
Perfect Refinement Operators can be Flexible
Liviu Badea1

Abstract. A (weakly) perfect ILP refinement operator was de-
scribed in [1]. It’s main disadvantage however is that it is static and
inflexible: for ensuring non-redundancy, some refinements of a hy-
pothesis are disallowed in advance, regardless of the search heuristic
which may recommend their immediate exploration. (Similar prob-
lems are faced by Progol and other complete and non-redundant sys-
tems). On the other hand, there are systems, like FOIL, which give
up completeness for maximum flexibility. But if the heuristic fails to
guide the search to a solution, such a system cannot rely on a com-
plete refinement operator to explore alternative paths.

In this paper we construct a dynamically perfect refinement opera-
tor which combines the advantages of completeness, non-redundancy
and flexibility, and which represents one of the best tractable ILP op-
erators one can hope for.

1 Introduction and motivation

Inductive Logic Programming (ILP) systems are computationally ex-
pensive due to the large spaces of hypotheses they search. Often, the
difficulties they face are attributed solely to the weakness (or maybe
myopia) of the search heuristic employed. We argue that among the
responsible factors, one should also count the lack of flexibility of the
refinement operator, its redundancy, as well as its incompleteness.

While completeness and non-redundancy are desiderata that have
been achieved in state-of-the art systems like Progol [3], flexibility
has hardly been studied or even defined in a precise manner. Flexi-
bility becomes an issue especially in the case of (weakly) complete
and non-redundant refinement operators, because redundancy is usu-
ally avoided by imposing a strict discipline on refinement operations,
which usually relies on a predetermined (static) ordering of the liter-
als and variables from the Most Specific Clause. The resulting lack
of flexibility can unfortunately disallow certain refinements, even in
cases in which the search heuristic recommends their immediate ex-
ploration. These hypotheses will be explored eventually, but maybe
with an exponential time delay.

Example 1 Consider the most specific clause ? = L1L2 : : : Ln
and a static ordering: L1 < L2 < : : : < Ln of its literals.

Let us assume that from the one-step refinements of the empty
clause 2, adding Ln produces the largest decrease in negative ex-
amples covered2 , so that after adding Ln just one negative example
(negi) remains covered (but which can be removed by the subsequent
addition of L1). On the other hand, let us further assume that the ad-
dition of L1 by itself (to 2) eliminates just negi, so its refinement
will be delayed by the coverage heuristic.

A static refinement operator (like the one in [1]) using the literal
ordering L1 < : : : < Ln will disallow the addition of L1 to Ln
(because this would violate the ordering L1 < Ln), whereas the
heuristic will discourage the refinement of L1 and thereby the ad-
dition of Ln to L1. Thus, blocking the refinement of Ln with L1

1 AI Lab, National Institute for Research and Development in Informatics,
8-10 Averescu Blvd., Bucharest, Romania. e-mail: badea@ici.ro

2 while covering the same positive examples.

just for reasons of a static discipline enforced to prevent redundan-
cies, will postpone obtaining the solution L1Ln very much. This de-
lay can be exponential if an exponential number of combinations
of fL2; : : : ; Ln�1g eliminate at least 2 negative examples and are
therefore preferred to L1 for refinement.

The solution to this problem is to enhance the flexibility of the re-
finement operator by using a dynamic literal ordering, constructed
at search time. Starting with an empty order relation, literals are or-
dered as they are added to the hypothesis selected for refinement by
the search heuristic. In our case, Ln will be preferred for refinement
by the heuristic and L1 will be ordered w.r.t. Ln (Ln < L1) only
after refining Ln with L1.

Combining completeness and non-redundancy with flexibility
hasn’t been tackled up to now. In this paper, we show that although
maximal flexibility can only be achieved at the expense of intractabil-
ity and exponential storage space, a limited form of flexibility can be
achieved without significant additional costs, while preserving the
completeness and non-redundancy (even perfectness) of the refine-
ment operator from [1]. This hints at a very general trade-off be-
tween: (weak) completeness, non-redundancy and (maximal) flexi-
bility.

