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Abstract. We extend the expressive power of the region connection
calculus RCC-8 by allowing applications of the 8 binary relations of
RCC-8 not only to atomic regions but also to Boolean combinations
of them. It is shown that the statisfiability problem for the extended
language in arbitrary topological spaces is still in NP; however, it
becomes PSPACE-complete if only the Euclidean spaces Rn , n > 0,
are regarded as possible interpretations. In particular, in contrast to
pure RCC-8, the new language is capable of distinguishing between
connected and non-connected topological spaces.

1 INTRODUCTION

RCC-8 is a logical formalism intended for representing qualitative
information about relationships among spatial regions in terms of
8 jointly exhaustive and pairwise disjoint basic binary predicates.
Typical RCC-8 expressions are: PO(Italy;Alps) (‘Italy and the
Alps partially overlap’), NTPP(Luxemburg;EU) (‘Luxemburg is
a nontangential proper part of the EU’). RCC-8 was constructed
(independently and almost simultaneously) by two parallel research
streams of spatial KR&R: in the framework of geographical infor-
mation systems [3] (see also [4, 2, 7]) and as an effective fragment of
the much more expressive region connection calculus RCC [10] (for
a study of its computational behaviour consult e.g. [8, 12, 14, 15]).
The former root of RCC-8 demonstrates its practical applicability,
while the latter tempts to search for more expressive and yet effec-
tive fragments.

One apparent ‘deficit’ of RCC-8 is that it operates only with
atomic regions. We can’t form unions (_) or intersections (^) of re-
gions to say, for instance, that EQ(EU;Spain_Italy_: : : ) (‘the EU
consists of Spain, Italy, etc.’), P(Alps; Italy _ France_ : : : ) (‘the
Alps are located in Italy, France, etc.’), EC(Austria;Alps^ Italy)
(‘Austria is externally connected to the alpine part of Italy’), and
deduce from these that if EC(X;EU), for some country X , then
EC(X;Y ) for some country Y in the EU, or that there is a country
Z such that TPP(Z;EU) (i.e., ‘Z is a tangential proper part of the
EU’). Note by the way that the last formula is a correct conclusion
only if we interpret our formulas in Euclidean (or, more generally,
connected) topological spaces (and if there are non-EU countries): in
a discrete topological space the EU may be an open set with empty
boundary. This simple observation and the result of [12], according to
which every satisfiable RCC-8 formula is satisfiable in all Euclidean
spaces Rn , n � 1, show that the Boolean region terms indeed in-
crease the expressive power of RCC-8.

The main aim of this paper is to study the computational complex-
ity of spatial reasoning in the language of RCC-8 extended with the
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possibility to form Boolean combinations of regions. (As full RCC
also contains region terms of this kind, the resultant language can
still be regarded as a fragment of RCC.) We will show that the satis-
fiability problem for formulas of this language is NP-complete—that
is the same as for RCC-8 formulas [15]—if arbitrary topological
spaces are allowed as possible interpretations, and that it becomes
PSPACE-complete if we consider only connected topological spaces,
or only Euclidean ones.

2 RCC-8

The language of RCC-8 contains individual variables X1; X2; : : : ,
called region variables, eight binary predicates DC, EC, PO, EQ,
TPP, TPPi, NTPP, NTPPi, and the Boolean connectives ^, _, !,
and :. The well-formed formulas of this language, or RCC-8 for-
muls, are Boolean combinations of the eight predicates with region
variables as their arguments.

RCC-8 formulas are often interpreted in topological spaces T =
hU;Ii, where Iis an interior operator on a set U satisfying the stan-
dard Kuratowski axioms: I(X \ Y ) = IX \ IY , IX � IIX ,
IX � X , IU = U . The region variables are assumed to range
over regular closed sets of T.3 Thus an assignment in T is a map
a associating with every variable X a set a(X) � U such that
a(X) = C Ia(X), where C is the closure operator on U dual to I

(i.e., CY = U�I(U�Y )). The intended meaning of the eight basic
RCC-8 predicates is as follows:

DC(X1; X2), :9x x 2 X1 \X2;

