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Abstract. In several information retrieval (IR) systems there is a
possibility for user feedback. Many machine learning methods have
been proposed that learn from the feedback information in a long-
term fashion. In this paper, we present an approach that builds on user
feedback across multiple queries in order to improve the retrieval
quality of novel queries. This allows users of an IR system to retrieve
relevant documents at a reduced effort.

Two algorithms for long-term learning across multiple queries in
the scope of the retrieval system Latent Semantic Indexing have been
implemented in a system, REGRESSOR, in order to test these ideas.
The algorithms are based on k-nearest-neighbor searching and back
propagation neural networks. Training examples are query vectors,
and by using Latent Semantic Indexing, the examples are reduced to
a fixed and manageable size.

In order to evaluate the methods, we performed a set of experi-
ments where we compared the performance of Latent Semantic In-
dexing and REGRESSOR. The results demonstrate that REGRESSOR

automatically improves on the performance of Latent Semantic In-
dexing by utilizing the feedback information from past queries.

1 INTRODUCTION

For most people today, the problem is not lack of information, but
rather an overload of it. To handle this problem, a number of tech-
niques for efficient information retrieval [5] [15] [16] and text classi-
fication [9] [10] have emerged.

One successful technique, for retrieval of relevant documents from
large text collections is Latent Semantic Indexing (LSI) [5]. The per-
formance of LSI and other similar retrieval systems can usually be
further improved by applying a technique known as relevance feed-
back [6]. This semi-automatic technique requires a user to explic-
itly evaluate the relevance of retrieved documents to supply as feed-
back to the system. Relevance feedback may be seen as a short-term
learning mechanism, where the valuable feedback information is lost
when the user starts a new query.

We have developed a technique which automatically extends LSI
with the functionality of a long-term relevance feedback learner. The
technique (hereafter called REGRESSOR) exploits the implicit infor-
mation acquired from past sessions with the information retrieval
system. This information, which represents knowledge about the re-
lationship between past queries and their retrieved documents, is
used to improve the system’s response to similar future queries.

Several methods have been proposed to make IR systems learn
from relevance feedback [3] [4] [17]. One problem is this domain is
imposed by the high dimensionality of the feature space. There are
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several ways to solve this problem. One way is to use e.g Support
Vector Machines which handle data sets with large number of fea-
tures and which has been successfully applied to text classification
[9]. Another approach is to reduce the dimensionality of the feature
space and then use other learning methods such as Artifical Neural
Networks.

We investigate solutions to the problem of learning from relevance
feedback in scope of the LSI retrieval system. LSI combines Sin-
gular Value Decomposition (SVD) [1] and the Vector Space Model
[15] into an efficient retrieval system. The SVD is applied to objects
such as documents and terms in the IR system, and LSI has demon-
strated equal or better performance than traditional IR techniques [5].
From the machine learning point of view, SVD is a well known tech-
nique for reducing the dimensionality of high-dimensional data when
working with e.g neural networks [2].

The algorithms implemented in REGRESSOR are based on the hy-
pothesis that queries which are similar in the LSI representation have
similar result sets. From this hypothesis, we develop two learning al-
gorithms, based on techniques from nearest neighbor searching and
back propagation neural networks. Our training examples consists of
query vectors in the LSI representation.

1.1 Latent Semantic Indexing

Latent Semantic Indexing is a fairly new method for automatic in-
dexing and retrieval. It is developed to overcome some of the prob-
lems of traditional IR systems, which are based on lexical matching
of terms. In such systems a document is retrieved if it contains one
or more terms occurring in a query. The problems are that a con-
cept or meaning may be expressed by a number of different terms
(synonymy) and that words may have many different meanings (pol-
ysemy).

LSI approaches these problems by estimating the word usage
across documents, revealing its underlying semantic structure. The
method tends to capture term associations in such a way that terms
which occur frequently together are associated [5].

The underlying mathematical operation in LSI is the Singular
Value Decomposition (SVD) [1]. The SVD is a way of approximat-
ing a rectangular matrix in the least-square sense. The result is a
much lower-dimensional space in which all relationships in the origi-
nal matrix can be approximated using the dot product or cosine mea-
sure. The matrix subject for SVD in LSI is the term-document matrix,
and each dimension in the new space can be thought of representing
common meaning components of many different words and docu-
ments [5]. Each term, document and query is represented as a vector
in the low-dimensional space.

