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Abstract. In additionto the classicalheuristicalgorithmsof op-
erationsresearchtherehave alsobeenseveral approachesasedon
artificial neuralnetworks which solve the traveling salesmarprob-
lem (TSP).Their efficiengy, however, decreaseasthe problemsize
(numberof cities) increasesAn ideato reducethe compleity of a
large-scaleT SPinstanceis to decomposer partitionit into smaller
subproblemswhich are easierto solwe. In this paperwe introduce
an all-neuraldecompositiorheuristicthat is basedon a recentself-
organizingmap called KNIES which hasbeensuccessfullyimple-
mentedn solvingboththe EuclideanT SPandthe EuclideanHamil-
tonianpathproblem.

1 INTRODUCTION

Of all the familiesof neuralnetworks describedn theliterature the
Kohonenself-omganizingneuralnetwork hasbeenthe mostwidely
investigatedbne[1]. Thisis not surprising,given its simplicity and
the wide variety of problemsto which it may be applied.One of
theseproblemsis the Euclideantraveling salesmarproblem (TSP)
from operationsesearctandtherehave beenmary attemptgo solve
it by self-oganizingmaps(SOM) [2, 3]. Any algorithm devisedto
solve the TSPtriesto answerthe following question:Given a setof
N citiesanddistancedor eachpair of cities,whatis theshortestour
thatvisits eachcity exactly once?

Although SOM is very powerful, thereis a relatively vastamount
of informationthatit ignoresin the training processThis informa-
tion, which canbeinformally perceved asthe globalinformation,is
the statisticalinformationresidentin the datapoints (input vectors)
in their entirety Thus,althoughin the SOM the neuronsasymptoti-
cally learnthe distribution of the pointsstatistically the SOM does
soonly by virtue of the pointsthemseles and not by utilizing the
informationresidentin the overall setof points,suchastheir mean
etc.

The decompositioninto subproblemss a knowvn approachfor
solving large instancesof TSPs.It is easierto solve the subprob-
lemsbecausehe sizeof eachsubproblenis muchsmaller Oncethe
solutionsto eachsubproblemare obtainedthey canbe combinedto
approximatehe solutionof the original problem.

In this papera new methodcalled KNIES_. DECOMPOSEis in-
troduced.The new methodis basedon a recentself-oiganizing
map called The KohonenNetwork IncorporatingExplicit Statistics
(KNIES) [4]. KNIES hasalreadybeensuccessfullimplementedo
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solve boththe TSP(KNIES_TSP)[5] andthe EuclidearnHamiltonian
pathproblem(KNIES_HPP)[6]. Theprimarydifferencebetweerthe

SOM andthe KNIES is the fact that every iterationin the training

phasdncludestwo distinctmodules—thettractingmoduleandthe

dispesing module.In the attractingmodulea subsebf the neurons
migratetowardsthedatapointthathasbeenpresentedio thenetwork.

This phasds essentiallyidenticalto the learningphaseof the SOM.

However, subsequertb this phaseherestof theneuronsvhichhave

notbeeninvolvedin theattractingmoduleparticipatein adispersing
(repellent)migration. Indeed,theseneuronsnon move away from

their currentpositionsin amannerthatensureshatthe global statis-
tical propertiesof the datapointsareimitatedby the neuronsThus,
althoughin the SOM the neuronsasymptoticallyfind their places
both statisticallyandtopologically in the KNIES they collectively

maintaintheir meansto be the meansof the datapointswhich they

represent.

2 DECOMPOSITION APPROACH TO THE
EUCLIDEAN TSP

An ideato reducethe compl«ity of a large-scaletraveling sales-
man probleminstanceis to decomposeor partition it into smaller
subproblemswhich are easierto solve. The partitioning is per
formed by clusteringthe cities of the original problemin a way
thatstructuralpropertiesof theprobleminstancearepresered.Gen-
erally speakingthe problemof size n is divided into & nonover
lapping clustersC; of sizen; (C; N C; = 0 Vi # j), where
max{n; :1=1,...,k} < n.

