
Data Set Editing by Ordered Projection

Jesús S. Aguilar1, José C. Riquelme1 and Miguel Toro1

1 Department of Computer Science. University of Seville. Spain. {aguilar,
riquelme, mtoro}@lsi.us.es

Abstract. In this paper, an editing algorithm based on the
projection of the examples in each dimension is presented. The
algorithm, that we have called EOP (Editing by Ordered
Projection) has some interesting characteristics: important
reduction of the number of examples from the database; lower
computational cost in respect of other typical algorithms due to the
absence of distance calculations; conservation of the decision
boundaries, especially from the point of view of the application of
axis-parallel classifiers; reduction of the decision tree size or the
number of decision rules. The performance of EOP is showed by
comparing the results provided by C4.5 [5] before and after
applying it on databases with continuous attributes. These
experiments have been realised using some databases from UCI
repository [1]. The use of EOP as preprocessing method for the
later application of any axis-parallel learning algorithm convert it
in a valuable tool in the field of data mining.

1 INTRODUCTION

The data mining researchers, especially those dedicated to the
study of algorithms that produce knowledge in some of the usual
representations (decision lists, decision trees, association rules,
etc.), make usually their tests on standard and accessible databases
(most of them with small size). The purpose is to verify and
validate independently the results of their algorithms. Nevertheless,
these algorithms are modified to solve specific problems, for
example real databases that contain much more information
(number of examples) than standard used as training. To
accomplish the final tests on these real databases with tens of
attributes and thousands of examples is a task that takes a lot of
time and memory size.
 Among all the methodologies used by data mining researchers,
those based on axis-parallel classifiers are the most common.
These have an important advantage: they are classifiers that
provide easy-to-understand decision rules by human and very
useful for the expert interested in getting knowledge from the
database. The C4.5 tool [Quinlan93] is, probably, the most useful
technique of this type. C4.5 and other tools have a similar rule
syntax (or equivalent) to the next one (ai: attribute; mi, Mi:
numeric constants):

If m1 d a1 d M1 and m2 d a2 d M2 and ...and mn d an d Mn then class

 Therefore, it is important to apply to the databases preprocessing
techniques to reduce the number of examples or the number of
attributes in such a way to decrease the computational cost. These
preprocessing techniques are fundamentally oriented to one of the
next goals: editing (reduction of the number of examples by
eliminating some of them or calculating prototypes) and feature
selection (eliminating non-relevant attributes). Our algorithm
belongs to the first group.
 Editing methods are much related to the nearest neighbours (NN)
techniques [2]. Some of them are briefly cited in the following
lines. In [3] is proposed to include in the set of prototypes those
examples whose classification is wrong using the nearest
neighbour technique; [9] proposed to eliminate the examples with
incorrect k-NN classification; the works of [6] and [7] follows the
same idea. Other variants are based on Voronoi diagrams [4],
Gabriel neighbours (two examples are said to be Gabriel
neighbours if their diametrical sphere does not contain any other
examples) or relative neighbours [8] (two examples p and q are
relative neighbours if for all other examples x in the set, is true the
next expression)},(),,({),(xqdistxpdistmaxqpdist �). All these
techniques need to calculate distances between examples which is
rather time consuming. If N examples with M attributes are
considered, the first methods have O(MN2); the Voronoi
neighbours is O(MN3); and Gabriel neighbours and relative
neighbours are O(MN3).
 The most important characteristics of EOP are the following:

x Considerable reduction of the number of examples.
x Lower computational cost O(MNlogN) than other algorithms.
x Absence of distance calculations.
x Conservation of the decision boundaries, especially interesting

for applying classifiers based on axis-parallel decision rules
(like C4.5).

x Reduction of the decision tree size or the number of decision
rules.

 In the last section we have dealt with several databases from UCI
repository: small size (Iris), middle size (Breast Cancer and Pima
Indian Diabetes) and large size (Letter). To show the goodness of
our method we have used C4.5 before and after applying EOP. A
five-cross validation for both applications is summarised.

