
An Agent Service Brokering Algorithm for Winner
Determination in Combinatorial Auctions

Aneurin M. Easwaran1 and Jeremy Pitt1

Abstract. Deregulation of telecommunications has meant an
increase in third-party service provision, personalized service
delivery and integrated networks and media. The efficient
allocation of services, without human intervention, to satisfy
advanced service requirements spanning several networks is a
crucial task. This can be modeled as a winner determination
problem in combinatorial auctions where there are multiple
services, service providers and winner determination criteria (like
cost, bandwidth, delay, etc) but we have shown the problem is
NP-complete.
 This paper describes a new two-stage algorithm for optimal
anytime winner determination. In the first stage, a hierarchical
task network planner is used to decompose a task into subtasks
that can be solved by the available services. In the second stage, a
genetic algorithm with heuristics is used to find the optimal
combination of service providers to provide the services
identified. We present our algorithm used to solve the second
stage in detail and the results from various experiments. The
results show the GA finds optimal solutions much quicker than a
modified depth-first search with pruning. We also show the
genetic algorithm a) finds optimal solutions quicker when deal
lengths have a random distribution and b) initial anytime
performance is better when deal lengths have an exponential
distribution.

1 INTRODUCTION
One of the basic problems of open, multi-agent systems for the
Internet is the connection problem [9]. That is, each agent must
be able to locate the other agents who may have capabilities
which are necessary for the execution of tasks. The solution to
this problem relies on using some ‘well-known’ agents and some
basic interactions with them – matchmaking or brokering.
We have developed a brokering system where there are client
agents, service agents and one or more brokers. A client agent has
a task which can be solved by a single service agent or a
federation/combination of service agents. However, the client is
not aware of what service agents are available or how a task can
be, necessarily, decomposed and solved by a set of service agents
in the best possible way. The client agent requests the agent
service broker to “recommend” a set of service agents who are
capable of solving a particular task. The broker maintains a
repository containing current and correct information about

operational service agents. Each service agent represents a
particular service provider. There can be one or more service
agents (providers) providing the same service. The broker
identifies a combination of service agents who have the
capabilities to solve a client’s task. The broker decomposes a task
into subtasks and one or more service agents have the capability
to solve each subtask. The service agents who provide the same
service may vary in various measures like cost, bandwidth, delay,
etc. The service agents who provide different services may
collaborate in order to enhance some measure. The broker selects
winners to solve a task based on multiple criteria/measure and
ensures the overall measure of the set of winners is optimal or
near-optimal. The client agent is notified by the broker of the
service agents that are required to solve the task. The client is
then free to initiate a dialogue with the service agents for the
appropriate services. This paper focuses on brokering a
combination of services to solve a task.
 Combinatorial auctions are auctions where bidders can bid on
combinations of items. Combinatorial auctions are applicable to
many real world situations. In an auction for the right to use
railroad segments a bidder desires a bundle of segments that
connect two particular points; at the same time, there may be
alternate paths between these points and the bidder needs only
one[1]. A set of services can be combined to improve the cost or
quality of service of the combination. The services can be
combined in many ways. For example, there can be a deal where
one can buy a service and gets another service for free and,
therefore, the combination of services would have a cost equal to
the cost of one service. Obviously it is cheaper to buy the
combination than the individual services. The broker considers
the various combinations in order to find the optimal solution (i.e.
a set of service providers) based on multiple criteria. In
combinatorial auctions bidders may place bids on combination of
items whereas in our system service providers quote a particular
value for a combination of services.
 While economics and game theory provide many insights into
the potential use of such auctions, they have little to say about
computational considerations. In this paper we address the
computational complexity of combinatorial auctions.