In terms of effectiveness, the LSI method has demonstrated equal
or better performance than the traditional Vector Space Model [5]



1.2 Relevance feedback

The relevance feedback process may be viewed as an iterative dia-
logue between the user and the system, initiated by the user when
posing a query. The query is evaluated and the system responds with
a ranked list of documents which, according to the system’s ordering,
best match the query. If the user is not satisfied, s/he may mark one or
several documents as relevant and ask the system to refine the search.
Again, the system produces a ranked list of documents and this itera-
tion continues until the user stops interacting with the system, either
because s/he was content or gave up.

A common way to implement relevance feedback is to construct
a query vector which is closer to the relevant, and further from the
non-relevant documents as specified by the user. This can be seen as
trying to construct an optimal query, i.e one which separates the rel-
evant documents from the non-relevant ones. There are several ways
of implementing relevance feedback, e.g [12] [13] [14], we will focus
on the technique most suited for our work.

One effective method to implement relevance feedback in LSI is
to heuristically approximate the optimal query vector. This is carried
out by replacing the query vector with the centroid of the vectors
representing the relevant documents [6]. This method is defined by
equation 1. In the equation, the approximation of the optimal query
(hereafter called improved) is denoted q

0

whereas the set R0 contains
the vectors di for the documents determined relevant by the user.
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2 DESCRIPTION OF REGRESSOR

The REGRESSOR package implements two algorithms for long-term
learning from relevance feedback in LSI. REGRESSOR takes as input
a LSI query vector and produces a new, optimized query vector for
retrieval. We base our algorithms on regression, as opposed to clas-
sification. That is, we do not assign each input to one of a number of
discrete classes. The input is instead mapped to a new query vector,
with dimension equal to the number of factors used in the SVD.

LSI improves the initial query by replacing it with the centroid of
the vectors representing the relevant documents. At this point, the
system has gathered much information: the initial query in text for-
mat, the initial query vector, the list of relevant documents, the im-
proved query vector, the text in each of the relevant documents etc.
REGRESSOR makes use of only the initial query vector q and the im-
proved query vector q

0

. Each training example is thus on the form
fq; q

0

g.
The two algorithms implemented in REGRESSOR are Nearest

Neighbor Regressor (NNR) and Back Propagation Regressor (BPR).
The first is based on the k-nearest neighbor learning algorithm [11],
the second is based on a feed-forward back-propagation neural net-
work [2] [8]. We model the problem in a similar way in both algo-
rithms, so that it is feasible to compare the experimental results. We
use the term optimize for the process of generalizing from previously
posed queries to improve the performance of a new, unseen query.

2.1 Nearest Neighbor Regressor (NNR)

NNR uses a k-nearest neighbor method which is slightly similar to
locally weighted regression [11], a k-nearest neighbor method for
regression problems. There are however some differences, the first is

that the ‘nearness’ is measured by the cosine of the angle. The second
is the way we weight the contribution of the nearest vectors.

During the training phase, the examples are simply stored. Each
example is a tuple (q; q

0

) where q is the initial query vector and q
0

the improved query vector.
When the user poses a new query, NNR performs a nearest neigh-

bor search with the new query vector against all stored initial query
vectors. If there is one or more initial query vectors which is suf-
ficiently ‘near’ the new query, we have the hit case. Otherwise, we
have the miss case and the new query is used as is. In this second
case, no optimization is performed.

When the hit case occurs, NNR calculates the optimized query in
three steps. The vectors of the k pairs of initial and improved query
vectors are first normalized to unit length, as is the new query vector.
The centroid of the initial and the centroid of the improved query
vectors are then calculated. To obtain the optimized query vector the
first centroid is subtracted from the new query vector and the second
centroid is added to it.

More formally, let k be the number of neighbors to the new query.
Denote the new query vector v, the initial query vectors qi and the
improved query vectors q

0

i . The optimized query vector v
0

is calcu-
lated by:

v
0

=
v

jvj
�

1

k

kX

i=1

qi

jqij
+

1

k

kX

i=1

q
0

i

jq
0

i
j

(2)

Note that equation 2 has a desirable property when k = 1: if the
new query is identical to a previous initial query, it will be replaced
by its relevance feedback query. When the new query is similar to one
or more previous initial query vectors, a combination of the previous
initial and improved query vectors is added to it. This combination
favors the direction of the improved vectors if the new query vector
is close to the nearest neighbors. The resulting vector points more in
the direction of the improved queries, and the amount of the change
in direction is determined by the difference between the new query
and its nearest neighbors.

