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, İ. Kuban Altınel

�
and John Oommen

�

Abstract. In addition to the classicalheuristicalgorithmsof op-
erationsresearchtherehave alsobeenseveral approachesbasedon
artificial neuralnetworks which solve the traveling salesmanprob-
lem (TSP).Their efficiency, however, decreasesastheproblemsize
(numberof cities) increases.An ideato reducethe complexity of a
large-scaleTSPinstanceis to decomposeor partition it into smaller
subproblems,which areeasierto solve. In this paperwe introduce
an all-neuraldecompositionheuristicthat is basedon a recentself-
organizingmapcalledKNIES which hasbeensuccessfullyimple-
mentedin solvingboththeEuclideanTSPandtheEuclideanHamil-
tonianpathproblem.

1 INTR ODUCTION

Of all thefamiliesof neuralnetworksdescribedin theliterature,the
Kohonenself-organizingneuralnetwork hasbeenthe mostwidely
investigatedone[1]. This is not surprising,given its simplicity and
the wide variety of problemsto which it may be applied.One of
theseproblemsis the Euclideantraveling salesmanproblem(TSP)
from operationsresearchandtherehavebeenmany attemptsto solve
it by self-organizingmaps(SOM) [2, 3]. Any algorithmdevisedto
solve theTSPtries to answerthefollowing question:Givena setof�

citiesanddistancesfor eachpairof cities,whatis theshortesttour
thatvisitseachcity exactly once?

AlthoughSOM is very powerful, thereis a relatively vastamount
of informationthat it ignoresin the training process.This informa-
tion, which canbeinformally perceivedastheglobalinformation,is
thestatisticalinformationresidentin thedatapoints(input vectors)
in their entirety. Thus,althoughin theSOM theneuronsasymptoti-
cally learnthe distribution of thepointsstatistically, theSOM does
so only by virtue of the points themselvesandnot by utilizing the
informationresidentin theoverall setof points,suchastheir mean
etc.

The decompositioninto subproblemsis a known approachfor
solving large instancesof TSPs.It is easierto solve the subprob-
lemsbecausethesizeof eachsubproblemis muchsmaller. Oncethe
solutionsto eachsubproblemareobtainedthey canbecombinedto
approximatethesolutionof theoriginalproblem.

In this papera new methodcalledKNIES DECOMPOSEis in-
troduced.The new method is basedon a recent self-organizing
mapcalledThe KohonenNetwork IncorporatingExplicit Statistics
(KNIES) [4]. KNIES hasalreadybeensuccessfullyimplementedto
�
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solveboththeTSP(KNIES TSP)[5] andtheEuclideanHamiltonian
pathproblem(KNIES HPP)[6]. Theprimarydifferencebetweenthe
SOM andthe KNIES is the fact that every iteration in the training
phaseincludestwo distinctmodules—theattractingmoduleandthe
dispersingmodule.In theattractingmodulea subsetof theneurons
migratetowardsthedatapointthathasbeenpresentedto thenetwork.
This phaseis essentiallyidenticalto thelearningphaseof theSOM.
However, subsequentto thisphasetherestof theneuronswhichhave
notbeeninvolvedin theattractingmoduleparticipatein adispersing
(repellent)migration. Indeed,theseneuronsnow move away from
their currentpositionsin a mannerthatensuresthattheglobalstatis-
tical propertiesof thedatapointsareimitatedby theneurons.Thus,
althoughin the SOM the neuronsasymptoticallyfind their places
both statisticallyand topologically, in the KNIES they collectively
maintaintheir meansto be themeansof thedatapointswhich they
represent.

2 DECOMPOSITION APPROACH TO THE
EUCLIDEAN TSP

An idea to reducethe complexity of a large-scaletraveling sales-
man probleminstanceis to decomposeor partition it into smaller
subproblems,which are easierto solve. The partitioning is per-
formed by clusteringthe cities of the original problem in a way
thatstructuralpropertiesof theprobleminstancearepreserved.Gen-
erally speaking,the problemof size � is divided into � nonover-
lapping clusters 	�
 of size ��
 ( 	�
�
�	��������������� ), where� �"!$# �%
'&)(*�+(-,/.0.0.0,1�)2435� .