EC(X1; X2), (9x x 2 X1 \X2) ^ (:9x x 2 IX1 \ IX2);

PO(X1; X2), (9x x 2 IX1 \ IX2) ^ (9x x 2 IX1 \ :X2) ^

(9x x 2 :X1 \ IX2);

EQ(X1; X2), 8x (x 2 X1 $ x 2 X2);

TPP(X1; X2), (8x x 2 :X1 [X2) ^ (9x x 2 X1 \ C:X2 ) ^

(9x x 2 :X1 \X2);

NTPP(X1; X2), (8x x 2 :X1 [ IX2) ^ (9x x 2 :X1 \X2);

TPPi(X1; X2), TPP(X2; X1);

NTPPi(X1; X2), NTPP(X2; X1):

An RCC-8 formula � is said to be satisfiable if there exist a topo-
logical space T and an assignment a in it under which � is true in
T, T j=a � in symbols. Quite often in spatial representation and rea-
soning we are interested in satisfiability not in arbitrary topological
space, but in certain specific ones, say, connected spaces (which are
not unions of two disjoint non-empty open sets) or Euclidean spaces
R, R2 , or R3 with their natural topology.

3 It is often assumed also that the sets interpreting region variables are non-
empty. In the extended language to be defined in the next section this as-
sumption can be expressed explicitly as a spatial formula.



That the general satisfiability problem for RCC-8 formulas is de-
cidable was observed by Bennett [1] who embedded RCC-8 into the
bimodal (propositional) logic S4u—Lewis’s S4 with the universal
modality—using the fact that it is complete with respect to topolog-
ical spaces (see also [9] for a strict proof). Here is a variant of such
an embedding.

Denote by I and C the necessity and possibility operators of S4,
respectively, and let 8 and 9 be two additional ‘universal’ modalities.
The formulas of the resulting bimodal language ML are interpreted
in topological spaces in the following way. Given a space T = hU; Ii,
define a valuation V of ML in T as a map associating with every
propositional variable p a subsetV(p) of U . The pairM = hT;Vi is
called then a topological model of ML. The operators I and C are
interpreted in this model as the interior and closure operators I and
C of T, respectively, the Boolean connectives as the corresponding
set-theoretic operations, and for every ML-formula ',

V(8') =

�
U ifV(') = U ,
; otherwise;

V(9') =

�
U ifV(') 6= ;,
; otherwise.

The set of ML-formulas ' that are valid in all topological models
(in the sense that V(') = U ) is denoted by S4u. Syntactically the
logic S4u can be defined as the fusion of S4 (with I and C) and S5
(with 8 and 9) plus one extra axiom 8'! I'. As follows from [5],
S4u is characterised by the class of topological spaces determined by
(finite) Kripke frames for S4. Let F = hW;Ri be such a frame (i.e.,
R is a reflexive and transitive relation, or a quasi-order, on W ). The
topological space determined by F is the pair TF = hW; IFi where,
for every X � W , IFX = fx 2 W : 8y 2 W (xRy ! y 2 X)g.
It is not hard to see that F and TF validate precisely the same ML-
formulas.

The language of S4u is expressive enough to encode the topologi-
cal meaning of spatial formulas. Indeed, with every RCC-8 predicate
P (Xi; Xj) we can associate anML-formula (P (Xi; Xj))

� defined
by taking:

(DC(Xi; Xj))
� = :9(pi ^ pj);

(EC(Xi; Xj))
� = 9(pi ^ pj) ^ :9(Ipi ^ Ipj);

(PO(Xi; Xj))
� = 9(Ipi ^ Ipj) ^ 9(Ipi ^ :pj) ^ 9(:pi ^ Ipj);

(EQ(Xi; Xj))
� = 8(pi $ pj);

(TPP(Xi; Xj))
� = 8(:pi _ pj) ^ 9(pi ^C:pj) ^ 9(:pi ^ pj);

(NTPP(Xi; Xj))
� = 8(:pi _ Ipj) ^ 9(:pi ^ pj):

Now, given an RCC-8 formula �, denote by �� the result of replac-
ing all occurrences of the RCC-8 predicates P (Xi; Xj) in � by the
corresponding ML-formulas (P (Xi; Xj))

�. And then we put

�y = �� ^
^

Xi2var�

(pi $ CIpi); (1)

where var� is the set of region variables in �. (The last conjunct says
that the variables in �y are interpreted as regular closed sets).

