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Abstract.  Deregulation of telecommunications has meant an 
increase in third-party service provision, personalized service 
delivery and integrated networks and media. The efficient 
allocation of services, without human intervention, to satisfy 
advanced service requirements spanning several networks is a 
crucial task. This can be modeled as a winner determination 
problem in combinatorial auctions where there are multiple 
services, service providers and winner determination criteria (like 
cost, bandwidth, delay, etc) but we have shown the problem is 
NP-complete. 
 This paper describes a new two-stage algorithm for optimal 
anytime winner determination. In the first stage, a hierarchical 
task network planner is used to decompose a task into subtasks 
that can be solved by the available services. In the second stage, a 
genetic algorithm with heuristics is used to find the optimal 
combination of service providers to provide the services 
identified. We present our algorithm used to solve the second 
stage in detail and the results from various experiments. The 
results show the GA finds optimal solutions much quicker than a 
modified depth-first search with pruning. We also show the 
genetic algorithm a) finds optimal solutions quicker when deal 
lengths have a random distribution and b) initial anytime 
performance is better when deal lengths have an exponential 
distribution.  

1  INTRODUCTION   
One of the basic problems of open, multi-agent systems for the 
Internet is the connection problem [9]. That is, each agent must 
be able to locate the other agents who may have capabilities 
which are necessary for the execution of tasks. The solution to 
this problem relies on using some ‘well-known’ agents and some 
basic interactions with them – matchmaking or brokering. 
We have developed a brokering system where there are client 
agents, service agents and one or more brokers. A client agent has 
a task which can be solved by a single service agent or a 
federation/combination of service agents. However, the client is 
not aware of what service agents are available or how a task can 
be, necessarily, decomposed and solved by a set of service agents 
in the best possible way. The client agent requests the agent 
service broker to “recommend” a set of service agents who are 
capable of solving a particular task. The broker maintains a 
repository containing current and correct information about 
                                                 
 

operational service agents. Each service agent represents a 
particular service provider. There can be one or more service 
agents (providers) providing the same service. The broker 
identifies a combination of service agents who have the 
capabilities to solve a client’s task. The broker decomposes a task 
into subtasks and one or more service agents have the capability 
to solve each subtask. The service agents who provide the same 
service may vary in various measures like cost, bandwidth, delay, 
etc. The service agents who provide different services may 
collaborate in order to enhance some measure. The broker selects 
winners to solve a task based on multiple criteria/measure and 
ensures the overall measure of the set of winners is optimal or 
near-optimal. The client agent is notified by the broker of the 
service agents that are required to solve the task. The client is 
then free to initiate a dialogue with the service agents for the 
appropriate services. This paper focuses on brokering a 
combination of services to solve a task.  
 Combinatorial auctions are auctions where bidders can bid on 
combinations of items. Combinatorial auctions are applicable to 
many real world situations. In an auction for the right to use 
railroad segments a bidder desires a bundle of segments that 
connect two particular points; at the same time, there may be 
alternate paths between these points and the bidder needs only 
one[1]. A set of services can be combined to improve the cost or 
quality of service of the combination. The services can be 
combined in many ways. For example, there can be a deal where 
one can buy a service and gets another service for free and, 
therefore, the combination of services would have a cost equal to 
the cost of one service. Obviously it is cheaper to buy the 
combination than the individual services. The broker considers 
the various combinations in order to find the optimal solution (i.e. 
a set of service providers) based on multiple criteria. In 
combinatorial auctions bidders may place bids on combination of 
items whereas in our system service providers quote a particular 
value for a combination of services. 
 While economics and game theory provide many insights into 
the potential use of such auctions, they have little to say about 
computational considerations. In this paper we address the 
computational complexity of combinatorial auctions. 

2  WINNER DETERMINATION 
In essence, the winner determination problem is to find an 
optimal set of service agents to solve a client’s task - optimal in 
terms of criteria specified. The problem has two parts – 
satisfiability and optimization.  
Satisfiability: Given a set of services and a task, establish 
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whether the task is satisfiable by the current set of services 
available. Basically identifying the services required to solve a 
task. This involves breaking a task into subtasks until there are 
only primitive tasks that can be solved by a combination of 
service agents. 
Optimization: Identify a set of winners or service providers 
based on multiple criteria, to provide the services identified to 
solve the client’s task. This paper mainly focuses on the 
optimization stage of winner determination.   
 The broker must consider the various relationships that exist 
between services (where the respective service providers can be 
the same or different) in order to identify a set of service agents to 
solve a task at the optimum measure(s). The service providers 
identified by the broker to solve a task are the winners. The 
relationship between services is one of three types:  
• Cooperation: Different services can work together regardless 

of whom provides each service.  
• Benefit cooperation: Different services can work together 

regardless of whom provides each service but there is an 
added benefit for using particular service providers for the 
required services. Service combinations or deals are the 
result of this relationship. 