Clusteringis a researchtopic itself andtherearenumerousmath-
ematicalmethods[7]. After the cities arepartitionedinto different
clusters,it would bepossibleto proceedin two differentways.One
way is to solve the traveling salesmansubproblemfor eachcluster
and then to join the subtoursto form a global tour. The traveling
salesmansubproblemscanbesolvedusingany efficient TSPheuris-
tic. For the generationof the global tour the following procedure
might beapplied:We begin with anarbitrarysubtour6 � . This sub-
tour is thenconnectedto anothersubtour6 � to form a new tour. In
general,a subtour6 
 is connectedto theglobaltour 76 
 generatedso
far by removing oneedgeof 6�
 andoneedgeof 76�
 andthenby re-
placingthemby two new edgesconnecting6�
 and 76�
 to form a new
tour 76 
98 � . This procedure,however, hasan importantdisadvantage:
thesubtoursarenot optimizedwith respectto theedgesconnecting
theclusters.So a betterapproachis to obtaintheglobal tour before
thesubproblemsaresolved in orderto integratethe obtainedinfor-
mation into the local TSP-heuristic.In this way the local solution
alsoconsidersthe city ��
;: wherethe global tour entersthe cluster,
andthecity ��
;< , whereit leavestheclusterandsotakesinto account
theoutlineof theglobal tour. As a resultbetterglobal solutionsare
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obtained.> This latterapproachis thesecondway of proceedingafter
thecitiesarepartitioned.We give the stepsof this approach,which
we will adoptfor KNIES DECOMPOSEin thefollowing.

1. Computethecentroidor themeanof thecitiesin eachcluster.
2. For every clusterdeterminethe ? nearestclustersin regardto the

centroid.
3. Computetheconvex hull of eachcluster.
4. Computethe exact distancesfor the ? nearestclusters(as the

shortestdistancebetweenthenodesof theconvex hulls).
5. Obtainaglobaltour throughtheclustersby aTSP-heuristicusing

exact distances,if available,or otherwisethe distancesbetween
themeanswhichgivesanenteringandaexiting city for eachclus-
ter.

6. Apply a suitableheuristicto find the Hamiltonianpath in every
clusterconnectingthe enteringto the exiting city visiting all the
citiesin thatcluster.

7. Mergetheedgesbetweentheexiting city of oneclusterandenter-
ing city of thesubsequentclusterin theglobaltourandtheHamil-
tonianpathsto form atour for theoriginalproblem.

3 AN ALL-NEURAL DECOMPOSITION
APPROACH: KNIES DECOMPOSE

Thefirst stepof KNIES DECOMPOSEis to partitionthecities into
clusters.The clusteringis accomplishedusingvectorquantization.
Herethenumberof theclustersis aparameterandthereareasmany
codebookvectorsasthe numberof clusters.The codebookvectors
are moved in the two-dimensionalspaceuntil they find their final
placesandthenthe closestcodebookvector is found for eachcity.
Hencetheinputspaceis dividedinto clusterseachof which is repre-
sentedby a codebookvector. At this point thecodebookvectorsand
themeanof thecities in a givencluster(thecentroidof thecluster)
coincide.Thereforethe codebookvectorsrepresentingthe clusters
can be usedto find the global tour throughthe clusters.However,
in order to obtaina betterdiscriminationof the clusters(i.e., near-
optimal clusterboundaries)we make useof the intraregional and
interregional polarizing.

The aim of intraregional polarizing is to representeachcluster
	A@ by a numberof codebookvectorsBC@ where BC@ increaseswith
thenumberof cities locatedin that clusterwhich is denotedas

� @ .
Specifically, BC@D�FEHGI. J � @-K . If thereare threeor lesscities in a
cluster, then B�@ is setequalto one.Thesetof codebookvectorsfor
cluster � , #ML @ � &)(ON��PN�B�@Q2 areinitially locatedon a circle the
centerof which is the meanof the cities belongingto that cluster.
Eachcity R�@MS 
 in that clusteris thenpresentedto the network, and
thelocationof nearestcodebookvector L @MS � is updatedaccordingto
theformulagivenbelow:

L @MS �UTWV%X (/YZ� T (A[]\ TWV Y^Y L @MS �UTWV Y X \ T;V Y_R�@MS 
 (1)

Othercodebookvectorsin thatclustermaintaintheirpositions.\ TWV Y
is decrementedlinearly from unity for the initial learningphaseand
then switchedto 0.2 and is decreasedlinearly for the fine-tuning
phase.After the individual clustershave beenrepresentedby B @
codebookvectorsthey aretestedto seewhetherthey adequatelyclas-
sify thecitieswithin theirclusters.Therefore,theinterregionalpolar-
izing phasehasbeenemployed wherethe codebookvectorsdo not
find their placesby learningonly from the cities within their own
clusters(as in the intraregional polarizingphase)but they arealso
migratedin sucha way that they polarizeaway from the cities of

the neighboringclusters.The principle by which this is doneis as
follows:

