(X) = Cla(X), where C is the closure operator on U dual to I
(i.e,CY =U-I(U-Y)). Theintended meaning of the eight basic
RCC-8 predicatesis asfollows:

DC(Xl,Xz) & -dree € XN X,

EC(Xl,Xz) == (31’ re XN XQ) A (—Eil' relXinN ]IXQ),

PO(Xl,XQ) =4 (31‘ relXin ]IX2) A (31’ relXin ﬁXz) A
(E|$ xr € _|X1 n ]IXQ),

EQ(X:,X2) & Vz (z € X; & z € X»),

TPP(X1,X0) e Verx € = X1 UXo)A (Fro € X1 NC-X2) A
(Fzx z € - X1 N X>),

NTPP(X1,X») & (Vzz € - X, UIXo) A 3z z € X1 N X2),

TPPi(X1, X2) & TPP(X2, X1),

NTPPi(X1, X2) & NTPP(X2, X1).

An RCC-8 formula ¢ is said to be satisfiable if there exist a topo-

logical space ¥ and an assignment a in it under which ¢ is true in

T, T E* ¢ insymbols. Quite often in spatial representation and rea-

soning we are interested in satisfiability not in arbitrary topological

space, but in certain specific ones, say, connected spaces (which are

not unions of two disjoint non-empty open sets) or Euclidean spaces
R, R?, or R? with their natural topology.

3 It is often assumed also that the sets interpreting region variables are non-
empty. In the extended language to be defined in the next section this as-
sumption can be expressed explicitly as a spatial formula



That the general satisfiability problem for RCC-8 formulasis de-
cidable was observed by Bennett [1] who embedded RCC-8 into the
bimodal (propositional) logic S4,—Lewis's S4 with the universal
modality—using the fact that it is complete with respect to topolog-
ical spaces (see also [9] for a strict proof). Here is a variant of such
an embedding.

Denote by I and C the necessity and possibility operators of S4,
respectively, and let V and 3 be two additional ‘universal’ modalities.
The formulas of the resulting bimodal language M L are interpreted
in topological spacesin thefollowing way. Given aspace ¥ = (U, I),
define a valuation 2 of ML in ¥ as a map associating with every
propositional variable p asubset 25 (p) of U. Thepair M = (%, V) is
called then a topological model of M L. The operators I and C are
interpreted in this model as the interior and closure operators I and
C of %, respectively, the Boolean connectives as the corresponding
set-theoretic operations, and for every M L-formula ¢,

_J U itU(p) =1, _ U D) £0,
B(¥p) _{ 0 otherwise; B(Ee) = { 0 otherwise.

The set of M L-formulas ¢ that are valid in all topological models
(in the sense that V() = U) is denoted by S4,. Syntactically the
logic S4,, can be defined as the fusion of S4 (with I and C) and S5
(with vV and 3) plus one extraaxiom Vo — Ip. Asfollowsfrom [5],
S4,, ischaracterised by the class of topological spaces determined by
(finite) Kripke framesfor S4. Let § = (W, R) be such aframe (i.e.,
R isareflexive and transitive relation, or aquasi-order, on W). The
topological space determined by F isthe pair Tz = (W, I5) where,
forevey X CW, Iz X ={z € W:Vye W (zRy -y € X)}.
Itisnot hard to seethat § and Ty validate precisely the same M L-
formulas.

The language of S4,, is expressive enough to encode the topol ogi-
cal meaning of spatial formulas. Indeed, with every RCC-8 predicate
P(X;, X;) wecan associate an M L-formula (P(X;, X;))" defined
by taking:

TPP(X;i, X;))" =V(=pi Vp;) A3(pi A C—p;) A 3(=pi Apj),
X, X;))" = VY(=p: V Ip;) A3I(=pi A pj).

(DC(Xi, X;))" = =3(pi A pj),

(EC(Xi, X;))" = 3(pi Apj) A=3(Ipi A Ipy),

(PO(X:, X;))" = 3(Ipi A Ip;) A3(Ipi A =p;) A I(=pi A Ip;),
(EQ(X:, X;))" = VY(pi ¢ pj),

(

(

=
—
o
T
—

Now, given an RCC-8 formula ¢, denote by ¢* the result of replac-
ing al occurrences of the RCC-8 predicates P(X;, X;) in ¢ by the
corresponding M L-formulas (P(X;, X;))". And then we put

¢'=¢"n N (p:i & CIpy), @

X;€vargo

wherewvar¢ isthe set of region variablesin ¢. (The last conjunct says
that the variablesin ¢' are interpreted as regular closed sets).