Note that if we insist on the tractability of the refinement opera-
tor, we can have any two of the above three properties, but not all
three taken together. For example, FOIL [4] gives up completeness
for maximum flexibility. But if the heuristic fails to guide the search
to a solution, the system cannot rely on a complete refinement opera-
tor to explore alternative paths. On the other hand, Progol [3] insists
on completeness and non-redundancy at the expense of flexibility:
some refinement steps are never considered because of the static dis-
cipline used for eliminating redundancies. Finally, systems based on
ideal refinement operators are complete and can be maximally flexi-
ble, but they are highly redundant.

For achieving non-redundancy, the traversed space of hypotheses
has to be encoded somehow in order to be avoided in the future, or a
certain traversal discipline has to be imposed.

Whenever a given hypothesis C can be reached from both C1 and
C2, a non-redundant refinement operator would have to choose be-
tween considering C as a refinement of C1 or one of C2. In order
to avoid the encoding of the traversed search space, [1] achieves
non-redundancy by adopting a discipline in traversing the hypotheses
space. This discipline is induced by an order relation on the literals
and on the variables, which amounts to predetermining3 which one
of C1 or C2 will be refined to C. For example, if C 2 �(C1), then C
will not be explored as a refinement of C2, even if the heuristic con-
siders C2 to be more promising than C1. The exploration of C will
have to wait until C1 will be selected for refinement by the heuristic,
although C could have been reached from C2 if only the refinement
operator had been flexible enough. (The lack of flexibility is due to
the simple scheme – based on predetermined orderings – for avoiding
redundancy without significant space or time overheads.)

Maximal flexibility would amount to deciding at search time
whether C 2 �(C1) or C 2 �(C2), depending on which one of C1

3 independent of the heuristic or the order of refinements at search time.

or C2 is selected first for refinement. Unfortunately, maximal flex-
ibility can only be achieved at the expense of large (at least expo-
nential) time and space overheads (even if our best current approach
keeps the traversed hypotheses space in compressed form). However,
a limited form of flexibility can be achieved without introducing such
significant overheads.

Before going into technical details, let us illustrate the general
intuition behind our idea on an example. The static refinement op-
erator from [1] uses an order relation on the literals of the Most
Specific Clause, for example L1 < L2 < L3 < L4 < L5 for
? = L1L2L3L4L5. When trying to add a new literal, say L3, to
a hypothesis, say L2L5, we first check whether the order relation is
preserved. In the present case, L3 cannot be added to L2L5 because
L3 < L5.

For obtaining a more flexible (dynamic) refinement operator, we
need to construct the order relation at search time.

Assume we first expand the empty clause 2 with L2, then L2 with
L5, and finally L2L5 with L3. This introduces an ordering between
the successively added literals: L2 < L5 < L3. This order will be
globally visible, i.e. valid for all branches of the search space (and
not just the current one). Therefore, when L3 is considered for re-
finement by trying to add L2, the global “constraint store” will be
(temporarily) augmented to L2 < L5 < L3 < L2, which is cyclic
and thus inconsistent. Therefore, L3L2 is not allowed as a refine-
ment of L3. (If we would allow it, then we would regenerate a node
identical to L2L3, the latter being already a valid refinement of L3.)

The refinement operator is dynamic (flexible) because if L3 would
have been expanded (refined) before L2, then L3L2 would have been
a refinement of L3, while L2L3 62 �(L2) and L2L5L3 62 �(L2L5)
because, in this scenario, L3 < L2. In fact, the first FOIL-like se-
quence of refinements is fully unconstrained, while preserving weak
completeness and non-redundancy.

The refinement operator is not maximally flexible because when
trying to expand L3, L3L5 is not allowed as a refinement of L3,
although the node L5L3 has not been explored (the relationL5 < L3

comes from adding L3 to L2L5 rather than L5 alone; however, since
for reasons of tractability and space, we do not want to keep n-tuples
with n > 2, we cannot avoid such situations).

2 Refinement operators for hypotheses spaces
bounded below by a MSC

Refinement operators decouple the search heuristic from the search
algorithm. For a top-down search, we deal with a downward refine-
ment operator, i.e. one that constructs clause specialisations. In the
following, we will consider refinement operators w.r.t. the subsump-
tion ordering between clauses. We briefly review the relevant notions
[2, 1]. (Due to space limitations, proofs had to be omitted.)

