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Abstract. We present new algorithms for solving Partially Ob-
served Markov Decision Processes. These algorithms are build on
theoretical results showing that if one can find an observable with
required properties, it is possible to build an extension of the state
space using past events which defines a Markov Decision Process
equivalent to the original problem. Thus, solving POMDPs, which
is a very hard task, is seen as solving a MPD, where numerous ex-
isting algorithms can be successfully used. Our first algorithm uses
reinforcement learning to solve POMDPs when the evolution model
is unknown, whereas our second algorithm, more efficient, can only
be applied when the model is known.

1 INTRODUCTION

We are interested in situated agents which have to plan actions in un-
certain and unknown environments. Partially Observed Markov De-
cision Processes are good models of such problems, but can also be
used in many other applications, see [1]. In this formalism, the agent
interacts with its environment and tries to chose actions that maxi-
mize its cumulative reward. But solving POMDPs is a much more
difficult task than solving Markov Decision Processes (MDPs), see
[2], mainly because a given observation can be associated to many
different states of the underlying MDP. Belief states, as proposed by
Aström in [3], have successfully been used in [4] but are limited to
problems with very few states where the model of the POMDPs is
known, even using approximations like in [5]. Others, like [6], try to
use perceptual actions to gain non-ambiguous knowledge about the
current state.

Lin (see [7]) was one of the first who tried using the past to build
non-markovian policies for POMPD with recurrent neural networks.
His succes was limited, mainly because its use of past information
was undirected. Our idea, like in [8], is to use the past of the process
in a selective way so as to build a minimal extended state space on
which classical algorithms for MDPs can be run.

In Section 2 of this paper we introduce the basics of POMDPs and
of trajectories of past events which we use thereafter. The follow-
ing section gives theoretical results about the required properties of
a good extended state space. We build on these theoretical results to
propose two algorithms for solving POMDPs. The first one can be
used when the model is not known (see Section 4), the other when
the model is known (Section 5). We end this paper by giving experi-
mental results and a short conclusion.

2 PRELIMINARIES AND NOTATIONS

We begin by giving a definition of Markov Decision Processes
(MDP) and of the more general Partially Observed Markov Decision
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Processes (POMDP) before introducing the notion of Observation-
Action Trajectories (OAT).

For a finite state space S and a finite action space A, a Markov
Decision Process is defined by a transition function T : S � A �
S �! [0; 1] and a reward functionR : S � A �! <. T (s; a; s0)
gives the probability of reaching state s from state s0 after executing
action a. R(s; a) is the expected reward obtained while executing
action a in state s.

A policy is a mapping � : S �! A. Our goal is generaly to find
a policy maximizing a given function of the reward, as, for exemple,P1

t=0

tRt where Rt is the reward received at time t. In that case,


 is positive real number smaller than 1.
The model of a MDP consists of both T and R. The problem of

finding an optimal policy ��, which in the case of a MDP is deter-
ministic and markovian, can be solved with or without knowledge of
that model, as shown in [9], [10].

We are interested in a more general and complex type of prob-
lems, which are formulated as POMDP. A POMDP is a MDP where
the state of the problem is not perfectly known but only observed
through an observation function F : S �! O, where O is a fi-
nite set of observations. We must point out that we do not consider
here the more general case where the observation function can be
stochastic but limit ourselves to the deterministic case, which is still
quite complex. Thus, o = F(s) is the observation associated with
state s and the difficulty lies in the fact that more than one state can
be associated to a single observation.

The problem is now to find a policy which depends only of the
observations, we call this an adapted policy. As explained by Singh
and Jaakkola in [2], such an optimal adapted policy needs not be
deterministic, nor even markovian. Our approach relies on what we
have called Observation-Action Trajectories.