2 DESCRIPTION OF THE ALGORITHM

If we choose a region where all examples inside have the same
class, maybe we could select some of them, which are not decisive
to establish the boundaries of the region. For example, in two
dimensions, we need four examples to determine the boundaries of
one region, at maximum. In general, in d-dimensions, we will need
2d examples at maximum. Therefore, if a region has more than 2d
examples, we could reduce it.
 That is the main idea of our algorithm: to eliminate the examples
that are not in the boundaries of their regions. The aim is to
calculate what set of examples could be covered by a rule and then
eliminate those inside the rule that are not establishing the
boundaries.
 The method is completely heuristic because EOP will work
independently with the projection of the example in each
dimension, not all dimensions at the same time. This heuristic
could seem poor for lack of generality, however the results are
quite the opposite.
 To show graphically (figure 1) the idea of our algorithm we use a
simple two-dimensional database with twelve numbered examples
and two labels: I (odd numbers) and P (even numbers).

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 1. An example of database.

 An optimal classifier would obtain the two rules showed in figure
2. However, this classifier must be hierarchical, since it is
producing overlapped rules. This is not the case of C4.5 and many
others.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 2. The best solution with overlapped rules.

 An axis-parallel classifier might provide one of the following
solutions presented in the figures 3, 4, 5 or 6, where rules are not
overlapped.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 3. One possible solution.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 4. One possible solution.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 5. One possible solution.

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 6. One possible solution.

Before formally exposing the algorithm, we will briefly explain its
application. Consider the situation depicted in figure 7: the
projection of the examples on the abscissas axis produce four
ordered sequences {I, P, I, P} corresponding to the examples {[9,
3, 5, 1, 11], [8], [7], [4, 6, 2, 12, 10]}. Identically, with the
projection on the ordinates axis we can obtain the sequences {P, I,
P, I} formed by the examples {[12, 10, 8, 6, 4], [11], [2], [9, 7, 5, 3,
1]}. Each sequence represents a rectangular region as possible
solution of a classifier and the initial and final examples of the
sequence (if it has only one, it is simultaneously the initial and the
final one) represent the lower and upper values for each coordinate
of this rectangle. For example, in the figure 5 the three rectangles
are defined by examples [9, 1, 7], [11] and [8, 2, 12, 10]. Finally,
we must do note that the examples 3, 5 and 6 are never the initial
or final examples of any sequence. Therefore, they will be
candidates to be eliminated because they will never be boundaries.
The idea is best understood analysing the non-empty regions
obtained by means of projections on every axis, as shows the figure
7 and deleting the examples that are not relevant to establish the
boundaries of a rule (figure 8).

 1

 3

 5

 7

 9

 2

 11

 4

 6

 8

 10

 12

I

P

I

P

 I P I P

Figure 7. Regions without overlapping on the projection.

 1

 7

 9

 2

 11

 4

 8

 10

 12

I

P

I

P

 I P I P

Figure 8. Result of applying EOP.

2.1 Definitions

Def 1: An example E is a tuple formed by the Cartesian product of
the set A of attributes Ai and the set of labels C. We define the
operations att and lab to access to the attributes and its label:

iANEatt ou: and CElab o: .

Def 2: Let the universe U be a sequence of examples. We will say
that a database with n examples, each of them with m attributes and
a label, forms a particular universe. Then U=<u[1], ..., u[n]>. Since
the database is a sequence, the access to an example is achieved by
means of its position. Likewise, the access to j-th attribute of the i-
th example is made by att(s[i],j), and for knowing its label lab(s[i]).

Def 3: Two disjoint subsequences of examples, randomly
generated that contain approximately 70% and 30% of the
universe, respectively, have been called training and test.

Def 4: An ordered projected sequence is a sequence formed by the
projection of the universe onto the i-th attribute. This sequence is
sorted and it contains the numbers of the examples. For example, in
figure 1, for the first attribute we have {9, 3, 5, 1, 11, 8, 7, 4, 6, 2,
12, 10} and for the second attribute {12, 10, 8, 6, 4, 11, 2, 9, 7, 5,
3, 1}.