Definition 1 A static refinement operator � is called:

� (locally) finite iff �(C) is finite and computable for all C.
� proper iff for all C, �(C) contains no D � C.
� complete iff for all C and D, C � D) 9E 2 ��(C) such that
E � D.

� weakly complete iff ��(2) = S (the entire set of clauses).
� non-redundant iff for all C1; C2 and D, D 2 ��(C1)\�

�(C2))
C1 2 �

�(C2) or C2 2 �
�(C1).

� ideal iff it is locally finite, proper and complete.
� optimal iff it is locally finite, non-redundant and weakly complete.
� minimal iff for all C, �(C) contains only downward covers4 and

all its elements are incomparable (D1; D2 2 �(C)) D1 6� D2

and D2 6� D1).
� perfect iff it is minimal and optimal.

4 D is a downward cover of C iff C � D and no E satisfies C � E � D.

Limiting the hypotheses space below by a most specific (bottom)
clause ? leads to a more efficient search. This strategy has proven
successful in state-of-the-art systems like Progol, which search the
space of hypotheses C between the most general clause (for example
the empty clause 2) and the most specific clause ?: 2 � C � ?
(for reasons of efficiency, the generality ordering employed is sub-
sumption rather than full logical implication).

Formalizing Progol’s behavior amounts to considering hypotheses
spaces consisting of clause-substitution pairs C = (cl(C); �?(C))
such that cl(C)�?(C) � ?. (For simplicity, we shall identify in the
following cl(C) with C.) 5

In the following, we restrict ourselves for simplicity to refinement
operators for flattened definite Horn clauses.

3 Flexibility: static versus dynamic refinement
operators

The subsumption lattice of hypotheses (like almost every other gen-
erality order used in machine learning) is far from being tree-like: a
given clause D can be reachable from several incomparable hypothe-
ses C1; C2; : : :.

Proposition 1 A refinement operator (in a non-tree-like lattice of hy-
potheses) cannot be both complete (a feature of ideal operators) and
non- redundant (a feature of optimal operators).

Proposition 2 For each ideal refinement operator � we can con-
struct an optimal refinement operator �(o).

�(o) is obtained from � such that for D 2 �(C1) \ : : : \ �(Cn) we
have 9i such that D 2 �(o)(Ci) and 8j 6= i; D 62 �(o)(Cj):

If the choice of Ci from fC1; : : : ; Cng does not depend on the
history of previous refinements, we shall call the optimal refinement
operator �(o) static.

Such a static operator has a major drawback. If the heuristic hap-
pens to guide the search so that some Cj (j 6= i) is visited before Ci,
a static refinement operator will not reach the hypothesis D (which
can be a solution!) until it will explore Ci, which is the only node
from which D is reachable. And it may be that Ci is explored much
later than Cj , maybe even after an exponential delay.

It seems that this is the price we have to pay for maintaining non-
redundancy. In other words, it seems we have to make a trade-off be-
tween flexibility and non-redundancy (while maintaining weak com-
pleteness): we can reach D from each Cj (maximal flexibility), but
apparently only at the expense of redundancy. Fortunately, this is true
only for static operators. In fact, we can construct a dynamic refine-
ment operator which will choose Ci from fC1; : : : ; Cng at “search-
time”, i.e. depending on the history of previous refinements, or –
more generally – depending on some contextual information.

More precisely, whereas a static refinement operator maps a hy-
pothesis to the set of its refinements:

�s : HY P �! 2HY P

C 7�! �s(C) � HY P ,

a dynamic operator maps a hypothesis C and a given context Ctx to
the set of refinements of C and the updated context Ctx0:

�d : HY P � CTX �! 2HY P � CTX
(C;Ctx) 7�! �d(C;Ctx) = (Refs;Ctx0),

Refs � HY P .

5 In general, for a given clause C there can be several distinct substitutions �i
such that C�i � ?. Viewing the various clause-substitution pairs (C; �i)
as distinct hypotheses amounts to distinguishing the ?-literals associated
to each of the literals of C .

The role of the context Ctx is to encode somehow the history of
previous refinements in order to avoid redundancies in a dynamic,
rather than static way.