Let us first give the definition of an State-Action Trajec-
tory (SAT). For any given state St, it is the possibly infi-
nite sequence � = (St; At�1; St�1; : : : ; At�k; St�k; : : :) com-
posed of past events. � is the set of all Action-State Trajec-
tories. We define the set 
 of Observation-Action Trajecto-
ries (OAT) in much the same way by saying that an OAT is
an infinite sequence (Ot; At�1; Ot�1; : : : ; At�k; Ot�k; : : :). For
an SAT � there is a unique OAT ! such that ! = F(�) =
(F(St); At�1;F(St�1); : : :).

Finally, we will use finite n-order Trajectories which are
trajectories truncated at time t � n, i.e.(s0; a1; s1; a2; s2) is
a 2-order Trajectory. For a given policy �, one can compute
the probability that a n-order SAT was followed as Pf�g =
PfSt�ng

Q
n

k=1
(
P

a2A
T (St�k; a; St�k+1)� Pf�(St�k) = ag).

We call the second term of this product the likelyhood of the tra-
jectory given St�n. The same computation can be done for an
action-observation trajectory.



3 THE MAIN THEOREM BEHIND OUR
SOLUTION

3.1 Overview

The main idea of our method is to use the recent past of the observed
process to find the appropriate action to be executed. We will work
on an extended state space composed of n-order Action-Observation
Trajectories and try to solve the original POMDP by using MDP res-
olution algorithms on this extended space. To put it in another way,
we look for a non-markovian adapted policy for the POMDP. Yet it is
very unpractical, not to say nearly impossible, to simply consider an
extended space made of all the different n-order Action-Observation
Trajectories due to the related combinatorial explosion. Such a set
would grow exponentially large with n.

But we have noted that, in most cases, we can restrict ourselves
to a smaller extended space on which it is still possible to derive an
optimal policy. Intuitively, the reason for this is that the knowledge
of the last n observations of the process is not always required to
have enough information on the actual state of the process. This is
illustrated in Figure 1 where one can say with certainty that the actual
state of the process is s2 if one observes blue then red, no more
information on the past is needed. But when red is observed two
times in a row, it is not enough to know the state of the process and
one must use 2-order trajectories.
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red
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green

State s1
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Figure 1. An example of POMDP. In this example, we have 5 states, 3
observations and only one action a. An exhaustive observable would then be

(blue), (green), (red,a,blue), (red,a,green), (red,a,red,a,green),
(red,a,red,a,red)

So, our goal is to build a minimal extended state space with fi-
nite order OAT, all these trajectories can be of different order. For
each possible actual finite or infinite SAT of the process one should
be able to associate one unique element of the extended space, and
this element should give us enough information so as to choose
an optimal action, (knowing exactly the state of the process is an
even stronger requirement). We call an extended state space meeting
this requirement an exhaustive observable H and we write projH :
� �! H the function which associates a unique element of H to
any trajectory of the process. We now give more formal definitions
of these notions.

3.2 Formal definitions and Theroem

An observable is a set of finite order Action-Observation Trajecto-
ries.

An observable H is complete iff for each SAT �, there exists a
unique element ! of H such that ! = projH(�).

An complete observable H is exhaustive if it has the following
property 2 : PfSt+1ja;�tg = PfSt+1ja; projH(�t)g where �t is
the potentially infinite Action-State Trajectory of the process.

Theorem 1 IfH is an exhaustive observable for a given POMDP �,
then the extended decision problem defined by (~S = projH(�t))t is
a Markov Decision Problem ~�.

Theorem 2 The optimal policy ~� for the extended Markov Decision
Problem ~� defines also an optimal adapted policy for the original
POMDP � in the sens that the reward received by applying ~� is the
same that the one which would be received by applying the optimal
non-adapted state policy ��.

The detailed proofs of the theorems can be found in [11].
The consequence of all this is that if we can find a finite exhaus-

tive observable for a POMDP, solving the POMDP is the same as
finding an optimal policy for the extended Markov Decision Process
defined by the observable. And methods for solving MDPs are nu-
merous. One last notice: to derive these theorems, one must assume
that the transition function is deterministic. But, experiments have
shown that algorithms derived from these theorems work also with
non-deterministic transition function.