Theorem 1 (Bennett) An RCC-8 formula � is satisfiable iff �y is
satisfiable in the topological space TF determined by some finite
quasi-order F.

This theorem reduces the satisfiability problem for RCC-8 formulas
to the satisfiability problem for ML-formulas in Kripke frames for
S4u, which is known to be decidable [5]. Renz [12] showed that actu-
ally the satisfiability problem for RCC-8 formulas is NP-complete;
Renz and Nebel [13, 15] described all maximal tractable fragments
of RCC-8.

3 RCC-8 WITH REGION TERMS

Denote by BRCC-8 the extension of RCC-8 which allows the use
of Boolean combinations of region variables as arguments of RCC-
8 predicates. Such combinations are called region terms. Their se-
mantical meaning is defined as follows (cf. [6]). Given a topological
space T = hU; Ii, an assignment a in it and region terms t, t0, we put

� a(t _ t0) = C I(a(t)[ a(t0)) = a(t) [ a(t0),
� a(t ^ t0) = C I(a(t)\ a(t0)),
� a(:t) = C I(U � a(t)) = C (U � a(t)).

Thus every region term is interpreted as a regular closed set of T.
Note that a(X ^ :X) = ; and a(X _ :X) = U for any a and T.
We denote the termsX^:X andX_:X by? and>, respectively.
The constraint :EQ(X;?) asserts that X is a non-empty region.

Our aim in this section is to show that the satisfiability problem
for BRCC-8 formulas is decidable in NP. To this end we extend the
translation y of the previous section to the region terms. Given such
a term t, define an ML-formula t� by taking

X�
i = pi; (:t)� = CI:t�;

(t1 _ t2)
� = CI(t�1 _ t

�
2); (t1 ^ t2)

� = CI(t�1 ^ t
�
2):

For every BRCC-8 predicate P (t1; t2) we put

(P (t1; t2))
� = (P (X1; X2))

�ft�1=p1; t
�
2=p2g

and define the modal translation �y of a BRCC-8 formula � as
before by (1). It should be clear that Bennett’s theorem holds for
BRCC-8 formulas as well.

The modal translations of BRCC-8 formulas form a rather special
fragment of ML. For instance, Renz [12] showed that an RCC-8
formula � is satisfiable iff �y is satisfiable in a Kripke model based
on an S4-frame of depth � 1 and width � 2, which means that the
frame contains no chain of more than 2 distinct points, and no point
has more than 2 distinct proper successors. It turns out that this result
can be generalised to BRCC-8 formulas. To prove this, we require a
number of definitions.

An ML-formula is a CI-term if it can be obtained from some
Boolean formula � (without modal operators) by prefixing CI to
every subformula of �. A CI-term prefixed by a string of :, I , and
C is called a general CI-term. (It is easy to see that every general
CI-term is equivalent in S4u to a formula of the form �, :�, I�,
:I�, or I:�, where � is a CI-term.) By a CI-formula we mean
an ML-formula composed from formulas of the form 9 and 8 ,
where  is a Boolean combination of general CI-terms, using only
Boolean connectives.

It easily follows from the given definitions that the modal transla-
tion of any BRCC-8 formula is equivalent in S4u to a CI-formula.
We now show that allCI-formulas satisfiable in topological models
can be satisfied in Kripke ML-models of a rather simple form.

A partial order hV; Si is of depth � 1 iff V can be represented as
the disjoint union of two sets, V1 and V0, in such a way that S is the
reflexive closure of a subset of V1 � V0. The points in Vi are said to
be of depth i.

Lemma 2 Every satisfiable CI-formula ' can be satisfied in a
Kripke model based on a partial order of depth � 1.