• No cooperation: Different services cannot work together 
regardless of whom provides each service. 

The order in which services are combined matters in all three 
relationships. For example, it may not be possible to combine (no 
cooperation relationship) serviceA with serviceB but combining 
serviceB with serviceA may have an added benefit (either a 
cooperation or a benefit cooperation relationship). Ordering of 
services is particularly important in the telecommunications 
domain. These relationships are quantified according to the 
criteria used for optimizing. For example, if winner determination 
is based on cost of services then a no cooperation relationship can 
be represented by a very large number (or ∞). The relationship 
between services grows exponentially as the number of services 
and service providers increase. 
Proposition 2.1: Winner determination is NP-complete. 
Proof: The Travelling Salesman model assumes that the decision-
maker has determined a priori which cities will be sequenced. 
Consider a generalization of the TSP, which combines the 
decisions of city selection and city sequencing. Instead of pre-
selecting the cities to be visited, the generalized model assumes 
the cities have been grouped into mutually exclusive and 
exhaustive states. The generalized travelling salesmen problem 
(GTSP)[10]  is then to find a minimum cost path which includes 
exactly one city from each state. The GTSP is transformed to an 
agent service brokering problem. Each state is transformed to a 
service and each city in a state is transformed to a service 
provider providing the service. The cost of travelling between two 
states is transformed to cost of purchasing two services. The 
generalized travelling salesmen problem is NP-complete. A detail 
proof can be found in [4]. 
The search space for winner determination is greater than the 
GTSP when we take into account the number of possible ways in 
which a set of services can be combined in a route. In the GTSP, 
adding a new node to a route increases the total cost of the route 
by the amount required to travel from the last node (n-1) to the 
new node (n). Whereas in the agent service brokering problem, 
adding a new node does not necessarily increase the total cost of 
the route by the amount required to purchase the new node 

because the cost of adding a new node is dependent on the history 
of the route. For example, say, there is a route with four services 
(S1S2S3S4) and the total cost of the route is the sum of two deals 
(i.e. benefit cooperation relationship – S1S2 and S3S4). Now 
adding a new service (S5) to the route may bring into effect two 
different deals (S1S2S3 and S4S5) which may be cheaper than 
buying S5 and the previous two deals - S1S2 and S3S4. 
Proposition 2.2: The number of possible solutions to a problem 
is (n! * (m1 * … * mn) * 2(n-1)) where n is the number of services 
and mx is number of service providers providing service x and 
there are 2(n-1) possible service combinations. The number of 
possible solutions to a GTSP is  (n! * (m1 * … * mn)) where n is 
the number of states and mx is number of cities in state x. 
Proof: We outline a proof to show how 2(n-1) is derived. Two 
services can be combined (AND operator) or not combined (OR 
operator). If there are n services then there are (n-1) places where 
either of the operators could appear. Since there are 2 operators 
and n-1 places where the operators can appear then there are 2(n-1) 

ways in which n services can be combined. 

3  ARCHITECTURE OVERVIEW  
The broker consists of two components to solve each stage of the 
winner determination problem – planner and optimizer. The 
planner receives a task from a client which is decomposed into 
subtasks using predefined plan methods. The planner also 
identifies the services that are required to solve each subtask. The 
planner then notifies the optimizer of the services that are 
required to solve each subtask.  
 The planning process developed is based on a hierarchical task 
network planning formalism. The planner searches through plan 
space to solve the planning stage of the problem. Conventional 
wisdom in the planning community, supported to large extent by 
the fielded applications to-date, holds that most real world 
domains are best modeled with hierarchical task network 
planning models[7]. The planner starts with a task or goal, and on 
each iteration adds one more step i.e. decomposes a task into sub-
tasks until there are only primitive tasks. It does this by choosing 
some operator – either from existing steps of the plan or from the 
pool of operators – that achieves a complex task. If this leads to 
an inconsistent plan, it backtracks and tries another branch of the 
search space. To keep the search focussed, the planner only 
considers adding steps that serve to achieve a complex task that 
has not yet been achieved. The operators are mainly various task 
decomposition methods which capture human expertise. We do 
not present any detail information on the planner due to space 
constraints. 
 The optimizer identifies the best combination of service 
providers to provide the services identified. In order to achieve 
this it considers the various service combinations (deals) with 
same or different service providers. The optimizer is a genetic 
algorithm (GA) with heuristics that yields an anytime algorithm.  