2 WINNER DETERMINATION
In essence, the winner determination problem is to find an
optimal set of service agents to solve a client’s task - optimal in
terms of criteria specified. The problem has two parts –
satisfiability and optimization.
Satisfiability: Given a set of services and a task, establish

1 Intelligent and Interactive Systems, Department of Electrical &
Electronic Engineering,
Imperial College of Science, Technology & Medicine,
Exhibition Road, London SW7 2BZ, England.
E-mail: a.easwaran@ic.ac.uk

whether the task is satisfiable by the current set of services
available. Basically identifying the services required to solve a
task. This involves breaking a task into subtasks until there are
only primitive tasks that can be solved by a combination of
service agents.
Optimization: Identify a set of winners or service providers
based on multiple criteria, to provide the services identified to
solve the client’s task. This paper mainly focuses on the
optimization stage of winner determination.
 The broker must consider the various relationships that exist
between services (where the respective service providers can be
the same or different) in order to identify a set of service agents to
solve a task at the optimum measure(s). The service providers
identified by the broker to solve a task are the winners. The
relationship between services is one of three types:
• Cooperation: Different services can work together regardless

of whom provides each service.
• Benefit cooperation: Different services can work together

regardless of whom provides each service but there is an
added benefit for using particular service providers for the
required services. Service combinations or deals are the
result of this relationship.

• No cooperation: Different services cannot work together
regardless of whom provides each service.

The order in which services are combined matters in all three
relationships. For example, it may not be possible to combine (no
cooperation relationship) serviceA with serviceB but combining
serviceB with serviceA may have an added benefit (either a
cooperation or a benefit cooperation relationship). Ordering of
services is particularly important in the telecommunications
domain. These relationships are quantified according to the
criteria used for optimizing. For example, if winner determination
is based on cost of services then a no cooperation relationship can
be represented by a very large number (or ∞). The relationship
between services grows exponentially as the number of services
and service providers increase.
Proposition 2.1: Winner determination is NP-complete.
Proof: The Travelling Salesman model assumes that the decision-
maker has determined a priori which cities will be sequenced.
Consider a generalization of the TSP, which combines the
decisions of city selection and city sequencing. Instead of pre-
selecting the cities to be visited, the generalized model assumes
the cities have been grouped into mutually exclusive and
exhaustive states. The generalized travelling salesmen problem
(GTSP)[10] is then to find a minimum cost path which includes
exactly one city from each state. The GTSP is transformed to an
agent service brokering problem. Each state is transformed to a
service and each city in a state is transformed to a service
provider providing the service. The cost of travelling between two
states is transformed to cost of purchasing two services. The
generalized travelling salesmen problem is NP-complete. A detail
proof can be found in [4].
The search space for winner determination is greater than the
GTSP when we take into account the number of possible ways in
which a set of services can be combined in a route. In the GTSP,
adding a new node to a route increases the total cost of the route
by the amount required to travel from the last node (n-1) to the
new node (n). Whereas in the agent service brokering problem,
adding a new node does not necessarily increase the total cost of
the route by the amount required to purchase the new node

because the cost of adding a new node is dependent on the history
of the route. For example, say, there is a route with four services
(S1S2S3S4) and the total cost of the route is the sum of two deals
(i.e. benefit cooperation relationship – S1S2 and S3S4). Now
adding a new service (S5) to the route may bring into effect two
different deals (S1S2S3 and S4S5) which may be cheaper than
buying S5 and the previous two deals - S1S2 and S3S4.
Proposition 2.2: The number of possible solutions to a problem
is (n! * (m1 * … * mn) * 2(n-1)) where n is the number of services
and mx is number of service providers providing service x and
there are 2(n-1) possible service combinations. The number of
possible solutions to a GTSP is (n! * (m1 * … * mn)) where n is
the number of states and mx is number of cities in state x.
Proof: We outline a proof to show how 2(n-1) is derived. Two
services can be combined (AND operator) or not combined (OR
operator). If there are n services then there are (n-1) places where
either of the operators could appear. Since there are 2 operators
and n-1 places where the operators can appear then there are 2(n-1)

ways in which n services can be combined.