Proof As S4u has the finite model property, ' is satisfied in a finite
Kripke model M = hG;Ui based on a quasi-order G = hW;Ri.
Define a partial order F = hV; Si by taking V = V0 [ V1, where

V0 = fx 2 W : :9y 2W (xRy ^ :yRx)g; V1 =W � V0;



and taking S to be the reflexive closure of R \ (V1 � V0). In other
words, F has the same set of worlds as G, but only those arrows
from the latter that lead to points in final clusters (arrows within
these clusters are omitted). Let V = U and K = hF;Vi. Then
for every CI-formula  and every u 2 V , we have u j=K  iff
u j=M  . (An inductive proof can be found in the full paper at
http://www.informatik.uni-leipzig.de/�wolter.) 2

A partial order of depth � 1 and width � 2 is called a quasisaw
and a Kripke model based on a quasisaw is called a quasisaw model.

Lemma 3 A BRCC-8 formula � is satisfiable iff �y is satisfiable in
a quasisaw model.

Proof Only ()) needs a proof. By Lemma 2, �y is satisfiable in a
Kripke model K = hF;Vi such that F = hW;Ri is of depth � 1.
We can assume also that every point of depth 1 in F has at least two
proper successors.

Let � be the set of all pairs fx; yg of distinct points in F of depth 0
for which there is a z 2W with zRx and zRy. For each fx; yg 2 �
we take a fresh point ux;y and define a new frame F0 = hW 0; R0i in
which W 0 = fw 2 W : dp(w) = 0g [ fux;y : fx; yg 2 �g; and
R0 is the reflexive closure of f(ux;y; x) : fx; yg 2 �g. Clearly, F0

is a quasisaw. Define a valuation V0 in F0 = hW 0; R0i by taking, for
every variable p, x 2 V0(p) iff there is y 2 W 0 of depth 0 such that
xR0y and y 2 V(p). It can be proved by induction (consult the full
paper) that � is satisfied in K0 = hF0;V0i. 2

It is easy to see that in the constructed model K0 we actually need
� 3`(�) points—to satisfy the subformulas 9 of �y that hold in
K0—and, of course, their successors, i.e., � 9`(�) points in total,
where `(�) is the length of �. It follows that there is a nondeterminis-
tic polynomial time algorithm for checking satisfiability of BRCC-8
formulas. Thus we obtain:

Theorem 4 The satisfiability problem for BRCC-8 formulas in ar-
bitrary topological spaces is NP-complete.

4 SATISFIABILITY IN EUCLIDEAN SPACES

As was shown by Renz [12], for RCC-8 formulas satisfiability in
arbitrary spaces coincides with satisfiability in R, and so in Rn for
any n > 0. However, this does not hold for BRCC-8 formulas.

Example 5 Consider the conjunction � of the BRCC-8 formu-
las: EQ(X1_X2; Y ),NTPP(X1; Y ),NTPP(X2; Y ), :EQ(Y;>),
:EQ(X;?), where X ranges over fX1; X2; Y g. Clearly, � can be
satisfied in the topological space consisting of three points and hav-
ing the identical interior operator. Suppose now that � holds in some
space T = hU; Ii. Then the region X1 _ X2 is closed and included
in the interior of Y . On the other hand, it coincides with Y . Hence Y
is both closed and open. It follows that U is the union of two disjoint
non-empty open sets, Y and U �Y , and so T is not connected. Thus
� is not satisfiable in Rn for any n � 1. (It follows in particular that
S4u is not complete with respect to the class of connected spaces.
Note however that S4 is sound and complete with respect to R; see
e.g. [11].)

In this section we show that the satisfiability problem for BRCC-8
formulas in Rn , n � 1, is still decidable. However, its computational
complexity grows up to PSPACE.

Say that a frame F = hW;Ri is connected if for any two points
x; y 2 W we have x(R[R�1)�y, where (R[R�1)� is the transitive

closure of the relation R [ R�1. In other words, if we depict F as a
(nondirected) graph GF whose nodes are points in W and edges are
pairs (x; y) such that either xRy or yRx, then GF is connected.