4 UNKNOWN MODEL

In this section we present briefly the results we obtained when the
model of the POMDP is not known, more detailed results can be
found in [11]. We decided to present this part because the general
ideas to solve the problem when the model is known are roughly the
same than when the model is not known. In fact, the methods of this
Section could also be used when the model is known, as stressed in
Section 5.4.

The algorithm we have developped is largely based on a widely
used reinforcement algorithm : Q-Learning, proposed by Watkins in
[10]. Q-Learning can solve MDPs by iterative asynchronous approxi-
mations of a function Q(s; a) which gives an estimation of the future
expected reward for each (state,action) pair. An optimal policy is then
��(s) = argmax

a2AQ(s; a). When used on POMDP with (obser-
vation,action) pairs, Q-Learning cannot converge unless one uses a
fixed policy for generating (observation,action) pairs (see [2]). The
policy thus derived is sub-optimal. Of greater importance, the speed
of convergence of the Q(o; a) function is affected by the ambiguity
of the observation o: if o is ambiguous, i.e. is associated to more than
one state, the convergence of Q is slower than for non-ambiguous el-
ements. Thus, by looking at the variations of the Q function, we now
have a way to detect the most ambiguous elements of an observable...

We intialize our algorithm with an observable made from all the
possible 0-order OAT (i.e. the observations). Our algorithm is de-
scribed below.

2 An observable must also have other properties over the observation func-
tion and the reward distribution as well to be exhaustive, to assure that
the reward distribution is coherent with the observable. Such properties are
generally met and we omit them here because of lack of space. The reader
should refer to [11] for more detailed results.
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Figure 2. The Cheese Maze. In this example, the mouse must find the
cheese. There are 11 states and 7 observations, some (B and E) beeing

ambiguous.

� Step 1: Growing the observable By running a version of Q-
Learning with a fixed stochastic exploration policy on this ob-
servable, we are able to detect ambigous elements of H, as stated
above. These elements form the set M. Each element ! of M is
the base of jAj � jOj higher order OATs looking like (!; a; o),
which are added to H.

� Step 2: Best current policy Once a stable observable is reached,
using Q-Learning on the extended state space defined by the ob-
servable, we find the best policy for the current extended process.
The reward received by applying this policy gives us an estima-
tion of the performances of the current observable. By theorems
1 and 2, this policy is optimal for the POMDP when we have an
exhaustive observable.

� Step 3:Iterate if not exhaustif In fact, we cannot detect exhaus-
tive observables with our method. We can only detect the most
ambiguous elements of the observable. So, we stop our algorithm
when the difference in performances of two successive observ-
ables are negligeable. Otherwise we go back to Step 1.

This agorithm has been tested on different problems, like the well
known Cheese Maze depicted in Figure 2. Figure 3 shows the results
for this problem, and one can easily see the alternating Growing and
Evaluating steps of the algorithm. Our algorithm was found to be ro-
bust but suffers from the large number of iterations needed to reach
an optimal policy. It is this limitation we try to work on in the fol-
lowing Section.

5 KNOWN MODEL

In this section, we suppose that the model of the POMDP is known
and that the transition function is deterministic. It can seem strange
to try to solve a POMDP when the model is known as one could more
easily solve the underlying MDP. But, in the case of a situated agent
which can only rely on the observations given to him, the optimal
policy based on states is of no use. This is why finding an adapted
policy (i.e. based on the observations) is so important.

Our goal is to use the information of the model to explicitely com-
pute an exhaustive observable of the POMDP. This observable de-
fines an extended MDP which we can then solve in fewer iterations
than in Section 4 using algorithms like value iteration or policy iter-
ation (see [9]).