3 ARCHITECTURE OVERVIEW
The broker consists of two components to solve each stage of the
winner determination problem – planner and optimizer. The
planner receives a task from a client which is decomposed into
subtasks using predefined plan methods. The planner also
identifies the services that are required to solve each subtask. The
planner then notifies the optimizer of the services that are
required to solve each subtask.
 The planning process developed is based on a hierarchical task
network planning formalism. The planner searches through plan
space to solve the planning stage of the problem. Conventional
wisdom in the planning community, supported to large extent by
the fielded applications to-date, holds that most real world
domains are best modeled with hierarchical task network
planning models[7]. The planner starts with a task or goal, and on
each iteration adds one more step i.e. decomposes a task into sub-
tasks until there are only primitive tasks. It does this by choosing
some operator – either from existing steps of the plan or from the
pool of operators – that achieves a complex task. If this leads to
an inconsistent plan, it backtracks and tries another branch of the
search space. To keep the search focussed, the planner only
considers adding steps that serve to achieve a complex task that
has not yet been achieved. The operators are mainly various task
decomposition methods which capture human expertise. We do
not present any detail information on the planner due to space
constraints.
 The optimizer identifies the best combination of service
providers to provide the services identified. In order to achieve
this it considers the various service combinations (deals) with
same or different service providers. The optimizer is a genetic
algorithm (GA) with heuristics that yields an anytime algorithm.

4 GENETIC ALGORITHM AND HEURISTICS
The second stage of the brokering process involves selecting a
combination of service providers to provide the identified
services. This stage is solved to optimality or near optimality,
depending on the size o the problem and the time available to the
user, by a genetic algor
f

ithm[6]. The genetic algorithm is a highly

parallel mathematical algorithm that transforms a population of
individual objects, each with an associated value of fitness, into a
new generation of the population, using the Darwinian principle
of survival and reproduction of the fittest and analogs of naturally
occurring genetic operations such as crossover and mutation.
Recently genetic algorithms[2] were applied to the knife change
minimization problem, which is an instance of the GTSP, to
produce good solutions.
 Problem representation is critical to the success of GA. Each
possible point in the search space of the problem must be
encoded as a character string (i.e., as a chromosome). There are
number of ways to represent a problem. The representation used
by the GA is diagrammed in Figure 1. We represent each
individual in the population using three chromosomes:
1. Service chromosome – Represents the services that are required
to solve a task. Service combinations are based on the order in
which the services appear in the chromosome.
2. Provider chromosome – Represents the service provider
providing the service shown by the service chromosome. For
example, service S2 is provided by provider PA.
3. Deal chromosome – Represents the services that can be
combined to benefit in some way, e.g. cost. A service
combination is represented using 1 or 0 and a non-combination is
represented using *. For example, services S2 and S4 are
combined to form a deal whereas service S3 is not combined with
any other service.

Figure 1: Problem Representation
Each individual has a fitness value associated to it. The fitness of
an individual is the cost of purchasing the services but it can be
the sum of one or more measures that are to be optimized.
 The outline of the genetic algorithm is given in Figure 2. The
GA initially creates a population using the data about the services
required, their providers and the existing deals/combinations.
Heuristics are applied on the initial population to improve the
quality of the population. Individuals are selected from the old
population to create a new population by applying the genetic
operators on the selected individuals. The search process
continues for a fixed number of generations or until there is no
improvement in the quality of the best individual. Repair
heuristics are applied on the best individual in an attempt to
improve the quality of the solution further. The GA stores the
best individual from the start of the search process and individual
is replaced when a better one is found as the search progresses.
The search process can be terminated at anytime and the current
best individual would be the solution. Thus, the GA yields an
anytime algorithm. Inevitably, optimizing on more than one
criteria involves a trade-off between profit optimization and end-
user satisfaction. The best solution found by the GA may not suit
the client. To overcome this problem, the client can specify the
number of solutions to be produced by the GA and then select the

best. The time required by the GA to find 1 or n solutions is the
same unlike other search methods.
 Genetic operators are applied on the individuals to improve the
fitness of the individuals from one generation to another. Simple
crossover and mutation operators produce illegal chromosomes
when applied. For example, the one-point crossover which
replaces a certain proportion of a chromosome with an equal
proportion of another chromosome may produce chromosomes
where the services are repeated or the service provider for a
service is wrong. To avoid such problems special crossover and
mutation operators are to be applied on the chromosomes of the
individuals selected. The selection of individuals in the GA are
either random or fitness based (tournament). Mutation operators
were developed to introduce new service ordering, new providers
or new deals. The crossover operator in the GA is responsible for
transferring a deal from one parent to another to create two new
children. The crossover operator ensures that the deal that is
transferred from one parent to another will have minimum impact
on the existing deals in the other parent.