Lemma 6 Every ML-formula satisfiable in a connected topologi-
cal space is satisfiable in a model based on a finite connected frame.

Proof Suppose an ML-formula ' is satisfied in a connected topo-
logical space T = hU; Ii under a valuation V. Denote by sub' the
set of subformulas of ' and define an equivalence relation � on U
by taking v � w iff for every  2 sub' we have v 2 V( ) iff
w 2 V( ). Let W = f[v] : v 2 Ug, where [v] = fw : w � vg.
Define a binary relation R on W by taking [v]R[w] iff, for every
I 2 sub', we have w 2 V(I ) whenever v 2 V(I ). Clearly,
R is reflexive and transitive, i.e., F = hW;Ri is a finite quasi-order.
Let us show that F is connected. Suppose otherwise. Then there are
[v] and [w] in W such that [v](R [ R�1)�[w] does not hold. Put

Cv = f[u] 2 W : [v](R [ R�1)�[u]g:

According to our assumption, neither Cv nor W � Cv is empty. For
each pair [u] 2 Cv , [w] 2 W�Cv select a formula I�[u];[w] 2 sub'
such that u 2 V(I�[u];[w]), but w =2 V(I�[u];[w]). This can be
done because [u]R[w] does not hold. And since [w]R[u] does not
hold either, we can choose a formula I�[w];[u] 2 sub' such that
w 2 V(I�[w];[u]), but u =2 V(I�[w];[u]). Let

� =
_

x2Cv

^
y2W�Cv

I�x;y; � =
_

x2W�Cv

^
y2Cv

I�x;y:

It is easy to see that for every u 2 U we have

� u 2 V(�) iff u 2
S
Cv , and u 2 V(�) iff u 2 U �

S
Cv.

Hence, both
S
Cv and U �

S
Cv are open and nonempty, contrary

to T being connected. It remains to prove that ' is satisfied in F. De-
fine a valuation V0 in F by taking V0(p) = f[v] : v 2 V(p)g. By
induction on the construction of  2 sub' we show that v 2 V( )
iff [v] 2 V0( ). The basis of induction and the cases of the Booleans
and universal modalities are trivial. Suppose  = I�. The implica-
tion ‘v 2 V( ) ) [v] 2 V0( )’ follows directly from the defi-
nition of R. Let us prove the converse. Assume that [v] 2 V0( ),
but v =2 V( ). As [v] 2 V0(�), we have by IH v 2 V(�). Let
I
1; : : : ; I
n be all subformulas of ' starting with I and such that
v 2 V(I
i), i = 1; : : : ; n. If such formulas do not exist, then
[v]R[w] for everyw 2 U , and so by IHV(�) = U = V(I�), which
is a contradiction. So we may assume that n > 0. Let 
 be the con-
junction of all I
i. Note thatV(
) 6� V(�), for otherwise we would
have V(I
1) \ � � � \V(I
n) � V(I�), contrary to v =2 V( ). So
there is a point w 2 V(
) � V(�). By the choice of 
, we have
[v]R[w] and, by IH, [w] =2 V0(�), contrary to [v] 2 V0(I�). 2

A connected quasisaw will be called a saw.

Lemma 7 If a BRCC-8 formula � is satisfiable in a connected topo-
logical space, then �y is satisfiable in a finite saw model.

Proof By Lemma 6, without loss of generality we may assume that
�y is satisfied in a finite connected quasi-order under some valuation
V. In the same way as in the proof of Lemma 2 we construct a partial
order F = hW;Ri of depth � 1 satisfying �y under V. It should be
clear that F is connected. We can assume also that every point of
depth 1 in F has at least two proper successors. Now in precisely
the same way as in the proof of Lemma 3 we construct the model
K0 = hF0;V0i satisfying �y. Since F is connected, F0 must be a saw.

2



Theorem 8 A BRCC-8 formula � is satisfiable in R iff �y is satisfi-
able in a finite saw of size � 2c�`(�), c = const.