4  GENETIC ALGORITHM AND HEURISTICS 
The second stage of the brokering process involves selecting a 
combination of service providers to provide the identified 
services. This stage is solved to optimality or near optimality, 
depending on the size o the problem and the time available to the 
user, by a genetic algor
f 

ithm[6]. The genetic algorithm is a highly 



parallel mathematical algorithm that transforms a population of 
individual objects, each with an associated value of fitness, into a 
new generation of the population, using the Darwinian principle 
of survival and reproduction of the fittest and analogs of naturally 
occurring genetic operations such as crossover and mutation. 
Recently genetic algorithms[2] were applied to the knife change 
minimization problem, which is an instance of the GTSP, to 
produce good solutions. 
 Problem representation is critical to the success of GA. Each 
possible point in the search space of the problem must be 
encoded as a character string (i.e., as a chromosome). There are 
number of ways to represent a problem. The representation used 
by the GA is diagrammed in Figure 1.  We represent each 
individual in the population using three chromosomes: 
1. Service chromosome – Represents the services that are required 
to solve a task. Service combinations are based on the order in 
which the services appear in the chromosome. 
2. Provider chromosome – Represents the service provider 
providing the service shown by the service chromosome. For 
example, service S2 is provided by provider PA. 
3. Deal chromosome – Represents the services that can be 
combined to benefit in some way, e.g. cost. A service 
combination is represented using 1 or 0 and a non-combination is 
represented using *. For example, services S2 and S4 are 
combined to form a deal whereas service S3 is not combined with 
any other service.  
 
 
 
 
 
 
 
 
 
 

Figure 1: Problem Representation 
Each individual has a fitness value associated to it. The fitness of 
an individual is the cost of purchasing the services but it can be 
the sum of one or more measures that are to be optimized.  
 The outline of the genetic algorithm is given in Figure 2. The 
GA initially creates a population using the data about the services 
required, their providers and the existing deals/combinations. 
Heuristics are applied on the initial population to improve the 
quality of the population. Individuals are selected from the old 
population to create a new population by applying the genetic 
operators on the selected individuals. The search process 
continues for a fixed number of generations or until there is no 
improvement in the quality of the best individual. Repair 
heuristics are applied on the best individual in an attempt to 
improve the quality of the solution further. The GA stores the 
best individual from the start of the search process and individual 
is replaced when a better one is found as the search progresses. 
The search process can be terminated at anytime and the current 
best individual would be the solution. Thus, the GA yields an 
anytime algorithm. Inevitably, optimizing on more than one 
criteria involves a trade-off between profit optimization and end-
user satisfaction. The best solution found by the GA may not suit 
the client. To overcome this problem, the client can specify the 
number of solutions to be produced by the GA and then select the 

best. The time required by the GA to find 1 or n solutions is the 
same unlike other search methods.  
 Genetic operators are applied on the individuals to improve the 
fitness of the individuals from one generation to another. Simple 
crossover and mutation operators produce illegal chromosomes 
when applied.  For example, the one-point crossover which 
replaces a certain proportion of a chromosome with an equal 
proportion of another chromosome may produce chromosomes 
where the services are repeated or the service provider for a 
service is wrong. To avoid such problems special crossover and 
mutation operators are to be applied on the chromosomes of the 
individuals selected. The selection of individuals in the GA are 
either random or fitness based (tournament). Mutation operators 
were developed to introduce new service ordering, new providers 
or new deals. The crossover operator in the GA is responsible for 
transferring a deal from one parent to another to create two new 
children. The crossover operator ensures that the deal that is 
transferred from one parent to another will have minimum impact 
on the existing deals in the other parent. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Genetic Algorithm Outline 
Two types of heuristics were developed to improve the 
performance and the quality of the solution produced by the GA. 
The initial population heuristic was developed to capitalize 
heavily on the sparseness of deals. In practice the space of deals 
is necessarily extremely sparsely populated. For example, if there 
are 100 services, there are 2(100-1) combinations, and it would take 
a very, very long time to create all those combinations. Therefore, 
randomly generating deals when creating the initial population is 
futile as most randomly generated deals would not match the 
existing valid deals (in the repository). 
1. Initial population heuristic – The heuristic randomly selects 
valid deals/combinations from the repository and uses them to 
create new individuals instead of randomly creating 
combinations.  
2. Repair heuristic – This heuristic ensures all services that are 
not part of a deal/combination have the best (cheapest) service 
provider. 
 The output of the GA is a list of service agents who are capable 
of solving the task. The user’s previous experience with the 
service agents may classify one or more of the identified agents as 
faulty or not trustworthy. The user can then instruct the broker to 
find an alternative solution to the task by excluding a particular 
set of service agents. As expected, the new solution would be 
near-optimal or, possibly, optimal. The GA finds an alternative 
solution by  solving the problem again without the specified set 
of service agents and with a selection of valid chromosomes from 
the final population of the previous run. Thus, the selection of 
chromosomes from the final population creates a good initial 
population for the GA. 
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PA PD PCPB PB Provider: 