The dynamic operator �d is used as a subroutine by the search
algorithm of an ILP system. Such an algorithm is depicted below.

search�(Open, Closed, Ctx)
C = select(Open)
(Refs;Ctx0) = �d(C;Ctx)
Refs0 = Refs n (Open [Closed) (�)
if Ci is a solution for some Ci 2 Refs0 then return Ci

search�((Open n fCg) [Refs
0; Closed [fCg; Ctx0)

Checking in (�) whether some refinement Ci is not already in
Open [Closed may take time proportional to the size of Open [
Closed (which is typically at least exponential). We could get rid
of (�) (and use Refs0 instead of Refs), but then we may redun-
dantly visit certain parts of the search space, unless �d itself is non-
redundant.

The role of the context Ctx is to allow the dynamic operator �d
to avoid redundancies. The simplest such dynamic operator would
use the set of visited nodes as context (Ctx = Open [Closed):
�d(C;Ctx) = �(C) n Ctx; where �(C) is a complete refine-
ment operator. Unfortunately, computing the set difference above for
such an exponentially large context Ctx is too expensive, computa-
tionally. We shall adopt a more sophisticated approach involving a
polynomially-sized context.

The search algorithm consists of a sequence of refinement steps
refine�;�(Open;Closed; Ctx) = (Open0; Closed0; Ctx0) which
map a state s = (Open;Closed; Ctx) to a new state s0 =
(Open0; Closed0; Ctx0)

refine�;� : State �! State
s 7�! refine�;�(s) = s0,

where State = 2HY P � 2HY P � CTX .
Here, Closed is the set of hypotheses that have been refined (ex-

panded), while Open are the hypotheses visited, but not yet refined.

refine�;�(Open;Closed; Ctx) = (Open0; Closed0; Ctx0)

C = �(Open)
(Open0; Closed0; Ctx0) = refine�(C)(Open;Closed;Ctx)

refine�(C)(Open;Closed; Ctx) = (Open0; Closed0; Ctx0)

(Refs0; Ctx0) = �(C;Ctx)
Open0 = (Open n fCg) [Refs0

Closed0 = Closed [fCg

The selection function � : 2HY P ! HY P chooses for refine-
ment the best unrefined hypotheses (according to a given heuristic).

Definition 2 A history Hist 2 HY P ? induced by the selection
function � is the sequence of hypotheses Hist = C0C1 : : : Cn as
they are selected for refinement by �: Ci = �(Openi), where
s0 = (f2g; ;; ;) is the initial state,
s0; s1; : : : ; sn is the sequence of states induced by � and the se-

lection function �: si+1 = refine�:�(si), and
si = (Openi; Closedi; Ctxi).
For a history Hist, we define

refine�(Hist)(s0)
def
= refine�(Cn)(: : : refine�(C1)(s0))

to be the state reached from s0 by � if the hypotheses Ci selected for
refinement are exactly those from Hist = C0C1 : : : Cn.

Definition 3 D is a refinement of C (w.r.t. � and �) iff the history
Hist = C0C1 : : : Cn contains a sequence of hypotheses Ci1 =
C;Ci2 ; : : : ; Cip = D (0 � i1 � : : : � ip � n) such that
Cij+1 2 Refs, where (Refs; Ctxij+1) = �(Cij ; Ctxij), for
1 � j < p.

(In other words, D can be reached from C by a sequence of direct
refinements).

Definition 4 A dynamic operator � is called (w.r.t. a selection func-
tion �):

� weakly complete iff refine?�;�(s0) = (Open;Close; Ctx) with
Open [Close = HY P (the entire set of hypotheses)

� redundant iff some D is a refinement of both C1 and C2, while
neither C1 nor C2 is a refinement of the other.

The above notions allow us to define in a precise manner the flexi-
bility of a dynamically optimal operator.

Definition 5 A dynamically optimal refinement operator �d is max-
imally flexible iff D 2 �(C) for an ideal operator � en-
tails that for all selection functions � and their induced histories
Hist = C0C1 : : : Cn with Cn = C and refine�(Hist)(s0) =
(Open;Closed; Ctx), we have
D 2 �d(C;Ctx) iff D doesn’t occur in Hist (D 6= Ci; i =

1; : : : ; n).