The vectors are normalized to unit length because it is the angular
position which is of interest. If they are not normalized, some vectors
may swamp the contribution of others. Furthermore, NNR will not
try to optimize every query, the hit case will only occur if there are
any vectors in the training set which are sufficiently similar to the
new query. A threshold value is used to determine if two vectors are
sufficiently similar, a way to determine if there is enough information
in the training set to generalize from.

2.2 Back Propagation Regressor (BPR)

The BPR algorithm is based on a combination of the back propaga-
tion algorithm [2], [8] and NNR. When training the network, each
example is composed by the initial query vector as the input, and the
difference between the improved query vector and the initial query
vector as the target. Using the terminology from the previous sec-
tion, the network input vector is q and the network target vector is
q

0

� q. Thus, we train the network to learn the difference between an
improved query and a new query, given the new query.

If there is no information in the network regarding a new query,
it is not reasonable to demand generalization from the network. To
alleviate this problem, we set up a criterion which must be obeyed
by a new query if it is to be run through the network. The criterion is
that there should be at least one example in the training data which
is sufficiently similar to the new instance, using cosine as similarity
measure.



When given a new query, an exhaustive nearest neighbor search
is performed in the training set. If there is at least one query vec-
tor which is similar to the new query, it is run through the network,
otherwise the query vector is used as is.

After the new query is run through the network, it is optimized
in two steps. First, both the new query and the network output are
normalized to unit length. Secondly, the new query is added to the
network output to form the optimized query.

Using vector notation, let the new query vector be v and the net-
work output o. The optimized query v

0

is then constructed by

v
0
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v
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(3)

The input vectors are normalized in the range (�1:0; 1:0) whereas
the target vectors are normalized in the range (0:1; 0:9). The input
vector normalization is necessary to improved training time, since
the vector values are typically rather small. The target vector nor-
malization is necessary since we use a bounded activation function
(the sigmoid function).

3 EXPERIMENTAL EVALUATION

In order to investigate the effectiveness of the two methods, we per-
formed a set of experiments. We implemented REGRESSOR in C++
and used an implementation of LSI provided by Telcordia (formerly
Bellcore).

3.1 Setup

Three standard IR test collections; CACM, CISI and CRAN,
were retrieved from the Glasgow IR group home page
(http://ir.dcs.gla.ac.uk/home/). Each collection
consists of a set of documents, a set of queries and a list describing
which documents are considered relevant for each query. Table 1
provides a summary of the collection statistics. The third column
(Queries) contains the number of queries with relevance judgments.
The last column (Relevant) lists the average number of relevant
documents per query.

Table 1. Test collection statistics

Collection Documents Queries Relevant

CISI 1460 76 41.0
CACM 3204 52 15.3
CRAN 1398 225 8.2

After some initial testing, it became clear that the CACM and CISI
collections were not very much affected by the algorithms. In fact, in
only very few cases were the algorithms able to optimize queries
from those collections. This was due to the very small amount of
queries with a high cosine similarity measure. Table 2 displays the re-
sults of this analysis. The second column shows the number of possi-
ble targets for optimization, the third shows the top cosine similarity
measure found. Consequently, we decided not to use the CACM and
CISI collections, since the training sets turned out to be too small.
The CRAN collection however, turned out to be more useful for an
experimental evaluation of our algorithms.

For the CRAN collection, the query set was divided into two ran-
domly selected subsets of equal size. The first subset was used for

Table 2. Collection analysis

Collection Targets Top cosine

CISI 5 0.77
CACM 16 0.98
CRAN 55 0.97

training and the second for testing. This process was repeated 7
times.

Since the purpose of the algorithms is to optimize new queries
on the basis of a set of stored queries, only the test data is sub-
ject for evaluation. Since we use a threshold value to determine
which queries should be subject for optimization, only these particu-
lar queries are included in the evaluation. In Table 3 we list the num-
ber of optimized queries for each threshold value. The third column
in the table lists the average number of queries subject for optimiza-
tion. The last column lists the percentage of the optimized queries in
the test data set.