1 1 0 0 *Deal: 
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{ 

} 
10 Fitness: 

1. Get data on - Services, Providers and Deals. 
2. Create initial population. 
3. Apply initial population heuristics. 
4. Select individuals: Random or fitness based. 
5. On selected individuals apply genetic operators (mutation 

and crossover). 
6. Add new individuals to new population. Calculate fitness 

of each individual. 
7. Next Generation - Go to step 4. 
8. Apply repair heuristics to final solution. 
 



5  MODIFIED DEPTH-FIRST SEARCH 
The depth-first search algorithm examines all feasible deal and/or 
service combinations to find the optimal solution. The outline of 
the algorithm is given in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Depth-First Search Outline 

6 BROKERING SCENARIO AND RELATED 
WORK 

The broker algorithm is applied to an abstract problem called the 
blocks world. The blocks world problem is adapted in order to 
demonstrate the broker functionality where each block represents 
a particular service. Associated with each block is a price, a 
colour and a level of softness. Each block has a connector and the 
connectors are of different shapes. Blocks can be combined if 
they have the same connector shape. The blocks are provided by 
one or more block providers and the block providers represent 
service providers. The type of task that is required to be solved in 
this domain is building a tower at the cheapest cost and with the 
lowest level of softness. The client specifies the size of the tower 
(i.e. number of blocks), the colours and the connector shape. 
 Several commercial and academic auction houses have 
recently appeared on the Internet, but to our knowledge, this 
implementation is the first of its kind – where there are multiple 
service providers, repetition of services in a deal, multiple 
optimization criteria and the bids are not superadditive: 
cost(S1∪ S2)≥cost(S1)+cost(S2). Sandholm[8] and Fujishima et 
al.[5] have addressed the conventional combinatorial auction 
problem but their approach to solving the problem very different 
to our approach. Sandholm presented a Bidtree algorithm that 
performs a secondary depth-first search to identify non-
conflicting bids. The Bidtree then uses an IDA* search strategy to 
solve the problem. Fujishima et al. have presented two methods 
for winner determination. The first method is a modified depth-
first search applied on a structured search space to reduce 
runtime. Caching and pruning are also used to speed searching. 
The second method is a heuristic, market-based approach. It sets 
up a virtual multi-round auction in which a virtual agent 
represents each original bid bundle and places bids, according to 
a fixed strategy, for each good in the bundle.  

7  EXPERIMENTAL SETUP AND RESULTS 
We conducted various empirical tests to evaluate a) the general 
performance of the GA and the depth-first search algorithm, b) 
how the run time of the GA varies with different deal length/size 
distribution, and c) how percentage optimality of the GA varies 

with time, given a particular deal length distribution and a fixed 
number of deals and services. We executed our programs written 
in Java on a PC (Pentium 200MHz with 64 RAM) to get the 
results. All the results reported are averages over 25 different runs 
and the optimization was based on a single criteria i.e. cost. In the 
case of the GA, each run was terminated when the optimal 
solution was found. The run times include the planning stage of 
the brokering algorithm and the optimization is based on a single 
criteria i.e. minimization of cost of services. We do not present 
any experiments varying the number of services, service providers 
and optimization criteria in this paper due to space constraints. 
 The GA without any heuristics finds optimal solutions for 
small problems (10 services) but the heuristics are required if the 
GA is to find optimal solutions for large problems (100 
services)[3]. In order to analyze the performance of the GA to 
different deal length distributions we had to generate valid deals 
to fit the distributions. In the absence of real data we tested our 
algorithms against deals randomly generated using the service 
data in the broker’s repository. Each deal was created by 
randomly selecting services from 1..m services. Each service has 
1 to 5 providers and an appropriate provider was also randomly 
selected to provide the selected service. The price of deals for n 
services is randomly distributed between [c(1-d), c(1+d)] where 
c= sum(price1..pricen) and d=0.1. The size of deals (i.e. number of 
services in a deal) plays an important role in the complexity of the 
winner determination problem - which affects performance of the 
search algorithm. For our experiments, the deal sizes/lengths were 
based on two different distributions: 
Exponential (Exp):  Deals of shorter length appear more often 
than deals of longer lengths. For n services, there will be many 
deals of length less than n than of length n and the frequency of 
the appearance of different lengths is dictated by an exponential 
function. DealLength = N.e(x/p) where  N = Total number of 
services, x = random number[0,1], and p = (1/ln(1/N)). For 
example, if there are 30 services and 1000 deals then about 70% 
of deals would have length <10, 20% would have length between 
11 and 20 and the rest between 21 and 30. 
Random (Ran): Length of a deal is x.N where N = Total number 
of services, x = random number[0,1]. 
To answer questions a) and b) we measured the run time of the 
algorithm for the two distributions and results are shown in 
Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Run Time Comparison 