Clusteringis aresearchopic itself andtherearenumerousmnath-
ematicalmethodg[7]. After the cities are partitionedinto different
clusterst would be possibleto proceedn two differentways.One
way is to solwve the traveling salesmarsubproblenfor eachcluster
andthento join the subtoursto form a global tour. The traveling
salesmarsubproblemsanbe solved usingary efficient TSPheuris-
tic. For the generationof the global tour the following procedure
might be applied:We begin with anarbitrary subtourT; . This sub-
tour is thenconnectedo anothersubtourT’ to form a new tour. In
generala subtourT; is connectedo theglobaltourT} generatedo
far by removing oneedgeof T; andoneedgeof T; andthen by re-
placingthemby two new edgesconnectingl; andT; to form anew
tour T} 1. This procedurehowever, hasanimportantdisadwantage:
the subtoursare not optimizedwith respecto the edgesconnecting
the clusters.So a betterapproacthis to obtainthe global tour befoe
the subproblemsre solved in orderto integratethe obtainedinfor-
mationinto the local TSP-heuristicin this way the local solution
alsoconsiderghe city n;, wherethe globaltour entersthe cluster
andthecity n;,, whereit leavesthe clusterandsotakesinto account
the outline of the globaltour. As a resultbetterglobal solutionsare



obtaineld This latter approachs the secondway of proceedingfter
the cities are partitioned.We give the stepsof this approachwhich
we will adoptfor KNIES_.DECOMPOSEn thefollowing.

1. Computethe centroidor the meanof thecitiesin eachcluster

2. For every clusterdeterminethe r nearestlustersin regardto the
centroid.

3. Computethecorvex hull of eachcluster

4. Computethe exact distancesfor the r nearestclusters(as the
shortestistancebetweerthe nodesof the corvex hulls).

5. Obtainaglobaltourthroughthe clustersby a TSP-heuristiaising
exact distancesjf available,or otherwisethe distancesbetween
themeanswhich givesanenteringandaexiting city for eachclus-
ter.

6. Apply a suitableheuristicto find the Hamiltonianpathin every
clusterconnectingthe enteringto the exiting city visiting all the
citiesin thatcluster

7. Mergetheedgedetweertheexiting city of oneclusterandenter
ing city of thesubsequentlusterin theglobaltourandthe Hamil-
tonianpathsto form atour for the original problem.

3 AN ALL-NEURAL DECOMPOSITION
APPROACH: KNIES _DECOMPOSE

Thefirst stepof KNIES_.DECOMPOSES to partitionthecitiesinto
clusters.The clusteringis accomplishedlising vector quantization.
Herethe numberof theclusterss aparameteandthereareasmary
codebookvectorsasthe numberof clusters.The codebookvectors
aremoved in the two-dimensionakspaceuntil they find their final
placesandthenthe closestcodebookvectoris found for eachcity.
Hencetheinput spaces dividedinto clusterseachof whichis repre-
sentedby a codebookvector At this pointthe codebookvectorsand
the meanof the citiesin a given cluster(the centroidof the cluster)
coincide. Thereforethe codebookvectorsrepresentinghe clusters
canbe usedto find the global tour throughthe clusters.However,
in orderto obtaina betterdiscriminationof the clusters(i.e., near
optimal clusterboundarieswe make use of the intraregional and
interregional polarizing

The aim of intraregional polarizing is to representachcluster
Cy by anumberof codebookvectorsM;, where M, increasesvith
the numberof cities locatedin that clusterwhich is denotedas V.
Specifically M}, = |0.3 N ]. If therearethreeor lesscitiesin a
cluster then My, is setequalto one.The setof codebookvectorsfor
clusterk, {Qx; : 1 < j < M;} areinitially locatedon a circle the
centerof which is the meanof the cities belongingto that cluster
Eachcity Py ; in thatclusteris thenpresentedo the network, and
thelocationof nearestodebookvectorQy; is updatedaccordingio
theformulagivenbelow:

Qrj (t+1) = (1 —a(t)Qr,; (t) +a(t) Prs @

Othercodebookvectorsin thatclustermaintaintheir positions.c (t)
is decrementetinearly from unity for theinitial learningphaseand
then switchedto 0.2 andis decreasedinearly for the fine-tuning
phase After the individual clustershave beenrepresentedy My
codebookectorsthey aretestedo seewhetherthey adequatelylas-
sify thecitieswithin their clustersThereforetheinterregionalpolar
izing phasehasbeenemplo/ed wherethe codebookvectorsdo not
find their placesby learningonly from the cities within their own
clusters(asin the intraregional polarizing phase)but they are also
migratedin sucha way that they polarize away from the cities of
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the neighboringclusters.The principle by which this is doneis as
follows:

Supposehata point P € C}, is examined.Also assumehatthe
two closestcodebookvectorsto P (amongall the codebookvec-
tors)are@, and@. If both@, and@; do notbelongto the cluster
Ck, clearly the information contentin P (with respectto Q. and
Q@) is misleading,andsoiit is futile to migrate @, and @ using
thisinformation.However, if both of themareintendedto represent
Ck, clearly the informationin P canbe usedto achieve an even
finertuningto theirlocations.Thus,in this scenarioboth@, andQ,
aremoved mamginally from their currentlocationsalongtheline to-
wardsP. Thefinal scenarids the casewhenoneof them,Q. (Qs),
correctly belongsto Cx, andthe other @, (Q.), belongsto a dif-
ferentpartition. In this case,the informationin P canbe usedto
achieve anevenfiner tuningto their locationsby migrating@. (Qs)
mauginally from its currentlocationalongthe hyperlinetowards P,
andmigratingthe other codebookvector @, (Q,) mamginally from
its currentlocationsalongthe line away from P. Sincewe do not
want the “straggler” points (the points which are misclassified but
which probablywould not have beencorrectlyclassifiedeven by an
optimal classifier)to completelydictate (and thus, disturb) the po-
larizing, this migrationis invoked only if the node P lies within a
pre-specifiedvindow of interest,W. This restrictionhasalsobeen
recommendeth theliterature[1], andtypically, this window, W, is
ahypersphereentereditthebisectorbetweerthe codebookvectors
Q. andQy. Also, asrecommendeith theliterature thepolarizingof
both Q. and @, (whenboth of themcorrectly classify P) is made
to beof muchsmallermagnitudethanin the scenariovheneitherof
themmisclassifiest. Thesestepsareformally givenbelow:

t+1)=01-€e7)Qu(t) +eyP if Qu, Qs € Ci

t+1)=(1-ey)Q(t) +eyP if Qa, Qs € Cy

t+D)=1-7Qct)+vP ifQa€Cs; Qv €C;
(

if Qo € Cr; Qb € Cj
if Qa € Cj; Qb € Ci,
if Qa € Cj; Qb € Ch
if P¢w
ifP¢w

t+1) =010+ Q. () —~P

t+1)=(1-7)Qa(t)+aP

(t+1)=Qa(t)
Qv(t+1)=0Qs(t)

Q.
Qs (
Q.
Qy(t+1)=(1+7)Qa(t) — P
Qa
Qo (
Qa

)
Therearethreeparametersn theseupdateequationsyy, ¢, andthe
diameterof the hyperspherd¥? centeredat the bisectorof the two
nearestodebookvectors.Excepte, which is kept constantat 0.25,
experimentswere performedwith differentvaluesof parametersy
andthe diameterof the hyperspherdV in orderto seethe effect of
the interregional polarizing on the quality of the solution(i.e., tour
length).y assumedraluesin the interval (0, 1) with incrementsof
0.1andthe diameterof W was setequalto somepercentagef the
distancebetweerthetwo codebookvectors Again, we experimented
with differentvaluesof percentages.

The outputof theinterregional polarizingphaseis the final parti-
tioning of the cities into clusters.The next stepis to determinethe
globaltour throughthe clusters.To accomplishthis, the centroidof
eachclusteris found by computingthe coordinatevise meanof the
citieslocatedin thatclusterandthe algorithmKNIES_TSP_Globalis
invoked. KNIES_TSP.Global is a modified versionof KNIES_TSP
andquickly yields a tour passingthroughthe centroids.Hencethe
sequenceén which the global tour visits the clustersis determined.
The differencebetweenthe two is explainedin [4]. The next step
is to find out the enteringand exiting cities for eachcluster This
is doneas follows. For two subsequentlustersin the global tour
thetwo nearestities is found suchthat onecity belongsto thefirst
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clusterandthe other one belongsto the secondcluster Thesetwo
cities constitutethe bridge betweerthe two clusters,in otherwords
theglobaltour passesrom oneclusterto anotherthroughthesetwo
cities.

After the enteringand exiting cities for eachclusterare found,
the remainingtask becomeghe determinationof the Hamiltonian
path betweenthesecities which is done by running the algorithm
KNIES_HPP.Globalwhichis amodifiedversionof KNIES_HPP[6].
Whenthe Hamiltonianpathsfor eachclusteraregluedtogetherthe
final touris obtained Thedecompositiormpproachs testedfor some
instance®btainedfrom TSPLIB.