Proof The implication ()) follows from the two preceding lem-
mas. Let us prove the converse. Every finite saw model for �y can
clearly be transformed into a model M = hF;Vi satisfying �y and
based on the frame F = hZ;Ri such that xRy iff x = y or there
exists n 2 Zwith x = 2n and y 2 f2n� 1; 2n+ 1g. Now define a
valuation V0 in R by taking

V
0(p) =

[
2n+12V(p)

[2n; 2n+ 2]

for all propositional variables p. It is not hard to check that �y is
satisfied in the topological model hR;V0i. 2

As a consequence of Theorems 8 and 4 we obtain:

Theorem 9 The satisfiability problem for BRCC-8 formulas in R is
decidable in PSPACE.

Proof By Savitch’s theorem, it suffices to present a nondeterminis-
tic polynomial space algorithm. It consists of two parts. The first one
is the nondeterministic polynomial time algorithm provided by The-
orem 4. It guesses a quasisaw model M satisfying a given formula �
and containing m � 9 � `(�) points, together with the set

� = f:9 2 sub�y : j=M :9 g [ fpi $ CIpi : Xi 2 var�g

and the set � of all pairs of points of depth 0 in M that are not
connected by the quasisaw. The second algorithm checks whether a
pair (x; y) 2 � can be connected by a saw model with � 2c�`(�)

points validating �. To this end we guess a number n � 2c�`(�) and
represent it in binary (which requires polynomial space). Set i = 1,
xi = x and xn = y. If i + 2 = n then we guess one point xi+1

together with a valuation of �y’s variables in it, and check whether
all formulas in � are true at xi+1 provided that xi and xi+2 are the
only immediate successors of xi+1. If this is the case, then (x; y)
can be connected; we delete it from � and check the remaining pairs.
Now, if i+ 2 < n then we guess two points xi+1 and xi+2 together
with a valuation of �y’s variables in these points, and check whether
all formulas in � are true at xi+1 and xi+2 provided that xi and xi+2

are the only immediate successors of xi+1. If this is indeed the case
then we proceed to considering xi+2 and forget everything about xj ,
for j < i+ 2, thus remaining within polynomial space. 2

Moreover, it turns out that the established upper bound cannot be
made smaller.

Theorem 10 The satisfiability problem for BRCC-8 formulas in R
is PSPACE-complete.

Proof Let L be a language in the alphabet f0; 1g and let L be in
PSPACE. Our aim is to show that there is a translation f of words in
f0; 1g into the language of BRCC-8 such that

� for every e 2 f0; 1g�, e 2 L iff f(e) is satisfiable in R, and
� f(e) is computable in time polynomial in jej, where jej is the

length of e.

Since L is in PSPACE, there is a one-tape right-infinite Turing ma-
chine A which, starting from an arbitrary e 2 f0; 1g� in the initial
state q1 reaches the final state q0 iff e 2 L, and while working the

head of the machine never moves to the right of cellP(jej), for some
fixed polynomial P . Thus, for a word e of length n, the working
zone of A consists of the cells 0; : : : ; k = P(n); the cells k+ 1; : : :
are empty. Let q0; : : : ; qm be the states of A. We will assume that
instructions of A are of the following three types:

qi1
� ) Rqj ; qi1

� ) Lqj ; qi1
� ) qj1

� :

Here �; � 2 f0; 1g, X� = X if � = 1 and X� = :X otherwise
(:1 = 0, :0 = 1). The meaning of these instructions is as follows:
if A is in state qi and its head reads 1� , then A goes to state qj and
moves its head one cell to the right (the first instruction), one cell to
the left (the second one), or does not move the head, but writes 1� in
the active cell.4

With e and A we associate the following region variables:

� X0; : : : ; Xk (to represent the cells of A);
� Y0; : : : ; Ym (to represent the states of A);
� Z0; : : : ; Zk (to represent the position of the head of A).