Our Algorithm
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Figure 3. Result on the Cheese Maze. We have tested our algorithm
against an algorithm giving only markovian policies. After tho epoch of

Growing and Evaluating, our algorithm converges to the optimal solution,
which is non-markovian (in fact 2-order markovian).

As developped in this section, we will see that it is indeed impossi-
ble to find an exhaustive observable. Thus, in order to solve correctly
the POMDP we chose to rely on quasi-exhaustive observables and
Q-Learning, as explained in Section 5.4.

5.1 Exhaustivity is a dream

When trying to find a proper algorithm for computing exhaustive ob-
servable we eventually found out that, in the general case, there are
no finite order exhaustive observables. Figure 4 shows this on a very
simple example where, by moving alternatively Up and Down, an
agent generates an infinite SAT which cannot be associated to any
finite order non-ambiguous OAT. In that case, knowledge of all the
past of the process is required to know the state of the underlying
MDP.

This example shows that two different states cannot be told appart,
even with a total knowledge of the past. If the reward and transition
functions of these states are different, a finite-order exhaustive ob-
servable does not exists. And this is the case for most of the problems
we try to solve.

One can ask how it is, then, that optimal solutions and exhaustive
observables where found in Section 4, when no model was known.
The answer is that, with some constraints on the policy, it is possible
to find such observables. Without a model, our algorithm incremen-
tally constructed observables which where exhaustive when applying
an optimal policy. By itself, the algorithm payed few attention to am-
biguous but very sub-optimal Action-Observation Trajectories which
were then ruled out.

But here, when trying to compute the observable without any idea
on what the optimal policy could be, it is impossible to put some am-
biguous trajectories aside. So, we decided to use weaker observables
which are only quasi-exhaustive.

5.2 Quasi-exhaustive observables

The idea is to build an observable where each element is either a non-
ambiguous trajectory or a ambiguous trajectory but which is very
unlikely to be followed by the agent. We have seen in Section 2 that
this last notion is linked to what we called the likelyhood of a tra-
jectory, furthermore it is rather easy to compute this likelyhood. The
complexity of the calculus is in O(n) if n is the order of the trajec-
tory. To know if a trajectory is ambiguous, we evaluate the number



of possible final states compatible with the trajectory. If this number
is greater than 1, the trajectory is ambiguous.

We can now present our algorithm for building a quasi-exhaustive
observable H.

� Step 1: Initialization Set H to O, the observation space.
� Step 2: Precalculation For every element of H, compute the

number of associated final states, complexity in O(jSj). If this
number is greater than 1, an element is ambiguous. Likewise,
compute the likelyhood of every element, complexity in O(jOj �
jSj).

� Step 3: Growing For every ambiguous element of H with a like-
lyhood above a given threshold, add jOj � jAj new trajectories to
H. If no element are added, Stop.

� Step 4: Update For each new element, see if it is ambiguous,
complexity in O(jAj � jSj). For each new element, compute its
likelyhood, complexity at most in O(jAj�jSj�n) where n is the
order of the element; this computation can be made less complexe
by using previous results. Go to Step 3.

5.3 Loopholes

It is possible to derive a new transition function and a new reward
function for the extended state space build on a quasi-exhaustive ob-
servable. But, as we will explain, it is not very useful as one can not
directly apply model based algorithm on quasi-exhaustive observ-
able. Indeed, the transition function is needed when we want to use
a model based algorithm like policy iteration to solve the MDP. But,
when we keep ambiguous extended states, even if they seem unlikely
to be used, we create loopholes if the model.
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Up

Right

Figure 4. Simple environment. In this simple environment, there are 10
states and 4 actions. The agent observes only the position of the walls for
each cell, so cells 2 and 8 look the same to it. Furthermore, even using the

two inifinite trajectories depicted, states 3 and 7 cannot be taken apart.

Figure 5 gives a representation of the model associated with the
problem depicted in Figure 4 when whe use raw observations as ex-
tended space. Some observation are ambiguous, and the agent cannot
make the difference between state 2 and state 8. Then, starting in state
1, the optimal policy seems to go Up and then Down in extended state
2=8.