4 COMPUTATIONAL RESULTS

The crucial parameterfor the decompositionapproachis the
number of clusterssince the parametersof both the algorithms
KNIES_TSP.Global and KNIES_HPP.Global are fixed. Partic-
ularly, the following values are used for the parametersof
KNIES_TSP.Globalthatis usedto determinethe orderin which the
clustersare visited: K, = 0.8, w = 0.2, ando = 20 initially.
Here, o is the parametetthat adjuststhe strengthwith which the
neuronsin the neighborhoodf the winning neuronare pulled to-
wardsthe city presentedo the network. K, is usedto decreasehe
value of o at eachepoch.so that the convergenceof all the neu-
ronsto somepositionis guaranteedw plays an importantrole in
both KNIES_TSP.Global and KNIES_HPP.Global by determining
the numberof neuronsthat participatein the attractingandthe dis-
persingmodulesof KNIES. w = 0.2 meandor examplethat40 per
centof the neuronsare usedfor the attractingmodulebeing 20 per
centon oneside andthe other 20 per centon the otherside of the
winning neuronwhen the neuronsare indexed on a virtual elastic
band.

Furthermore the initial numberof neuronsis set equalto the
numberof clusters.The sameparametessettingis alsoadoptedfor
KNIES_HPPGlobalwhereK, = 0.8, w = 0.2, ando = 20 ini-
tially. Theinitial numberof neurongs setequalto 0.3 timesthenum-
ber of cities (including the enteringandexiting cities) in the cluster
for which the Hamiltonianpathis to befound.If the numberof neu-
ronsturnsout to be lessthanthree,thenthe algorithmis run with
threeneuronshnitially. Thesevaluesfor the parametersre selected
sincethe algorithmsKNIES_TSP.Global and KNIES_HPP_Global
provided satistctory resultswith theseparametergor mostof the
instances.

The stepsof KNIES_DECOMPOSEareillustratedin the follow-
ing figureswhile solvingtheinstanceei | 101 for 10clustersFigure
1 (a) shows the resultof the partitioning. The cities aredivided into
10 clusters.The darker dotsrepresenthe centroidsof the clusters.
Figure 1 (b) containsthe globaltour throughthe clusterscomputed
by usingKNIES_TSP.Globalwith the clustercentroidsasthe input.
Theglobaltour givestheorderin which clustersarevisitedon thefi-
naltour passinghroughall thecitiesin theinstanceHence,|t is now
possibleto determinethe enteringandexiting citiesin eachcluster
The exiting city of a clusterandthe enteringcity of the subsequent
clusterare connectedandthis connectionconstituteshe bridge be-
tweenthe clusters(accordingto the orderin which clustersarevis-
ited). This canbe seenin Figurel (c). Figurel (d), Figure2(a),and
(b) are snapshotsaken after the Hamiltonianpathsare determined
by KNIES_HPP_Globalfor one,two, andthreeclustersrespectiely,
and gluedtogetherwith the bridgesbetweentheseclusters.As the
Hamiltonianpathis found for eachclusterand glued with that of
the subsequentluster the TSPtour for the original problemgrows
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(a) The cities are partitioned () The global tour through the
intar 10 clusters clusters

() The entering and exiting (d) Hariltonian path hetween
eities for each cluster and the entering and exiting cities
connections (“bridges™) for a cluster
hetween clusters

Figure1l. All-neuraldecompositiorapproach.
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{a) The cities are partitioned
mio 10 clusters

) The glohial tour throngh the

clusters

(c) The entering and exiting
cities for each cluster and
comnections {“brdges"™)

[d) Harltomian path betwreen
the entering and exdting cities

for a cluster

Figure2. All-neuraldecompositiorapproachcontinued).

graduallyandgetsits final shapegivenin Figure2 (c). Thefinal TSP
tourfor theinstanceei | 101 canbeseenin Figure2 (d) withoutthe
clusterborders.

For eachinstanceexperimentsareperformedwith differentnum-
berof clustersothatontheaveragenomorethan50andnolessthan
14 cities belongto eachclusterwhich is achieved whenthe follow-
ingis satisfied:0.02 N | < numberof clusters< |0.07 NV |. HereN
is the problemsize,i.e., the numberof cities. This is becausavhen
the numberof citiesin ary clusterexceeds50 or so, thenthe com-
putationaltime of determiningthe Hamiltonianpathfor that clus-
ter increasesHence the numberof clustersshouldnot be lessthan
[0.02 N]. On the other hand,whenthe cities are divided into too
mary clustersthenthe numberof citiesin eachclustergetssmaller
andthe preclusteredstructuresare destrgyed. Thuswe move away
from the global optimal. Thus,the numberof clustershasto beless
than|0.07 IV |. To give anexample thenumberof clustersvariesbe-
tween|0.02 x 532] = 10 and|0.07 x 532] = 37 forat t 532. As
it is pointedoutin the previous sectionthe parametersf theinterre-
gional polarizingassumedhe following values:e = 0.25, andboth
~ andthe diameterof W rangebetweenzeroandone.The overall
bestresultis achiezed whenthe citiesaredividedinto 13 cities.