Theorem 1 (Bennett) An RCC-8 formula ¢ is satisfiable iff ¢' is
satisfiable in the topological space Tz determined by some finite
quasi-order 3.

This theorem reduces the satisfiability problem for RCC-8 formulas
to the satisfiability problem for M L-formulas in Kripke frames for
S4,, whichisknown to be decidable[5]. Renz [12] showed that actu-
aly the satisfiability problem for RCC-8 formulas is NP-complete;
Renz and Nebel [13, 15] described all maximal tractable fragments
of RCC-8.

3 RCC-8WITH REGION TERMS

Denote by BRCC-8 the extension of RCC-8 which allows the use
of Boolean combinations of region variables as arguments of RCC-
8 predicates. Such combinations are called region terms. Their se-
mantical meaning is defined as follows (cf. [6]). Given atopological
space T = (U, T), an assignment a in it and region termst¢, ¢, we put

e a(tVt')=CI(a(t)Ua(t)) =a(t)Ua(t),
e a(t At')=CI(a(t)Na(t)),
e a(—t) =CI(U - a(t)) = C(U — a(t)).

Thus every region term is interpreted as a regular closed set of %.
Notethat a(X A =X) = §and a(X V -X) = U for any a and <.
Wedenotetheterms X A—X and X V—-X by L and T, respectively.
The constraint =EQ(X, ) assertsthat X isanon-empty region.

Our aim in this section is to show that the satisfiability problem
for BRCC-8 formulas is decidable in NP. To this end we extend the
translation § of the previous section to the region terms. Given such
atermt, define an M L-formulat™ by taking

Xi =pi,
(t1 Vv tz)* = CI(t’{ \% t;),

(ﬂt)* = CI-t",
(t1 At2)" = CI(t] AE5).
For every BRCC-8 predicate P(t1,t2) we put

(P(t1,t2))" = (P(X1, X2))"{t1/p1,t2/p2}

and define the modal trandation ¢ of a BRCC-8 formula ¢ as
before by (1). It should be clear that Bennett’'s theorem holds for
BRCC-8 formulas as well.

Themodal trandations of BRCC-8 formulas form arather special
fragment of M L. For instance, Renz [12] showed that an RCC-8
formula ¢ is satisfiable iff ¢! is satisfiable in a Kripke model based
on an S4-frame of depth < 1 and width < 2, which means that the
frame contains no chain of more than 2 distinct points, and no point
has more than 2 distinct proper successors. It turns out that thisresult
can be generalised to BRCC-8 formulas. To prove this, we require a
number of definitions.

An ML-formulais a CI-termif it can be obtained from some
Boolean formula x (without modal operators) by prefixing CI to
every subformula of x. A CI-term prefixed by astring of —, I, and
C iscaled ageneral CI-term. (It is easy to see that every general
C1I-term is equivalent in S4, to aformula of the form x, —x, Iy,
=TIy, or I-x, where y isa CI-term.) By a CI-formula we mean
an M L-formula composed from formulas of the form 3¢ and V4,
where v is a Boolean combination of general C I-terms, using only
Boolean connectives.

It easily follows from the given definitions that the modal transla-
tion of any BRCC-8 formulais equivalent in S4, to a C'I-formula.
We now show that al C'I-formulas satisfiable in topological models
can be satisfied in Kripke M £-models of arather simple form.

A partia order (V, S) isof depth < 1 iff V' can be represented as
the digioint union of two sets, V4 and V%, in such away that S isthe
reflexive closure of asubset of Vi x V5. The pointsin V; are said to
be of depth i.

Lemma?2 Every satisfiable CI-formula ¢ can be satisfied in a
Kripke model based on a partial order of depth < 1.