Def 5: A partition in subsequences of the ordered sequence is the
set of subsequences formed from the ordered sequence of an
attribute in such a way to maintain the projection order, group the
examples with the same label and every two consecutive partitions
are disjoint. In the figure 1, we have for the first attribute {[9, 3, 5,
1, 11], [8], [7], [4, 6, 2, 12, 10]} and for the second attribute {[12,
10, 8, 6, 4], [11], [2], [9, 7, 5, 3, 1]} (figure 7).

Def 6: If an example is in the left or right extreme of a partition,
the example is called border. If the partition only have one
example, it is border. The remainder are not border, are inner. For
example, in the partition obtained in the previous definition the
examples 9, 11, 8, 4 and 10 are borders for the first attribute.

Def 7: The weakness of an example is defined as the number of
times that this example is not border in a partition (i. e., it is inner
to a partition) for every partition obtained from ordered projected
sequences of each attribute.

 In the previous example, let {[9, 3, 5, 1, 11], [8], [7], [4, 6, 2, 12,
10]} and {[12, 10, 8, 6, 4], [11], [2], [9, 7, 5, 3, 1]} be the
partitions, then the weakness of each example is given by:

weakness=0 � examples {9, 11, 4}
weakness=1 � examples {1, 8, 7, 2, 12, 10}
weakness=2 � examples {3, 5, 6}

Def 8: Those examples whose weakness is equal to the number of
attributes of the database are called irrelevant. In our example,
there are three irrelevant examples: {3, 5, 6}, that they do not
appear in the solution (figure 8).

2.2 Algorithm

Input: E: training file (N examples, M attributes)
Output: E edited training file (N* examples)

For each example ej of E with j in {1,...,N}
weakness(ej) <-- 0

For each attribute i in {1,..., M}
Ei <-- Sort E in increasing order by attribute i
For each example ej of Ei with j in {1,...,N}

If ej is not border
weakness(ej) <-- weakness(ej)+1

For each example ej of E with j in {1,...,N}
If weakness(ej)=M

remove ej from E

 The computational cost of the algorithm is O(MNlogN), much
lower than other algorithms proposed in the bibliography.

3 EXPERIMENTS

Tests have been achieved over four databases of varying
complexity from UCI repository: Iris (150, 4, 3), Cancer (683, 9,
2), Pima (768, 8, 2) and Letter (20.000, 16, 26).
 The experiments follow the next steps for each database:

x Random generation of five tests. Each test is composed by a
training and test files, approximately with 70% and 30%,
respectively.

x Application of C4.5 to each training/test files.
x Application of EOP to each training file E (not to test),

obtaining E* editing training file.
x Application of C4.5 to each editing training file, testing with

the original test files.
x Analysis of training file reduction in relation to decision tree

size and error rate.

 It is very important to point out that we could have obtained the
tree size and the error rate by applying C4.5 before and after EOP,
without using test files. The results would have been better in that

case. However, the experiments designed are using the same test
file in each execution. The next figure 9 shows the procedure.

ORDERED
PROJECTION

EDITING

C4.5

C4.5

DECISION
TREE

(SIZE E)

EDITED
TRAINING

FILE
(E*)

TRAINING
FILE

(E 70%)

TEST FILE
(30%)

DECISION
TREE

(SIZE E*)

DATABASE
(5 times)

Err E

Err E*

Dif Err

Figure 9. Applying EOP and C4.5.

 Therefore, the idea consists of trying to maintain the knowledge
that there was in the original training file into the reduced training
file. This purpose is proved by testing both training files.
 The results are shown in the next table. The meaning of the
columns is as follows:

x E: size of training files (70% original database size).
x E*: size of edited training file (DB+EOP).
x %Red: reduction of E in comparison to E*.
x Size E: decision tree size, generated by C4.5 from E.
x Size E*: decision tree size, generated by C4.5 from E*.
x %Dec Size: reduction percentage of decision tree size.
x %Err E: error rate provided by the decision tree of E from the

original test file.
x %Err E*: error rate provided by the decision tree of E* from

the original test file.
x Dif Err: difference between both error rates: |E*-E|.