In other words, any D reachable from C using an ideal (complete)
operator should also be reachable from C by �d iff D wasn’t ex-
plored before (in Hist).

Although desirable, maximal flexibility can only be achieved at
the expense of an at least exponential complexity of each refinement
step. Even our best compressed representation6 of the visited nodes
may become exponentially large. Therefore, in order to preserve the
tractability of the individual refinement steps, we will have to set-
tle for a form of flexibility weaker than maximal flexibility. Such
a weaker flexibility would nevertheless allow a completely uncon-
strained first sequence of refinements, like in FOIL (which represents
a significant improvement over a static refinement operator). Unlike
FOIL however, which is incomplete7, our flexible operator preserves
(weak) completeness and non-redundancy.

Definition 6 A dynamically optimal refinement operator �d is flex-
ible iff D 2 �(C) for an ideal operator � entails the existence of a
selection function � and its induced history Hist = C0C1 : : : Cn

with Cn = C and refine�(Hist)(s0) = (Open;Closed; Ctx)
such that D 2 �d(C;Ctx) and D doesn’t occur in Hist (D 6= Ci
for i = 1; : : : ; n).

4 Tractable non-redundancy by destroying the
commutativity of refinement operations

For avoiding the exponentially-sized context representing the histo-
ries of already visited hypotheses, we settle for a less faithful repre-
sentation of the histories using binary order relations between literals
and variable occurrences (instead of a faithful but very large encod-
ing of the visited hypotheses as n-ary tuples). The main advantage of
such binary relations consists in their worst-case polynomial8 size.

The intuitive justification behind the introduction of such binary
order relations as contexts is the following. Since redundancies arise
due to the commutativity of the operations of the refinement operator9

, we can achieve non-redundancy by destroying the commutativity of
these operations by imposing an ordering on these operations. Static
(predefined) orderings lead to the static refinement operator from [1].

6 whose precise details are outside the scope of this paper.
7 if the sequence of refinements recommended by the search heuristic fails to

reach a solution, the whole search is compromised.
8 in our case quadratic, due to the pairs of variables from equality literals.
9 such as literal additions or variable unifications. For example,D[fL1; L2g

can be reached both fromD[fL2g by adding L1 and fromD[fL1g by
adding L2 . This redundancy is due to the commutativity of the operations
of adding literal L1 and literal L2 respectively.

For obtaining dynamic operators, we need to construct the orderings
dynamically, i.e. at search time.

In fact, we can view this in a more abstract setting in which
we construct hypotheses using a set of commutative operations
o1; o2; : : :. If we aim to achieve non-redundancy while avoiding the
use of exponential space, we shall only store tuples o1 < o2 of some
binary relation ‘<’. Since the operations are commutative (o1o2 =
o2o1) and we want to avoid 2-redundancies, the relation ‘<’ should
be asymmetric: if on some branch of the search tree we apply o1 fol-
lowed by o2 (o1 < o2), we should disallow o2 to be followed by o1
(o2 < o1) even on other branches: (o1 < o2) ! :(o2 < o1), ı.e.
:(o1 < o2 ^ o2 < o1). Asymmetry implies irreflexivity: :(o < o).

Avoiding the different permutations of n > 2 operations is more
difficult since we do not want to keep n-tuples, but just 2-tuples. For
example, for avoiding the redundancy o1o2 : : : on = o2 : : : ono1, we
have to impose the acyclicity condition :(o1 < o2 ^ : : : ^ on�1 <
on ^ on < o1): (Note that irreflexivity and asymmetry are special
cases of acyclicity (for n = 1 and n = 2 respectively).) Although
acyclicity does not imply transitivity: o1 < o2^o2 ^o3 ! o1 < o3,
transitivity plus irreflexivity implies acyclicity. In fact, since a rela-
tion is acyclic iff its transitive closure is irreflexive, we can consider
our ‘<’ to be a strict order relation (irreflexive and transitive).