Proof AsS4, hasthe finite model property, o issatisfied in afinite
Kripke model 9 = (&, 4l) based on a quasi-order & = (W, R).
Define apartial order § = (V, S) by taking V' = V5 U V1, where

Vo={zeW:-JyeW (zRy A ~yRx)}, Vi=W =W,



and taking .S to be the reflexive closure of R N (Vi x Vp). In other
words, § has the same set of worlds as &, but only those arrows
from the latter that lead to points in fina clusters (arrows within
these clusters are omitted). Let ¥ = 4 and & = (F, ). Then
for every CI-formulay and every w € V, we have u =g v iff
u FE=on t. (An inductive proof can be found in the full paper at
http://www.informatik.uni-leipzig.de/~ wolter.) a

A partial order of depth < 1 and width < 2 is called a quasisaw
and a Kripke model based on a quasisaw is called a quasisaw model.

Lemma3 ABRCC-8 formula ¢ is satisfiable iff ¢' is satisfiable in
a quasisaw model.

Proof Only (=) needs a proof. By Lemma 2, ¢ is satisfiablein a
Kripke model & = (F, ) such that § = (W, R) is of depth < 1.
We can assume also that every point of depth 1 in § has at least two
proper successors.

Let IT be the set of all pairs {z, y} of distinct pointsin § of depth 0
for whichthereisaz € W with z Rz and zRy. For each {z,y} € II
we take a fresh point ., and define anew frame g = (W', R') in
whichW' = {w € W : dp(w) = 0} U {ug,y : {z,y} € II}, and
R’ isthe reflexive closure of {(us,y, ) : {z,y} € II}. Clearly, §’
isaquasisaw. Defineavaluation ' in§’ = (W', R') by taking, for
every variable p, z € ' (p) iff thereisy € W' of depth 0 such that
zR'y andy € U(p). It can be proved by induction (consult the full
paper) that ¢ issatisfied in & = (§',0'). O

It is easy to see that in the constructed model & we actually need
< 3((¢) points—to satisfy the subformulas 3¢ of ¢! that hold in
R'—and, of course, their successors, i.e., < 94(¢) points in total,
where /(¢) isthelength of ¢. It followsthat thereisanondeterminis-
tic polynomial time algorithm for checking satisfiability of BRCC-8
formulas. Thus we obtain:

Theorem 4 The satisfiability problem for BRCC-8 formulasin ar-
bitrary topological spaces is NP-complete.

4 SATISFIABILITY IN EUCLIDEAN SPACES

As was shown by Renz [12], for RCC-8 formulas satisfiability in
arbitrary spaces coincides with satisfiability in R, and so in R* for
any n > 0. However, this does not hold for BRCC-8 formulas.

Example5 Consider the conjunction ¢ of the BRCC-8 formu-
las EQ(X:1VX»,Y),NTPP(X,Y),NTPP(X,,Y), —-EQ(Y, T),
-EQ(X, 1), where X ranges over {X1, X,,Y}. Clearly, ¢ can be
satisfied in the topological space consisting of three points and hav-
ing the identical interior operator. Suppose now that ¢ holds in some
space ¥ = (U, I). Then the region X; V X> is closed and included
intheinterior of Y. On the other hand, it coincideswithY . Hence Y
isboth closed and open. It follows that U isthe union of two digjoint
non-empty open sets, Y and U — Y, and so ¥ is not connected. Thus
¢ isnot satisfiablein R™ for any n > 1. (It follows in particular that
S4,, is not complete with respect to the class of connected spaces.
Note however that S4 is sound and complete with respect to R; see

eg. [11])

In this section we show that the satisfiability problem for BRCC-8
formulasinR™, n > 1, isstill decidable. However, its computational
complexity grows up to PSPACE.

Say that aframe § = (W, R) is connected if for any two points
x,y € Wwehavez(RUR™*)*y, where (RUR™!)* isthetransitive

closure of therelation R U R™. In other words, if we depict Fasa
(nondirected) graph Gz whose nodes are points in W and edges are
pairs (z,y) such that either z Ry or y Rz, then G is connected.

Lemma6 Every M/L-formula satisfiable in a connected topologi-
cal space is satisfiable in a model based on a finite connected frame.

Proof Suppose an M L-formula p is satisfied in a connected topo-
logical space ¥ = (U, I) under avaluation . Denote by subgp the
set of subformulas of ¢ and define an equivalence relation ~ on U
by taking v ~ w iff for every ¢ € subp we have v € L(v) iff
w € B).Let W = {[v] : v € U}, where [v] = {w : w ~ v}.
Define a binary relation R on W by taking [v]R[w] iff, for every
Iy € subyp, we have w € U (Iy) whenever v € B(Iv). Clearly,
Risreflexive and transitive, i.e., § = (W, R) is afinite quasi-order.
Let us show that F is connected. Suppose otherwise. Then there are
[v] and [w] in W such that [v](R U R™")* [w] does not hold. Put

Cy = {[u] € W: [W}(RUR™")"u]}.