The analysis of the results indicates that:

x Iris (150, 4, 3) is reduced more than 27%, although sizes and
error rates are the same.

x Breast Cancer (699, 9, 2) is reduced more than 72%, the tree
size is 30% smaller, although the error rate is 1.2 greater.

x Pima (768, 8, 2) is a known database because its outliers.
Only 12.4% of reduction is reached and 2.8% of decrease in
the decision tree size. Surprisingly the error rate is improved.

x Letter (20000, 16, 26) is reduced more than 59% and the
decision tree size 32%. The error rate is worse, because it is
5.7 greater. However, in this case it is important to note that
the edited training file (r5700) is smaller than the original test
file (r6000).

Table 1. Results.

DataBase E E* %Red Size E Size E* %Dec Size %Err E %Err E* Dif Err
Iris 107 77.2 27.8 9.4 9.4 +0.0 7.0 7.0 +0.0
Breast Cancer 475.6 132.2 72.2 30.2 21 +30.5 4.3 5.5 +1.2
Pima Diabetes 535.8 469.2 12.4 143.4 139.4 +2.8 30.3 29.6 -0.7
Letter 14041 5745.8 59.1 2252.6 1518.6 +32.6 14.1 19.8 +5.7

4 CONCLUSIONS

We show an editing algorithm (EOP: Editing by Ordered
Projection). Its main application is as a preprocessing method for
axis-parallel classifiers (like C4.5). EOP has an important
characteristic: it does not need distance calculations and, therefore,
it is not necessary to define it. NN-based techniques need to
initially set some parameters, EOP does not. The computational
cost is lower than other methods O(M N log N). The test set has
been realised with four different databases from UCI repository
and the results are very interesting which show that our algorithm
is a robust method to reduce databases for studying other learning
algorithms without loosing decision boundaries. EOP is
deterministic; it is neither dependent on random values nor the
order of example processing.
 At the same time, we are presenting a measure, named weakness
for an example, which can help to determine the importance of an
example as decision boundary. More weakness implies less
relevance. Thus, in more complicated databases we could relax the
reduction factor for eliminating which weakness is greater or equal
than M-i, instead of M, as it is used in the algorithm above.
 We are studying now the possibility of applying it to discrete
attributes.

5 ACKNOWLEDGEMENTS

 This work has been supported by the Spanish research agency
CICYT under grant TIC99-0351.

6 REFERENCES

[1] Blake, C. and Merz, E. K. UCI Repository of machine learning
databases. (1998).

[2] Cover, T. y Hart, P. Nearest Neighbor Pattern Classification. IEEE
Transactions on Information Theory, 13. (1967).

[3] Hart, P.E. The Condensed Nearest Neighbor Rule. IEEE
Transactions on Information Theory, IT-14. (1968).

[4] V. Klee. On the complexity of d-dimensional Voronoi diagrams.
Arch. Math., vol. 34, pp 75-80. (1980).

[5] Quinlan, J. C4.5: Programs for Machine Learning. Morgan
Kaufmann, Publishers, San Mateo, California. (1993).

[6] Ritter, G. L., Woodruff, H.B., Lowry, S.R. y Isenhour, T.L. An
algorithm for a Selective Nearest Neighbor Decision Rule. IEEE
Transactions on Information Theory, 21. (1975).

[7] Tomek, I. An Experiment with the Edited Nearest-Neighbor Rule.
IEEE Transactions on Systems, Man, an Cybernetics SMC-6. (1976).

[8] G. T. Toussaint. The relative neighbourhood graph of a finite planar
set. Pattern Recognition, vol. 12, nº 4, 1980, pp. 261-268. (1980).

[9] Wilson, D. Asymptotic Properties of Nearest Neighbor Rules using
Edited Data. IEEE Transactions on Systems, Man and Cybernetics 2.
(1972).