Supposethata point Ra`�	A@ is examined.Also assumethat the
two closestcodebookvectorsto R (amongall the codebookvec-
tors)are LOb and Ldc . If both LOb and Ldc do not belongto thecluster
	A@ , clearly, the informationcontentin R (with respectto L b andLdc ) is misleading,andso it is futile to migrate L b and Ldc using
this information.However, if bothof themareintendedto represent
	A@ , clearly, the information in R can be usedto achieve an even
finertuningto their locations.Thus,in thisscenario,both L b and Ldc
aremovedmarginally from their currentlocationsalongthe line to-
wards R . Thefinal scenariois thecasewhenoneof them, LOb ( L c ),
correctlybelongsto 	A@ , and the other, Ldc ( L b ), belongsto a dif-
ferent partition. In this case,the information in R can be usedto
achieve anevenfiner tuningto their locationsby migrating L b ( Ldc )
marginally from its currentlocationalongthehyperlinetowards R ,
andmigratingthe othercodebookvector Ldc ( L b ) marginally from
its currentlocationsalong the line away from R . Sincewe do not
want the “straggler” points (the pointswhich aremisclassified,but
which probablywould not have beencorrectlyclassifiedevenby an
optimal classifier)to completelydictate(and thus,disturb) the po-
larizing, this migration is invoked only if the node R lies within a
pre-specifiedwindow of interest, e . This restrictionhasalsobeen
recommendedin theliterature[1], andtypically, this window, e , is
ahyperspherecenteredat thebisectorbetweenthecodebookvectorsL b and Ldc . Also, asrecommendedin theliterature,thepolarizingof
both LOb and L c (whenboth of themcorrectlyclassify R ) is made
to beof muchsmallermagnitudethanin thescenariowheneitherof
themmisclassifiesit. Thesestepsareformally givenbelow:

L b TWV�X ("Y�� T (A[�fhg�Y L b TWV Y X fhgiR if L b , Ldc `j	A@L c TWV%X ("Y'� T ($[Cfhg�Y L c TWV Y X f^gkR if Ldb , L c `j	 @LOb TWV�X ("Y�� T (A[lg�Y LOb T9V Y X giR if Ldb `m	A@on Ldc `m	 �Ldc TWV%X ("Y'� T ( X g�Y L b TWV Yp[]gkR if L b `m	A@on Ldc `m	��L b TWV�X ("Y�� T ( X g�Y L b T9V Yp[]giR if L b `m	��on Ldc `j	A@L c TWV%X ("Y'� T ($[]g�Y LOb TWV Y X \pR if Ldb `m	 � n L c `j	 @LOb TWV�X ("Y�� LOb TWV Y if Rrq`meLdc TWV%X ("Y'� Ldc TWV Y if Rrq`me
(2)

Therearethreeparametersin theseupdateequations;gs,_f , andthe
diameterof the hyperspheree centeredat the bisectorof the two
nearestcodebookvectors.Except f , which is kept constantat 0.25,
experimentswereperformedwith differentvaluesof parametersg
andthediameterof thehyperspheree in orderto seetheeffect of
the interregional polarizingon the quality of the solution(i.e., tour
length). g assumedvaluesin the interval T G_,0(/Y with incrementsof
0.1andthe diameterof e wassetequalto somepercentageof the
distancebetweenthetwo codebookvectors.Again,weexperimented
with differentvaluesof percentages.

Theoutputof the interregionalpolarizingphaseis thefinal parti-
tioning of the cities into clusters.The next stepis to determinethe
global tour throughtheclusters.To accomplishthis, thecentroidof
eachclusteris foundby computingthecoordinatewise meanof the
citieslocatedin thatclusterandthealgorithmKNIES TSP Globalis
invoked. KNIES TSP Global is a modifiedversionof KNIES TSP
andquickly yields a tour passingthroughthe centroids.Hence,the
sequencein which the global tour visits the clustersis determined.
The differencebetweenthe two is explainedin [4]. The next step
is to find out the enteringand exiting cities for eachcluster. This
is doneas follows. For two subsequentclustersin the global tour
thetwo nearestcities is foundsuchthatonecity belongsto thefirst
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clusterand the otheronebelongsto the secondcluster. Thesetwo
citiesconstitutethebridgebetweenthe two clusters,in otherwords
theglobal tour passesfrom oneclusterto anotherthroughthesetwo
cities.

After the enteringand exiting cities for eachclusterare found,
the remainingtask becomesthe determinationof the Hamiltonian
path betweenthesecities which is doneby running the algorithm
KNIES HPPGlobalwhichis amodifiedversionof KNIES HPP[6].
WhentheHamiltonianpathsfor eachclusteraregluedtogether, the
final tour is obtained.Thedecompositionapproachis testedfor some
instancesobtainedfrom TSPLIB.