The GA demonstrates excellent performance both in finding 
optimal solutions and as an anytime algorithm in comparison to 
the modified depth-first search algorithm. The depth-first search 
takes a much longer r

1. Get data on - Services, Providers and Deals. 
2. Set length L = Number of services required (includes 

service repetition.) 
3. Find a deal of length l, where l = L initially. 
4. For remaining search space equal to (L-l) generate all 

deal and service combinations. Unnecessary 
combinations are pruned. 

5. Find the cheapest set of deals and/or services to satisfy 
the various combinations generated. 

6. Set l = l (check for more deals of the same length) or l = 
(l – 1), then go to step 3. Or terminate if l = 0.  
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length distribution. The difference in run time of the algorithms is 
considerable when the number of deals are greater. Both 
algorithms perform better when deal length distribution is 
random. The search time is greater for the exponential 
distribution because the search space is larger due to many 
shorter length deals. For each short deal, the algorithm has to try 
various possible deal and/or service combinations for the services 
not included in the short deal. These possible deal and/or service 
combinations is lesser when the deal length is longer. Both the 
GA curves in Figure 4 grow sub-linearly on the logarithmic 
graph, suggesting polynomial-time performance. The GA’s 
effectiveness is strongly influenced by the distribution of deal 
lengths, particularly as the number of deals increase. 
 To answer question c) we measured the optimality of the 
output for both deal size distributions. Figures 5 and 6 show the 
anytime behavior of the GA for a particular problem. The 
behavior shown is similar for other problems. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Anytime Behavior – Exponential Distribution 

 
 
 
 
 
 
 
 
 
 

 
Figure 6: Anytime Behavior – Random Distribution 

Good initial results are found quicker by the GA when deal 
lengths are exponentially distributed but the final results (i.e. 
optimal solution) are found quicker when the deal lengths are 
randomly distributed. The initial search space is greater in a 
random distribution as the deals are longer and finding the right 
length of deals to combine is difficult. The GA solves a small 
problem (30 services, 1000 deals) with randomly distributed deal 
lengths to optimality in 39 seconds whereas it takes 133 seconds 
when the deal lengths are exponentially distributed. The big 
jumps in the graph shown in Figure 6 are due to finding long 
deals that reduce the total cost greatly.  

8  CONCLUSION AND ONGOING WORK 
We presented a new brokering algorithm for optimal anytime 
winner determination in combinatorial auctions. Determining the 
winners so as to minimize a set of measures (cost, bandwidth, 
etc.) is NP-complete. The brokering algorithm described is a new 

two-stage algorithm for optimal anytime winner determination. In 
the first stage, a hierarchical task network planner is used to 
decompose a task into subtasks that can be solved by the 
available services. In the second stage, a genetic algorithm with 
heuristics is used to find the optimal combination of service 
providers to provide the services identified. The results from 
various experiments were provided. The results show the GA 
performs better than the modified depth-first search algorithm. 
The GA renders an anytime algorithm as it keeps track of best 
solution found from the start of the search process. We analyzed 
the run time and anytime performance behavior of the algorithm 
for exponential and random deal length distributions. The 
performance of the algorithm is better when the deal length 
distribution is random. The techniques developed to solve the 
brokering problem can be applied to similar NP-complete 
problems like the constraint satisfaction problem.  
 The brokering algorithm presently works on static data i.e. any 
changes to the data in the repository is not considered during the 
execution of the algorithm. The algorithm is currently modified to 
deal with dynamic data. We will also be applying the brokering 
algorithm to provide VPN (virtual private networks) service 
based on cost and quality of service.  
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