According to our assumption, neither C, nor W — C,, is empty. For
eachpair [u] € C,, [w] € W—C, selectaformulaloag, [ € suby
such that v € %(Ia[u],[w]), but w ¢ ‘B(Ia[u],[w]). This can be
done because [u]R[w] does not hold. And since [w]R[u] does not
hold either, we can choose a formula I3,,),j.] € suby such that

w e ‘U(Iﬂ[w],[u]), but v ¢ ‘U(I,B[w],[u]). Let
a = \/ /\ Iam,y, ,H: v /\ I/Ht,y
ze€W —-Cy yelly

ze€Cy yeWw—=Cy
Itiseasy to seethat for every v € U we have
o uecY(a)iffueJCy,andu € B(B) iffue U - JC,.

Hence, both | JC, and U — | C,, are open and nonempty, contrary
to T being connected. It remainsto prove that ¢ issatisfied in §. De-
fine avaluation U’ in § by taking ' (p) = {[v] : v € V(p)}. By
induction on the construction of ¢ € suby we show that v € B (1))
iff [v] € U’ (v»). The basis of induction and the cases of the Booleans
and universal modalities are trivial. Suppose ¢» = I'x. Theimplica
tion ‘v € V() = [v] € V() follows directly from the defi-
nition of R. Let us prove the converse. Assume that [v] € U (v),
butv ¢ V(). As[v] € T'(x), we have by IH v € T(x). Let
Ivi,...,Iv, bedl subformulas of ¢ starting with I and such that
v € Y(Iv),i = 1,...,n. If such formulas do not exist, then
[v]R[w] forevery w € U,andso by IH D (x) = U = B(Ix), which
is a contradiction. So we may assume that n > 0. Let v be the con-
junction of al I~;. Notethat U (v) Z U (x), for otherwise we would
have B(Iy1) N--- NV(Iyn) C V(Ix), contrary tov ¢ BV(v)). So
thereis a point w € V() — V(x). By the choice of v, we have
[v]R[w] and, by IH, [w] ¢ L' (x), contrary to [v] € L' (Ix). O

A connected quasisaw will be called a saw.

Lemma7 IfaBRCC-8formula ¢ issatisfiablein a connected topo-
logical space, then ¢! is satisfiable in a finite saw model.

Proof By Lemma6, without loss of generality we may assume that
¢! issatisfied in afinite connected quasi-order under some valuation
. Inthe sameway asin the proof of Lemma 2 we construct a partial
order § = (W, R) of depth < 1 satisfying ¢' under 2. It should be
clear that § is connected. We can assume also that every point of
depth 1 in § has at least two proper successors. Now in precisely
the same way as in the proof of Lemma 3 we construct the model
R = (', ') satisfying ¢!. Since F is connected, ' must be a saw.

|



Theorem 8 ABRCC-8 formula ¢ issatisfiable in R iff ¢ is satisfi-
ablein afinite saw of size < 279 ¢ = const.

Proof The implication (=) follows from the two preceding lem-
mas. Let us prove the converse. Every finite saw model for ¢ can
clearly be transformed into a model 9t = (3, V) satisfying ¢ and
based on the frame § = (Z,R) such that xRy iff x = y or there
existsn € Zwithz =2nandy € {2n — 1,2n + 1}. Now definea
valuation 2’ in R by taking

0 (p) = 20,20 +2]
2n+1€B(p)

for all propositional variables p. It is not hard to check that ¢ is
satisfied in the topological model (R, T'). O

As a consequence of Theorems 8 and 4 we obtain:

Theorem 9 The satisfiability problem for BRCC-8 formulasinR is
decidable in PSPACE.