4 COMPUTATION AL RESULTS

The crucial parameterfor the decompositionapproach is the
number of clusterssince the parametersof both the algorithms
KNIES TSPGlobal and KNIES HPPGlobal are fixed. Partic-
ularly, the following values are used for the parametersof
KNIES TSPGlobal that is usedto determinetheorderin which the
clustersare visited: tPu+��G_. v_,iwx��G_. yI, and z{�|y-G initially.
Here, z is the parameterthat adjuststhe strengthwith which the
neuronsin the neighborhoodof the winning neuronare pulled to-
wardsthecity presentedto thenetwork. tPu is usedto decreasethe
value of z at eachepoch.so that the convergenceof all the neu-
rons to someposition is guaranteed.w plays an importantrole in
both KNIES TSPGlobal and KNIES HPPGlobal by determining
thenumberof neuronsthatparticipatein the attractingandthedis-
persingmodulesof KNIES. w��+GI. y meansfor examplethat40 per
centof the neuronsareusedfor the attractingmodulebeing20 per
centon onesideandthe other20 per centon the othersideof the
winning neuronwhen the neuronsare indexed on a virtual elastic
band.

Furthermore,the initial numberof neuronsis set equal to the
numberof clusters.The sameparametersettingis alsoadoptedfor
KNIES HPPGlobal where tPuD�rG_. v_,ow}�rGI. yI, and z��~yMG ini-
tially. Theinitial numberof neuronsis setequalto GI. J timesthenum-
berof cities(including theenteringandexiting cities) in thecluster
for which theHamiltonianpathis to befound.If thenumberof neu-
rons turnsout to be lessthan three,then the algorithm is run with
threeneuronsinitially. Thesevaluesfor theparametersareselected
sincethe algorithmsKNIES TSP Global and KNIES HPPGlobal
provided satisfactory resultswith theseparametersfor mostof the
instances.

Thestepsof KNIES DECOMPOSEareillustratedin the follow-
ingfigureswhile solvingtheinstanceeil101 for 10clusters.Figure
1 (a) shows theresultof thepartitioning.Thecitiesaredivided into
10 clusters.The darker dotsrepresentthe centroidsof the clusters.
Figure1 (b) containstheglobal tour throughtheclusterscomputed
by usingKNIES TSPGlobalwith theclustercentroidsastheinput.
Theglobaltourgivestheorderin whichclustersarevisitedonthefi-
nal tourpassingthroughall thecitiesin theinstance.Hence,it is now
possibleto determinetheenteringandexiting cities in eachcluster.
Theexiting city of a clusterandtheenteringcity of thesubsequent
clusterareconnectedandthis connectionconstitutesthe bridgebe-
tweentheclusters(accordingto theorderin which clustersarevis-
ited).This canbeseenin Figure1 (c). Figure1 (d), Figure2(a),and
(b) aresnapshotstaken after the Hamiltonianpathsaredetermined
by KNIES HPPGlobalfor one,two, andthreeclusters,respectively,
andglued togetherwith the bridgesbetweentheseclusters.As the
Hamiltonianpath is found for eachclusterand glued with that of
thesubsequentcluster, theTSPtour for theoriginal problemgrows

Figure 1. All-neuraldecompositionapproach.
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Figure2. All-neuraldecompositionapproach(continued).

graduallyandgetsits final shapegivenin Figure2 (c). Thefinal TSP
tour for theinstanceeil101 canbeseenin Figure2 (d) without the
clusterborders.

For eachinstance,experimentsareperformedwith differentnum-
berof clusterssothatontheaveragenomorethan50andnolessthan
14 citiesbelongto eachclusterwhich is achieved whenthe follow-
ing is satisfied:EHGI. G�y � KdN numberof clustersN�EHG_. G�� � K . Here

�
is theproblemsize,i.e., thenumberof cities.This is becausewhen
the numberof cities in any clusterexceeds50 or so, thenthe com-
putationaltime of determiningthe Hamiltonianpath for that clus-
ter increases.Hence,thenumberof clustersshouldnot be lessthan
EHG_. G�y � K . On the other hand,when the cities are divided into too
many clusters,thenthenumberof citiesin eachclustergetssmaller,
and the preclusteredstructuresaredestroyed. Thuswe move away
from theglobaloptimal.Thus,thenumberof clustershasto beless
than EHG_. G�� � K . To giveanexample,thenumberof clustersvariesbe-
tween EWG_. GQyP�m�MJQy"K��+(0G and EHG_. G����j�-J�yMK���J�� for att532. As
it is pointedout in theprevioussectiontheparametersof theinterre-
gionalpolarizingassumedthefollowing values:f���G_. y-� , andboth
g andthe diameterof e rangebetweenzeroandone.The overall
bestresultis achievedwhenthecitiesaredividedinto 13 cities.