5 From ideal to dynamically optimal refinement
operators

We have already seen (proposition 1) that, due to completeness, ideal
refinement operators cannot be non-redundant and therefore optimal.
As already argued, non-redundancy is extremely important for ef-
ficiency. We shall therefore start with an ideal refinement operator
(which is easier to construct) and transform it to an optimal opera-
tor by replacing the stronger requirement of completeness with the
weaker one of weak completeness.

The following refinement operator is ideal w.r.t. weak subsumption
(as defined in [1]).

D 2 �?(C) iff either

(1) D = C [fL0g with L0 2 ?0 n C, or
(2) D = C [fXi = Xjg with fXi=A;Xj=Ag � �?(C).

The clauses C and D are considered to be ordered sets of (ordi-
nary) literals (such as p(Xi; Xj ; : : :)) and equality literalsXi = Xj .

For each literal L 2 ? of the Most Specific Clause ?, we denote
by L0 the literalLwith new and distinct variables and?0 = fL0jL 2
?g. For example, if ? = : : : p(A;A;B); q(A;B), then ?0 =
: : : p(X1; X2; X3); q(X4; X5).

An example of a clause in this representation is C = : : :
p(X1; X2; X3); X1 = X2; q(X4; X5); X1 = X4. Note that ordi-
nary literals do not share variables – the unification of variables is
explicitly represented by means of equality literals.

The refinement operator �? above constructs clauses with at most
one occurrence of each ?-literal. This allows us to avoid the prob-
lems due to the non-existence of ideal refinement operators w.r.t. (or-
dinary) subsumption [2] by introducing a weaker form of subsump-
tion, which exactly captures the behaviour of implemented systems
(like Progol) by disallowing substitutions that identify literals.

Definition 7 Clause C weakly-subsumes clause D relative to ?,
C �w D iff C� � D for some substitution � that does not iden-
tify literals (i.e. for which there are no literals L1; L2 2 C such that
L1� = L2�) and such that �?(D) Æ � = �?(C).

We now construct a dynamically optimal operator �(o)
?

from �?

by destroying the commutativity between the operations of �(o)
?

.
A dynamic order relation between literals (ordinary literals and

equalities Xi = Xj) is however insufficient to avoid all redun-
dancies. Due to the transitivity of equality, a given variable cluster

X1 = X2 = : : : = Xn can be obtained not just with differ-
ent permutations of a given set of equality literals Xi = Xj , but
also using different sets of equality literals. For instance, the cluster
X1 = X2 = X3 can be obtained either with fX1 = X2; X1 = X3g
or with fX1 = X2; X2 = X3g.

To avoid such redundancies, we shall also introduce an order re-
lation ‘�’ on the set of variable occurrences from ?0 (whose role is
to impose a discipline in the construction of variable clusters) and
disallow adding Xi = Xj after Xk = Xl if Xi � max(Xk; Xl)
and Xj � max(Xk; Xl). This can be shown to be equivalent with

Xi = Xj < Xk = Xl iff max(Xi; Xj) � max(Xk; Xl): (1)

Note that the order relations ‘<’ and ‘�’ are total but can be dynamic
and thus need not be fully specified at all times – all we need to do
is to ensure the consistency of the global constraint store (containing
the tuples of ‘<’ and ‘�’).

In the case of a shared variable Xi, (1) becomes

Xi = Xj < Xi = Xk iff Xi � Xk and Xj � Xk: (2)

Note that each of the variables of a given literal L0 from ?0 is the
same throughout the whole search space (in all hypotheses to which
L0 is added), so that the constraints involving them are globally visi-
ble.

An optimal (even perfect10) refinement operator obtained from �?
can be constructed as follows:

D 2 �(o2)
?

(C) iff either

(1) D = C [fL0g with L0 2 ?0 nC such that adding the global con-
straints L0 > C preserves the consistency of the global constraint
store, �?(D) = �?(C) [�?(L

0), or
(2) D = C [fXi = Xjg with fXi=A;Xj=Ag � �?(C), such that

clusterC(Xj) = fXjg and adding the global constraints

(a) (Xi = Xj) > C and

(b) Xk � Xj for each Xk 2 clusterC(Xi),
but only if jclusterC(Xi)j � 2

preserves the consistency of the global constraint store. �?(D) =
(�?(C) n fXi=A;Xj=Ag) [fselectD(clusterD(Xi))=Ag

where
clusterC(Xi) = fXig [fXk j f(Xi = Xj1); (Xj1 =

Xj2); : : : ; (Xjp = Xk)g � Cg is the cluster of variables unified
with Xi in C, and
selectC(Ki) = Xi is a function that selects a variable Xi 2 Ki

from the variable cluster Ki.
Initially, �?(2) = ;.
Adding L > C to the global constraint store (L being a literal and

C a clause) amounts to adding L > Li for all literals (either ordinary
or equalities) Li 2 C (or, more practically, L > Li for all maximal
literals Li from C).