With every instruction qi1� ) Rqj in A we associate the pairs

fYi ^X
�
l ^X

�
l+1 ^ Zl; Yj ^X

�
l ^X

�
l+1 ^ Zl+1g; (2)

where 0 � l < k, � 2 f0; 1g; with every instruction qi1� ) Lqj in
A we associate the pairs

fYi ^X
�
l�1 ^X

�
l ^ Zl; Yj ^X

�
l�1 ^X

�
l ^ Zl�1g; (3)

where 0 < l � k, � 2 f0; 1g; and with instructions qi1� ) qj1
�

the pairs

fYi ^X
�
l ^ Zl; Yj ^X

�
l ^ Zlg; 0 � l � k: (4)

Denote by � the set of all pairs of the form (2)–(4) having distinct
components and different from the pairs associated with the instruc-
tions in A. Clearly, j�j is polynomial in jej.

Now, for every ft; t0g 2 � we take the formula

DC(t; t0) (5)

and define f(e) as the conjunction of all these formulas and the fol-
lowing ones:

:EQ(X�0
0 ^ � � � ^X�k

k ^ Y1 ^ Z0;?); e = (�0; : : : ; �k); (6)

:EQ(Y0;?); (7)

EQ(>; Y0 _ � � � _ Ym); (8)

DC(Yi; Yj) _ EC(Yi; Yj); 0 � i 6= j � m; (9)

EQ(>; Z0 _ � � � _ Zk); (10)

DC(Zi; Zj) _ EC(Zi; Zj); 0 � i 6= j � k; (11)

DC(Zi; Zj); i = 0; : : : ; k; j 6= i� 1; i; i+ 1; (12)

DC(Xi ^ Zj ;:Xi); i 6= j; (13)

DC(:Xi ^ Zj ; Xi); i 6= j: (14)

It is readily seen that f(e) is computable in time polynomial in jej.
Suppose f(e) is satisfied in R. Then by Theorem 8, f(e) is satis-

fied in the topological space determined by a saw F = hW;Ri. Let
x, y, z be three distinct points in W such that zRx and zRy, and let

x j= X�0
0 ^� � �^X�k

k ^Yi^Zl; y j= X�0
0 ^� � �^X�k

k ^Yj ^Zl0 :

4 More frequently used instructions of the form I : qi1
�
) Dqj1

� can be
simulated by two our instructions: qi1� ) qI1� , qI1� ) Dqj , where
qI is a new state corresponding to I.



In view of (12), jl� l0j 2 f0; 1g. And by (13), (14), we have: if
l 6= l0 then �r = �r for all r, otherwise �r = �r for all r 6= l. It
follows by (5) that A contains either one of the instructions

qi1
�l ) Rqj (�l = �l; l

0 = l + 1);

qi1
�l ) Lqj (�l = �l; l

0 = l � 1);

qi1
�l ) qj1

�l (l0 = l)

(it transforms the configuration corresponding to x into the configu-
ration corresponding to y) or one of the instructions

qj1
�
l0 ) Rqi (�l = �l; l = l0 + 1);

qj1
�
l0 ) Lqi (�l = �l; l = l0 � 1);

qj1
�
l0 ) qi1

�l (l0 = l)

(it transforms the configuration corresponding to y into the configu-
ration corresponding to x) or one instruction from either of these sets.
We call this instruction(s) the instruction(s) for fx; yg. In view of (9)
and (12), they are uniquely determined by fx; yg (e.g., if x j= Yi^Yj
then i = j).

As f(e) is satisfied in our model and in view of (6), (7) and (10),
we have points x and y of depth 0 in F such that

x j= X�0
0 ^� � �^X�k

k ^Y1^Z0; y j= X�0
0 ^� � �^X�k

k ^Y0^Zl0 ;

for some �i and l0. Since F is connected, we can choose a minimal
number of points x1; : : : ; xr such that x0 = x, xr = y and for every
i, 1 � i < r, there is yi 2 W with yiRxi, yiRxi+1. Our aim is
to show that A, having started from the tape �0; : : : ; �k, comes to a
stop (i.e., reaches q0) on the tape �0; : : : ; �k. If this is the case then
e 2 L.