The overall bestresultsobtainedby KNIES_DECOMPOSEfor
differentTSPinstancegndthe bestvaluesprovidedby KNIES_TSP

Machine Learning

264

andKNIES_TSP.Globalfor the samenstancesregivenin Tablel.

Tablel. Comparisorof theresultsobtainedfor differentalgorithms

instances.
Instance KNIES KNIES_TSP KNIES _TSP
DECOMP. Global
(clusterg (M,0,Ky,w) (M,0,Ky,w)

att532 29388.9 29551.6 29569.8

(13) (200,30,0.8,0.15)| (400,45,0.8,0.1)
bier127 126080.8 121548.7 121923.7

9) (100,15,0.8,0.1) | (125,50,0.8,0.1)
eil51 440.9 438.2 438.2

(5) (10,25,0.8,0.1) | (20,50,0.8,0.05)
eil76 572.9 564.8 567.5

(6) (90,20,0.8,0.15) (15,5,0.8,0.2)
eil101 672.0 658.3 664.4

(4) (20,25,0.8,0.2) | (40,35,0.8,0.25)
kroA200 30184.9 30200.8 30444.9

(12) (200,25,0.8,0.25)| (160,10,0.8,0.05)
lin105 14693.1 14664.4 14564.6

(8) (100,50,0.8,0.2) | (100,35,0.8,0.05)
pcb442 54838.6 56399.9 56082.9

3) (500,30,0.8,0.1) | (450,40,0.8,0.15)
pri07 49103.9 44628.3 44491.1

(4) (100,45,0.8,0.1) | (60,25,0.8,0.25)
pri24 60931.5 59075.7 59320.6

3) (25,25,0.8,0.1) | (125,10,0.8,0.05)
pri36 98641.2 101156.8 101752.4

(8) (75,40,0.8,0.15) | (30,35,0.8,0.05)
prl52 76072.1 74395.5 74629.0

(15) (180,30,0.8,0.05)| (60,10,0.8,0.2)
rat195 2517.0 2607.3 2599.8

2) (200,25,0.8,0.25)| (200,25,0.8,0.1)
rd100 8296.9 8075.7 8117.4

9) (80,20,0.8,0.25) | (60,10,0.8,0.05)
st70 699.8 685.2 690.7

3) (40,10,0.8,0.05) | (30,45,0.8,0.05)

Table 2 containsthe relative deviations of the three approaches
from the optimal values. As it can be obsered in the ta-
ble the successof KNIES_.DECOMPOSEincreasesas the prob-
lem size increasesFor at t 532, pcb442, kr 0A200, r at 195,
KNIES_.DECOMPOSE provides shorter tour lengths than both
KNIES_TSP and KNIES_TSP.Global. If only thesefour instances
areconsideredthe averagerelative deviationsfrom the optimaltour
lengthshecome7?.03,8.94,and8.93for the KNIES_DECOMPOSE,
KNIES_TSR andKNIES_TSP.Global,respectiely. Themostimpor-
tantadwantageof KNIES_DECOMPOSEwhich cannotbe perceved
in thetableis its speed Comparedvith the othertwo approacheit
is possibleto obtainsolutionsvery quickly evenfor large problems.
This is dueto the factthat oncethe sequenc®f the clusterson the
global tour and subsequentlyhe enteringand the exiting cities for
eachclusterare determined the Hamiltonian pathsbetweenthese
cities within the clustersmay be found simultaneouslylt is even
possibleto distribute the solution of the Hamiltonianpath problem
ondifferentcomputers.
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Table2. Relatve deviationsfrom theoptimaltour length(percent)

Instance Opt. KNIES KNIES KNIES
Value | DECOMP. TSP TSP_Glo.
atts32 27686 6.15 6.74 6.80
bier127 118282 6.59 2.76 3.08
eil51 426 3.49 2.86 2.86
eil76 538 6.49 4.98 5.48
eil101 629 6.84 4.66 5.63
kroA200 28568 5.66 5.72 6.57
lin105 14379 2.18 1.98 1.29
pcb442 50778 7.99 11.07 10.44
pr107 44303 10.84 0.73 0.42
pri24 59030 3.22 0.08 0.49
pr136 96772 1.93 4.53 5.15
pr152 73682 3.24 0.97 1.29
rat195 2323 8.35 12.24 11.92
rd100 7910 4.89 2.09 2.62
st70 675 3.67 151 2.33
Avg. Rel. 5.41 4.19 4.42
Deviations
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