In order not to clutter the presentation, we have preferred a more
procedural writing of �(o2)

?
in which the context (represented here

by the set of order constraints on literals and variables) is a “global
variable”, implicitly modified by the call to �

(o2)
?

(C). The associ-
ated dynamic operator is, formally speaking, �d(C;Constrs) =

(�
(o2)
?

(C); Constrs0), where Constrs and Constrs0 represent
the global constraint set before and respectively after the call to
�
(o2)
?

(C).

�
(o2)
?

adds either a new ordinary literal, or a new equality. The
order relation on literals is constructed dynamically, as literals are
added during successive refinements. Of course, the consistency of
the global constraint store needs to be preserved.

10 w.r.t. weak subsumption

Adding equalities is trickier to a certain extent due to the transitiv-
ity of equality. First, we have to avoid trivial redundancies arising if
we would allow adding Xi = Xj for Xi and Xj already belonging
to the same cluster. We do this by keeping in the set �?(C) of vari-
ables candidates for unification just one representative of each cluster
of variables clusterC(Xi). (We use a selection function to pick the
representative of the new cluster.)

We have required the variable cluster clusterC(Xj) to be a sin-
gleton because otherwise Xi = Xj would represent a “bridge” be-
tween two non-trivial clusters11, and such “bridges” are disallowed
by our convention (2) as we show below.

Indeed, for two non-trivial clusters Ki = fXi; Xk; : : :g and
Kj = fXj ; Xl; : : :g, Xi = Xj must have been preceded by some
Xi = Xk and by some Xj = Xl. But Xi = Xk < Xi = Xj

entails, by (2), Xi � Xj , while Xj = Xl < Xi = Xj entails
Xj � Xi leading to an inconsistency.

The constraints introduced in step (2b) ensure that a variable clus-
ter X1 = X2 = : : : = Xn can be generated with only one sequence
of refinements of type (2), for example X1 = X2, followed by suc-
cessively adding X3; X4; : : : ; Xn to the growing cluster.

Note that the addition of Xi to the subcluster X1 = X2 = : : : =
Xi�1 can, in principle, be done in several ways, such as Xj = Xi,
for j = 1; : : : ; i � 1. The precise Xj (determined by the selection
function selectC(fX1; : : : ; Xi�1g)) is not important – all that mat-
ters is the sequence of variables that are added to the growing cluster.

If the selection function selectC(K) depends on C, then check-
ing consistency may prove more complicated than simply testing the
acyclicity of the literal and variable orderings.

Consistency checking can be simplified if a given variable cluster
X1 = X2 = : : : = Xn can be obtained only with a given sequence
of equalities, for example X1 = X2 < X1 = X3 < : : : < X1 =
Xn. (In this case, the ordering between literals and the one between
variables do not interact 12, so it suffices to test the consistency of the
literal ordering and that of the variable ordering separately.)

Since no “bridges” between clusters are allowed, variables are
added to a cluster one by one, for example X1 = X2, followed by
X3; X4; : : : ; Xn. The constraints introduced in step (2b) lead to the
variable ordering X1�

X2�
X3 � X4 � : : : � Xn.

If, on a given path, variables have been added in this order, it will
not be possible to add them on a different path in a different order
to form the same cluster without violating the variable constraints
above. Now, if the selection function selectC(K) does not depend
on C, then the addition of Xj , which will be done by the equality
(Xi = Xj) with Xi = selectC(fX1; : : : ; Xj�1g), will be done by
the equality (Xi = Xj) everywhere (on all search paths).