Proof By Savitch’'stheorem, it suffices to present a nondeterminis-
tic polynomial space agorithm. It consists of two parts. The first one
is the nondeterministic polynomial time algorithm provided by The-
orem 4. It guesses a quasisaw model 9t satisfying a given formula ¢
and containing m < 9 - £(¢) points, together with the set

== {-3 € subp : ron =3P} U {pi > CIp; : X; € varg}

and the set T of all pairs of points of depth 0 in 9t that are not
connected by the quasisaw. The second algorithm checks whether a
pair (z,y) € II can be connected by a saw model with < 2°¢()
points validating =. To this end we guess a number n < 2°4®) and
represent it in binary (which requires polynomial space). Seti = 1,
z; =z and z, = y.If i + 2 = n then we guess one point z; 41
together with a valuation of ¢!’s variables in it, and check whether
al formulasin = are true at z;+1 provided that z; and z; - are the
only immediate successors of z;;. If thisis the case, then (z,y)
can be connected; we delete it from IT and check the remaining pairs.
Now, if 7 + 2 < n then we guess two points z;+1 and z;» together
with avaluation of ¢'’svariables in these points, and check whether
al formulasin ZE aretrue at z;+1 and z;4» provided that z; and z; 12
are the only immediate successors of z;+1. If thisisindeed the case
then we proceed to considering z;+» and forget everything about z;,
for j < i + 2, thus remaining within polynomial space. a

Moreover, it turns out that the established upper bound cannot be
made smaller.

Theorem 10 The satisfiability problem for BRCC-8 formulasin R
is PSPACE-complete.

Proof Let L be alanguage in the alphabet {0,1} and let L bein
PSPACE. Our aim isto show that thereisatrandation f of wordsin
{0, 1} into the language of BRCC-8 such that

e foreverye € {0,1}", e € Liff f(e) issdtisfiablein R, and
e f(e) is computable in time polynomial in |e|, where |e| is the
length of e.

Since L isin PSPACE, there is a one-tape right-infinite Turing ma-
chine 2 which, starting from an arbitrary e € {0,1}" in the initia
state g reaches the final state g iff e € L, and while working the

head of the machine never movesto theright of cell P(|e|), for some
fixed polynomia P. Thus, for a word e of length n, the working
zone of 2 consists of thecells0, ...,k = P(n); thecdlsk +1,...
are empty. Let qo, . .., gm be the states of 2. We will assume that
instructions of 2( are of the following three types:
¢il” = Rqj, @1” = Lg;, ¢l1° = q1".

Hereo,r € {0,1}, X = X if 0 = 1 and X° = —X otherwise
(=1 = 0, =0 = 1). The meaning of these instructions is as follows:
if 20isin state ¢; and its head reads 17, then 2( goes to state ¢; and
moves its head one cell to the right (the first instruction), one cell to
the left (the second one), or does not move the head, but writes 17 in
the active cell *

With e and 2( we associate the following region variables:

e Xoy,..., X} (torepresent the cells of 2);
e Yy,...,Y,, (torepresent the states of 2A);
e Zy,...,Z (torepresent the position of the head of ).

With every instruction ¢;1° = Rg; in 2( we associate the pairs
{YiNXT ANX 0 ANZL Y5 NXT AXTy A Ziga )y 2

where0 <1 < k, 7 € {0, 1}; with every instruction ¢;1 = Lg; in
2 we associate the pairs

{YiNXT A ANXT NZL Y ANXT L ANXT N2 (3

where0 < [ < k, 7 € {0, 1}; and with instructions ¢;17 = ¢;17
the pairs

(iAX? AZLY; AXTAZY, 0<I<FE. @

Denote by = the set of all pairs of the form (2)—(4) having distinct
components and different from the pairs associated with the instruc-
tionsin 2. Clearly, |Z| ispolynomial in |e].

Now, for every {t,¢'} € E we take the formula

DC(t,t") (5)

and define f(e) as the conjunction of all these formulas and the fol-
lowing ones:

SEQ(XGO A - AXTFAYLAZo, L), e=(00,...,0%), (6)
—-EQ(Yo, 1), (7
EQ(T,YoV---VYy), (8
DC(Y;,Y;) VEC(Y;,Y;), 0 <i# j <m, 9
EQ(T,Zo V---V Z), (10
DC(Z;, Z;)VEC(Z;, Z;), 0 <i#j <k, (11)
DC(Zi, Z;), i =0,...,k, j#i—1,4,i+1, (12)
DC(X: A Zj,-X;), i # 7, (13)
DC(—=X; A Z;, Xi), i #j. (14)

Itisreadily seen that f(e) iscomputable in time polynomial in |e].
Suppose f(e) is satisfied in R. Then by Theorem 8, f(e) is satis-

fied in the topological space determined by asaw § = (W, R). Let

x, y, z bethree distinct pointsin W such that zRx and zRy, and let

TE XA AXPFAY;NZ, yEXP A AXFAYAZ.