Table 3. Optimization statistics

Collection Threshold Optimized Percentage

CRAN 0.7 15.4 13.8
CRAN 0.8 8.8 7.9

At first we used all relevant documents to construct the approxima-
tion of the optimal queries, as described in [6]. However, we noticed
that this did not yield the best performance. The results improved fur-
ther when we used the top (1-5) relevant documents from the result
set of the approximation of the optimal query. The improved queries
were constructed using this method.

The NNR algorithm was evaluated using two different threshold
values: 0:7 and 0:8. After some experiments, we found that values
below 0:7 caused the algorithm to make incorrect judgments with
respect to the similarity between queries while values higher than
0:8 caused very few queries to be optimized.

For each threshold value, we set the the maximum number of
neighbors to first to 1 and then to 3, making a total of 4 experiments.
It should however be noted that not all queries had 3 neighbors above
the threshold.

The BPR algorithm was evaluated using the same threshold values
(0:7 and 0:8) as for NNR. We performed some initial tests to find a
reasonable set of parameter values for the network. First of all, we
saw that even though we did not have many examples, we needed
more nodes in the hidden layers than in the input or output layers.
This should both be due to the fact that the function we wish to ap-
proximate is fairly complex and that the network output should be an
approximation of real values.

When we used more than one hidden layer the convergence of the
network was very slow since the network needed many epochs to
recover from local minima. We found that one hidden layer of 200
nodes proved fairly good, both in terms of running speed and results.
For the CRAN collection, LSI compressed the term, document and
query vectors to 113 dimensions. Therefore we used 113 nodes in
the input and output layers of the network.

We experimented with different values on learning rate and mo-
mentum constants, and noticed that values closer to 0:0 than to 1:0
were to prefer. We set both the learning rate and the momentum to
0:2, which made the network slowly converge to a small error on the



test set.
Another problem we faced during this experiment was that the stop

condition for the neural network was not easy to determine. There-
fore, we decided to study the behavior of two different networks to
see if they exposed similar behavior. The networks were trained for
10000 epochs each, and we listed the network error at each epoch.
Figure 1 plots the network error versus the number of epochs (on
a logarithmic scale). Both networks follow the same pattern; a high
initial error which quickly gets smaller, and approximately the same
error after 1000 epochs. In the figure, the error after 1000 epochs
is approximately 4:0, whereas the error at epoch 10000 is close to
0:0001. We saw that the difference in average precision between
using the network after 1000 and after 10000 epochs was approx-
imately �0:02. In light of this, we decided to evaluate the networks
after 1000 epochs.
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Figure 1. Network error versus number of epochs

3.2 Results

We present the main results as precision-recall graphs in Figures 2
and 3. The graphs were constructed by first calculating precision and
recall for all documents in the retrieved list. Precision was then in-
terpolated on recall levels 0:0 : : : 1:0 by taking the precision at some
recall level equal to the maximum precision at that and all higher
levels.

In Figure 2 we used a threshold value of 0:7, in Figure 3 we used
0:8. NNR(1) and NNR(3) refer to the Nearest Neighbor Regressor
algorithm using 1 and max 3 neighbors, whereas BPR refer to the
Back Propagation Regressor method. The results obtained by using
no optimization at all (LSI) is also included. The four curves (LSI,
BPR, NNR(1) and NNR(3)) are the results of using completely au-
tomatic methods, and they show the performance of the initial user
query.

For comparison, we have also included the maximal precision
that can be obtained by the relevance feedback mechanism (RF) de-
scribed in section 1.2. Recall that this performance is based on per-
fect information about all 1398 documents returned by a query. In
reality however, an ordinary human user will be able to give an ac-
curate relevance score of only 5 or 10 of the top ranked documents.
Hence, performance using relevance feedback for an ordinary user,
would be more comparable with that of NNR or BPR (depending on

the number of documents that the user has the patience to rate). The
NNR and BPR methods on the other hand, improve on the original
query automatically, based on their knowledge about the relevance
of (similar) past queries.
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Figure 2. Precision/Recall using threshold 0.7

From the figures, it is clear that the methods outperforms the LSI
search technique. Furthermore, the nearest neighbor method also per-
forms better than the back propagation method.

The difference between using 1 neighbor and max 3 neighbors is
very small. We noticed that 3 neighbors were only used twice (1:8%
of all optimized queries) in the test runs with threshold 0:8. 2 neigh-
bors were only used 11 times (10:1%). The test data was therefore
not very much clustered, in terms of the cosine measure.