Proposition 3 If the selection function selectC(K) does not depend
on C, then checking the consistency of the constraint store can be re-
duced to separately testing the acyclicity of ‘<’ and ‘�’ respectively.

Note that this does not affect the flexibility of the resulting refinement
operator – only checking consistency is easier to do.

Example 2 The sequence Xi = Xj < Xi = Xk < Xj =

Xl is induced by the selection function select(fXi; Xjg) = Xi ,

select(fXi; Xj ; Xkg) = Xj .

If we additionally require that the variable selected from a non-
trivial variable cluster doesn’t change as we go from a clause to its
refinements:

select(clusterD(Xk)) = select(clusterC(Xk))

11 i.e. clusters with more than one variable.
12 except the condition (2) which needs to be applied only on the current path

and which is directly enforced by the algorithm in step (2b).

forC � D and jclusterC(Xk)j � 2, then using the fact that clusters
can only grow as literals are added to C:

clusterC(Xk) � clusterD(Xk)

for C � D and jclusterC(Xi)j � 2, we can show that the only
sequences of unifications leading to the clusterX1 = X2 = : : : =
Xn will be of the form X1 = X2 < X1 = X3 < : : : < X1 = Xn,
inducing the variable ordering X1�

X2�
X3 � X4 � : : : � Xn. Thus,

the cluster of Xi from step (2) of �(o2)
?

will be given by:

clusterC(Xi) = fXk j (Xi = Xk) 2 Cg [fXig;

while select(clusterC(Xi)) = Xi for all C. Note that from the
variables of clusterC(Xi), only Xi appears in �?(C).

We thereby obtain the following simplified dynamically optimal
(even perfect) refinement operator.

D 2 �(o3)
?

(C) iff either

(1) D = C [fL0g with L0 2 ?0 nC such that adding the global con-
straints L0 > C preserves the consistency of the global constraint
store, �?(D) = �?(C) [�?(L

0), or
(2) D = C [fXi = Xjg with fXi=A;Xj=Ag � �?(C), such that

adding the global constraints

(a) (Xi = Xj) > C and

(b1) Xi � Xj , Xk � Xj for each Xk such that (Xi = Xk) 2 C
or (Xk = Xi) 2 C

13,

(b2) Xj � Xi, Xk � Xi for each Xk such that (Xj = Xk) 2 C
or (Xk = Xj) 2 C,

preserves the consistency of the global constraint store.
�?(D) = �?(C) n fXi=Ag if (b2) was applied,
else �?(D) = �?(C) n fXj=Ag.

Note that if in step (2) there exist in C both Xi = Xk and
Xj = Xl, then we obtain a “bridge” which induces the conflict-
ing constraints Xi � Xj and Xj � Xi. So (b1) and (b2) cannot be
both applicable.
�
(o3)
?

can be shown to be flexible (although not maximally flexible).

6 Conclusions and further work
Implemented ILP systems are either incomplete (like FOIL), redun-
dant, or inflexible (i.e. cannot take advantage of a good search heuris-
tic due to the fixed discipline they use to ensure both completeness
and non-redundancy).

This hints at a very general trade-off between completeness, non-
redundancy and flexibility, which hasn’t been explored before. We
give a precise definition of flexibility and construct the first flexible
refinement operator that combines the advantages of completeness,
non-redundancy and flexibility, while preserving tractability.

We have implemented the refinement operator �(o3)
?

and plan to
use it in a more sophisticated refinement operator for complete the-
ories. We also plan to incorporate mode declarations and extend our
approach to knowledge refinement rather than learning from scratch.

REFERENCES
[1] Badea Liviu, Stanciu M. Refinement Operators can be (weakly) perfect.

Proceedings ILP-99, pp. 21-32, LNAI 1634, Springer Verlag, 1999.
[2] Nienhuys-Cheng S.H., de Wolf R. Foundations of Inductive Logic Pro-

gramming. LNAI 1228, Springer Verlag 1997.
[3] Muggleton S. Inverse entailment and Progol. New Generation Computing

Journal, 13:245-286, 1995.
[4] Quinlan J.R. Learning Logical Definitions from Relations. Machine

Learning 5:239-266, 1990.

13 We add Xi � Xj only if such an Xi = Xk or Xk = Xi exists in C .