Without loss of generality we may assume that no xi validates
Y0 if i < r, and that no xi, xj can be connected directly whenever
j > i + 1 (i.e., we cannot add a point y to W so that yRxi and
yRxj without violating the constraints (5)–(14)). Consider now the
instruction(s) for some pair fxs; xs+1g, 0 � s < r. We claim that
there is only one such instruction, and it transforms the configuration
corresponding to xs into the configuration corresponding to xs+1.
Indeed, suppose that fxs; xs+1g is the last pair for which this is not
the case. Since no instruction may contain q0 in its left-hand part,
s < r�1. And since no two instructions ofAmay have the same left-
hand side, the configurations corresponding to xs and xs+2 coincide.
So either xs is ‘terminal’ or it can be connected directly with xs+3,
contrary to the minimality of r. It follows that e 2 L.

Conversely, suppose e = (�0; : : : ; �k) is in L. Then, having
started from (�0; : : : ; �k) in state q1, in s � 2k stepsAwill reach the
halt state q0 without moving its head to the right of cell k = P(jej).
Denote by (�n0 ; : : : ; �

n
k ) the state of the tape at step n, by q(n) the

number of the state of A at step n, and by h(n) the number of the
active cell at step n. Construct a frame F = hW;Ri by taking

W = fx0; : : : ; xs; y0; : : : ; ys�1g;

R = fhyi; xii ; hyi; xi+1i ; hx; xi : x 2 W; i = 0; : : : ; s� 1g:

Define a valuation in F as follows:

xi j= Xj iff �ij = 1;
xi j= Yj iff j = q(i);
xi j= Zj iff j = h(i);
yi j= X iff xi j= X or xi+1 j= X;

for any region variableX in f(e). It is readily checked that the modal
translation of f(e) is satisfied in the resultant saw model. 2

5 CONCLUSION

We have determined the computational complexity of the satisfiabil-
ity problem for RCC-8 formulas with Boolean terms in both arbi-
trary topological spaces and Euclidean ones. This research can be
regarded as a first step towards understanding effective extensions of
RCC-8 included in the undecidable RCC. Two obvious open prob-
lems in this direction are: (1) What happens if we interpret region
variables only by connected (regular closed) sets of arbitrary or Eu-
clidean topological spaces? (2) Are there interesting tractable frag-
ments of BRCC-8 which are not fragments of RCC-8?
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[7] V. Haarslev, C. Lutz, and R. Möller, ‘A description logic with concrete
domains and role-forming predicates’, Journal of Logic and Computa-
tion, 9(3), 351–384, (1999).

[8] P. Jonsson and T. Drakengren, ‘A complete classification of tractabil-
ity in RCC-5’, Journal of Artificial Intelligence Research, 6, 211–221,
(1997).

[9] W. Nutt, ‘On the translation of qualitative spatial reasoning problems
into modal logics’, in Advances in Artificial Intelligence, Proceed-
ings of the 23rd Annual German Conference on Artificial Intelligence.
Springer-Verlag, (1999). To appear.

[10] D. Randell, Z. Cui, and A. Cohn, ‘A spatial logic based on regions
and connection’, in Proceedings of the 3rd International Conference
on Knowledge Representation and Reasoning, pp. 165–176. Morgan
Kaufmann, (1992).

[11] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics,
Polish Academic Publishers, 1963.

[12] J. Renz, ‘A canonical model of the region connection calculus’, in Pro-
ceedings of the 6th International Conference on Knowledge Represen-
tation and Reasoning, pp. 330–341. Morgan Kaufmann, (1998).

[13] J. Renz, ‘Maximal tractable fragments of the region connection cal-
culus: a complete analysis’, in Proceedings of the 16th International
Joint Conference on Artificial Intelligence, IJCAI, pp. 448–454. Mor-
gan Kaufman, (1999).

[14] J. Renz and B. Nebel, ‘Spatial reasoning with topological information’,
in Spatial Cognition—An interdisciplinary approach to representation
and processing of spatial knowledge, eds., C. Freksa, C. Habel, and
K. Wender, Lecture Notes in Computer Science, 351–372, Springer-
Verlag, (1998).

[15] J. Renz and B. Nebel, ‘On the complexity of qualitative spatial reason-
ing’, Artificial Intelligence, 108, 69–123, (1999).