This simple example is an image of what happen in complex en-
vironment when we try to use ambiguous elements in the extended
space. Event though these elements seem unlikely to be used, model
base algorithms will have a tendancy to abuse them if they are part
of a loophole which appears optimal, as in the exemple of Figure

5. As a consequence, model-based algorithms cannot be used with
quasi-exhaustive algorithms.
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3 / 7
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Figure 5. Loophole in the model. If the agent uses ambiguous
observations, it creates virtual transition in the model. Here, for example,

states 2 and 8 are aggregated which creates a shortcut from 1 to 9, shortcut
which will be used by a model-based algorithm like policy iteration.

5.4 Actual Solution

Apart from preventing the agent from taking actions which could
lead him on ambiguous observation-action trajectories, actually act-
ing in the environment is the only way for the agent not to fall in
the loopholes induced by ambiguous trajectories. If the agent takes
an action which, it believes, leads him to an “interesting” ambiguous
situation which is in fact a loophole, the environment itself will pre-
vent the agent from taking advantage of this false belief. Going back
to the exemple set in Figure 5, coming from 1 into 2=8, the agent will
never be able to go directly to state 9 as a model could lead him to
believe.

As a consequence, our algorithm for solving POMDP with a
known model is the following.

� Step 1: Quasi-Exhaustive Observable Following the algorithm
of Section 5.2, a quasi-exhaustive observable is built. The thresh-
old and the maximum order of elements in the observable govern
its final size.

� Step 2: Q-Learning It is a simple Q-Learning where the balance
between exploration and exploitation is done using a Boltzman
distribution of probability for choosing the next action (see [12]).

Table 1. Result for the first environment

Max. Order Nb Goal Nb. Iter. % Optim.
states 14 14 800 100
0-order 9 14 800 0
1-order 17 14 5000 66
2-order 23 9 3000 100
2-order 23 4 3000 100
2-order 23 11 3000 100

We have tested our algorithm on two different environments. The
first one is the environment of Figure 6, with 14 states and 9 obser-
vations. For this environment we tried 4 different locations for the
GOAL. When it reaches the goal, the agent is randomly taken to a
new starting position. The reward for the agent: +5.0 for the goal,
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Figure 6. First test environment. The goal state is set for each
simulation. See results in Table 1

-0.2 when moving and -15.0 for bumping into a wall. 
 has a value
of 0:99. Table 1 gives the results for this environment, in term of the
maximum order for the observable, the actual number of elements in
the extended state, the number of iterations for the Q-Learning algo-
rithm and the percentage of optimal policy obtained. Table 2 gives
the same information for our aglorithm tested on the environment
shown in Figure 7, with 89 states and 24 observations.

For each environment we can find optimal policies with a very rea-
sonnable number of iterations. The size of the observable stays small
and ambiguous elements do not prevent us from reaching optimal
solutions.

GOAL

Figure 7. Second test environment.

6 CONCLUSION

This paper presented new algorithms for solving Partially Observed
Markov Decision Processes by using a carefully crafted extended
space. This extension relies on using past information to derive non-
markovian policies, and combinatorial explosion is prevented by
looking for minimal exhaustive observable. After presenting two the-
orems underlying our method, we described the algorithms that can

Table 2. Result for the second environment

Max. Order Nb Nb. Iter. % Optim.
states 89 50000 100
0-order 24 50000 0
1-order 100 100000 0
2-order 185 30000 100
2-order 185 15000 58
2-order 185 12000 20

be used, depending on the knowledge we have of the evolution model
of the process.

This works open further interesting lines of research. Most im-
portant, the influence of noise in the model should be investigated.
Beside, our algorithm takes only into account the n last past events
at most and we have ideas for using past events which occurred at
non-fixed time step backward in time which we hope to develop in
future works.
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