The figures show only a small difference between using 0:7 and
0:8 as threshold value, in terms of effectiveness. But using 0:7 caused
twice as many queries to be optimized, without considerably degrad-
ing the results.
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Figure 3. Precision/Recall using threshold 0.8

It is interesting to see that the nearest neighbor method performs
much better than the back propagation method. This can be due to a
number of reasons, perhaps the most likely that we were incapable



of finding the best network topology. There is also an error source
involved in the network algorithm; the test data vectors are normal-
ized according to the minimum and maximum vector values in the
training set.

In terms of effectiveness, the methods performed better than the
original LSI query. However, the number of optimized queries were
rather small. The knowledge used from previous queries is also very
specific (or vertical) since one neighbor was mostly used for gen-
eralization. The results also indicate that the less complex solution
(nearest neighbor) is capable of better results than the complex one
(neural network).

4 SUMMARY AND CONCLUSIONS

We have presented results regarding two learning algorithms for im-
proving previously unseen user queries in Latent Semantic Indexing.

The proposed methods are based on two different learning
schemes from the area of machine learning. The first method, Nearest
Neighbor Regressor, uses a nearest neighbor search of the training set
to find queries similar to the initial query. If found, the initial query
is then optimized by changing its direction to be more similar to that
of the improved queries.

The second method, Back Propagation Regressor, implements a
back propagation neural network and is trained to learn the difference
between an improved query and its initial query. When a new query
is found similar to at least one of the queries in the training set, it is
optimized by adding the network output to itself.

In order to evaluate the methods, we retrieved three standard IR
test collections. We found that there were only a few queries in the
first two collections with high similarity values, according to the sim-
ilarity measure we chose. We evaluated the methods on the third test
collection, using a standard measure of effectiveness.

The experiments revealed an array of results. First, we found that
the methods improved new queries considerably. About 15% of the
queries in the test set were improved. Secondly, we found that the
nearest neighbor method outperformed the back propagation neural
network. This, we believe, was mainly because it was difficult to find
the optimal parameters for the network. We also found that using the
1-5 top-ranked documents from the result list of the improved query
during training generally increased the effectiveness of both meth-
ods. It thus seems like clustered documents are preferred as training
examples by our algorithms.

We have shown that relevance feedback in Latent Semantic Index-
ing can be improved by using information implicitly represented in
feedback from previous queries. Most techniques for relevance feed-
back today use information that is collected from the user at the time
of posing new queries to an information retrieval system. This is of-
ten time-consuming and requires an unneccessarily big effort from
the user. It also means that collected information is lost at the end of
a query session. As an alternative, we have developed a method that
uses knowledge about the user’s preferences as they have appeared
in earlier sessions. By being able to learn from past sessions, our sys-
tem minimizes the effort by the user while at the same time improves
on the relevance of retrieved documents.

5 FUTURE WORK

We are currently exploring the usefulness of the methods in the scope
of much larger text collections. The critical factor would be whether
the SVD can be computed for the collection or not, and if the vector
dimensions then are small enough.

The dimension of a query vector in LSI is equal to the number of
singular values one chooses in the SVD operation. Tests with LSI
at the TREC conference [7] have demonstrated that even with col-
lections of hundreds of thousands of documents, only a few hundred
singular values are required for good performance. Thus, it is rea-
sonable to believe that for collections with more documents there
will not be a tremendous increase in the number of dimensions.

Algorithms for computing the truncated SVD are getting faster all
the time. However, the complexity of the current algorithms is fairly
high. On the other hand there is no need to compute the truncated
SVD of the entire term-document matrix. A carefully selected sam-
ple of the document set can be used to construct the LSI space. The
rest of the document set can then be folded-in to the space [1], in a
manner similar to how the query vector is represented.

Another interesting direction for future work is to investigate how
the proposed methods can be modified to work for a group of users
with similar frames of reference and interests. In such a scenario the
common feedback from all users in the group will be available to
optimize new queries. This is a scenario where individual efforts (in
terms of giving feedback to the system) will be minimized while the
benefits (in terms of being presented less irrelevant documents) will
be maximized. We believe that this is the environment in which the
suggested methods will prove to be most useful and make a differ-
ence for the next generation of information retrieval systems.
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