4 More frequently used instructions of theform I : ¢1° = Dg;17 canbe
simulated by two our instructions: ¢17 = ¢f17,¢/1™ = Dg;, where
¢! isanew state corresponding to I.



In view of (12), |l —1'| € {0,1}. And by (13), (14), we have: if
I # U then p, = 7, for dl r, otherwise p, = 7. foradl » # . It
follows by (5) that 2( contains either one of the instructions

qilp’ :>RQj (pIZTl, l’=l+1),
qi].pl :>qu (pIZTl, l’Zl—].),
qi].pl = qle’ (l, = l)

(it transforms the configuration corresponding to x into the configu-
ration corresponding to y) or one of the instructions

¢;1™" = Rq; (pp=m,1=1+1),
q;1™" = Lq; (pp=m,1=1-1),
qj‘lfl’ = qi].pl (l’ = l)

(it transforms the configuration corresponding to ¥ into the configu-
ration corresponding to x) or oneinstruction from either of these sets.
We cdll thisinstruction(s) theinstruction(s) for {z, y}. In view of (9)
and (12), they areuniquely determined by {z, y} (e.0.,if z = Y;AY;
theni = j).

As f(e) issatisfied in our model and in view of (6), (7) and (10),
we have points z and y of depth 0 in § such that

TE XA AXIFAYIAZy, yE XA AXFAYOANZ,

for some ; and I'. Since § is connected, we can choose a minimal
number of pointsz1, . . ., z, such that zo = z, z, = y and for every
i,,1 < i< r, thereisy; € W with y; Rz;, y; Rx;+1. Our am is
to show that 21, having started from the tape oo, . . . , o, COMesto a
stop (i.e., reaches qp) on the tape o, . . ., 7. If thisis the case then
e € L.

Without loss of generality we may assume that no z; validates
Yo if ¢ < r, and that no z;, ; can be connected directly whenever
j > i+ 1 (i.e, we cannot add a point y to W so that yRx; and
yRz; without violating the constraints (5)—(14)). Consider now the
instruction(s) for some pair {zs, zs+1}, 0 < s < r. We claim that
thereis only one such instruction, and it transforms the configuration
corresponding to x into the configuration corresponding to x4 1.
Indeed, suppose that {z, xs+1} isthelast pair for which thisis not
the case. Since no instruction may contain ¢ in its left-hand part,
s < r—1. And since no two instructions of 2( may have the sameleft-
hand side, the configurations corresponding to z; and x> coincide.
So either x5 is ‘terminal’ or it can be connected directly with x;43,
contrary to the minimality of r. It followsthat e € L.

Conversely, suppose e = (oo,...,0%) iSin L. Then, having
started from (oo, . . ., o1 ) instate gy, in s < 2* steps2A will reach the
halt state go without moving its head to theright of cell k = P(Je|).
Denote by (o7, .. ., o) the state of the tape at step n, by ¢(n) the
number of the state of 2 at step n, and by h(n) the number of the
active cell at step n. Construct aframe § = (W, R) by taking

W:{moa"'ax&yoa"'aysfl}a
R = {{yi,zi), (Yi,Tit1),(x,x) :x € W, i =0,...,5 —1}.

Defineavauation in § as follows:

ZTq 'Z Xj iff O'Ji- = ].,

zi Y, it 5 =q(i),

vk 2 it j=h),

yi'ZX iff .Z’i'ZXOTCL‘i+1 'ZX,

for any region variable X in f(e). Itisreadily checked that the modal
trandation of f(e) issatisfied in the resultant saw model. d

5 CONCLUSION

We have determined the computational complexity of the satisfiabil-
ity problem for RCC-8 formulas with Boolean terms in both arbi-
trary topological spaces and Euclidean ones. This research can be
regarded as afirst step towards understanding effective extensions of
RCC-8 included in the undecidable RCC. Two obvious open prob-
lems in this direction are: (1) What happens if we interpret region
variables only by connected (regular closed) sets of arbitrary or Eu-
clidean topological spaces? (2) Are there interesting tractable frag-
ments of BRCC-8 which are not fragments of RCC-8?
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