The overall best resultsobtainedby KNIES DECOMPOSEfor
differentTSPinstancesandthebestvaluesprovidedby KNIES TSP

andKNIES TSP Globalfor thesameinstancesaregivenin Table1.

Table 1. Comparisonof theresultsobtainedfor differentalgorithms
instances.

Instance KNIES KNIES TSP KNIES TSP
DECOMP. Global�

clusters� �W���h�I�^� u ��� � �H�����_�h� u ��� �
att532 29388.9 29551.6 29569.8

(13) (200,30,0.8,0.15) (400,45,0.8,0.1)
bier127 126080.8 121548.7 121923.7

(9) (100,15,0.8,0.1) (125,50,0.8,0.1)
eil51 440.9 438.2 438.2

(5) (10,25,0.8,0.1) (20,50,0.8,0.05)
eil76 572.9 564.8 567.5

(6) (90,20,0.8,0.15) (15,5,0.8,0.2)
eil101 672.0 658.3 664.4

(4) (20,25,0.8,0.2) (40,35,0.8,0.25)
kroA200 30184.9 30200.8 30444.9

(12) (200,25,0.8,0.25) (160,10,0.8,0.05)
lin105 14693.1 14664.4 14564.6

(8) (100,50,0.8,0.2) (100,35,0.8,0.05)
pcb442 54838.6 56399.9 56082.9

(3) (500,30,0.8,0.1) (450,40,0.8,0.15)
pr107 49103.9 44628.3 44491.1

(4) (100,45,0.8,0.1) (60,25,0.8,0.25)
pr124 60931.5 59075.7 59320.6

(3) (25,25,0.8,0.1) (125,10,0.8,0.05)
pr136 98641.2 101156.8 101752.4

(8) (75,40,0.8,0.15) (30,35,0.8,0.05)
pr152 76072.1 74395.5 74629.0

(15) (180,30,0.8,0.05) (60,10,0.8,0.2)
rat195 2517.0 2607.3 2599.8

(2) (200,25,0.8,0.25) (200,25,0.8,0.1)
rd100 8296.9 8075.7 8117.4

(9) (80,20,0.8,0.25) (60,10,0.8,0.05)
st70 699.8 685.2 690.7

(3) (40,10,0.8,0.05) (30,45,0.8,0.05)

Table 2 containsthe relative deviations of the threeapproaches
from the optimal values. As it can be observed in the ta-
ble the successof KNIES DECOMPOSEincreasesas the prob-
lem size increases.For att532, pcb442, kroA200, rat195,
KNIES DECOMPOSE provides shorter tour lengths than both
KNIES TSP and KNIES TSP Global. If only thesefour instances
areconsidered,theaveragerelative deviationsfrom theoptimaltour
lengthsbecome7.03,8.94,and8.93for theKNIES DECOMPOSE,
KNIES TSP,andKNIES TSP Global,respectively. Themostimpor-
tantadvantageof KNIES DECOMPOSEwhichcannotbeperceived
in the tableis its speed.Comparedwith theothertwo approachesit
is possibleto obtainsolutionsvery quickly evenfor largeproblems.
This is dueto the fact that oncethesequenceof theclusterson the
global tour andsubsequentlythe enteringandthe exiting cities for
eachclusterare determined,the Hamiltonianpathsbetweenthese
cities within the clustersmay be found simultaneously. It is even
possibleto distribute the solutionof the Hamiltonianpathproblem
ondifferentcomputers.
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Table 2. Relative deviationsfrom theoptimaltour length(percent)

Instance Opt. KNIES KNIES KNIES
Value DECOMP. TSP TSP Glo.

att532 27686 6.15 6.74 6.80
bier127 118282 6.59 2.76 3.08
eil51 426 3.49 2.86 2.86
eil76 538 6.49 4.98 5.48
eil101 629 6.84 4.66 5.63
kroA200 28568 5.66 5.72 6.57
lin105 14379 2.18 1.98 1.29
pcb442 50778 7.99 11.07 10.44
pr107 44303 10.84 0.73 0.42
pr124 59030 3.22 0.08 0.49
pr136 96772 1.93 4.53 5.15
pr152 73682 3.24 0.97 1.29
rat195 2323 8.35 12.24 11.92
rd100 7910 4.89 2.09 2.62
st70 675 3.67 1.51 2.33
Avg. Rel. 5.41 4.19 4.42
Deviations
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