Figure 2: Genetic Algorithm Outline
Two types of heuristics were developed to improve the
performance and the quality of the solution produced by the GA.
The initial population heuristic was developed to capitalize
heavily on the sparseness of deals. In practice the space of deals
is necessarily extremely sparsely populated. For example, if there
are 100 services, there are 2(100-1) combinations, and it would take
a very, very long time to create all those combinations. Therefore,
randomly generating deals when creating the initial population is
futile as most randomly generated deals would not match the
existing valid deals (in the repository).
1. Initial population heuristic – The heuristic randomly selects
valid deals/combinations from the repository and uses them to
create new individuals instead of randomly creating
combinations.
2. Repair heuristic – This heuristic ensures all services that are
not part of a deal/combination have the best (cheapest) service
provider.
 The output of the GA is a list of service agents who are capable
of solving the task. The user’s previous experience with the
service agents may classify one or more of the identified agents as
faulty or not trustworthy. The user can then instruct the broker to
find an alternative solution to the task by excluding a particular
set of service agents. As expected, the new solution would be
near-optimal or, possibly, optimal. The GA finds an alternative
solution by solving the problem again without the specified set
of service agents and with a selection of valid chromosomes from
the final population of the previous run. Thus, the selection of
chromosomes from the final population creates a good initial
population for the GA.

S2 S4 S1 S5 S3 Service:

PA PD PCPB PB Provider:

1 1 0 0 *Deal:

Individual
{

}
10 Fitness:

1. Get data on - Services, Providers and Deals.
2. Create initial population.
3. Apply initial population heuristics.
4. Select individuals: Random or fitness based.
5. On selected individuals apply genetic operators (mutation

and crossover).
6. Add new individuals to new population. Calculate fitness

of each individual.
7. Next Generation - Go to step 4.
8. Apply repair heuristics to final solution.

5 MODIFIED DEPTH-FIRST SEARCH
The depth-first search algorithm examines all feasible deal and/or
service combinations to find the optimal solution. The outline of
the algorithm is given in Figure 3.

Figure 3: Depth-First Search Outline

6 BROKERING SCENARIO AND RELATED
WORK

The broker algorithm is applied to an abstract problem called the
blocks world. The blocks world problem is adapted in order to
demonstrate the broker functionality where each block represents
a particular service. Associated with each block is a price, a
colour and a level of softness. Each block has a connector and the
connectors are of different shapes. Blocks can be combined if
they have the same connector shape. The blocks are provided by
one or more block providers and the block providers represent
service providers. The type of task that is required to be solved in
this domain is building a tower at the cheapest cost and with the
lowest level of softness. The client specifies the size of the tower
(i.e. number of blocks), the colours and the connector shape.
 Several commercial and academic auction houses have
recently appeared on the Internet, but to our knowledge, this
implementation is the first of its kind – where there are multiple
service providers, repetition of services in a deal, multiple
optimization criteria and the bids are not superadditive:
cost(S1∪ S2)≥cost(S1)+cost(S2). Sandholm[8] and Fujishima et
al.[5] have addressed the conventional combinatorial auction
problem but their approach to solving the problem very different
to our approach. Sandholm presented a Bidtree algorithm that
performs a secondary depth-first search to identify non-
conflicting bids. The Bidtree then uses an IDA* search strategy to
solve the problem. Fujishima et al. have presented two methods
for winner determination. The first method is a modified depth-
first search applied on a structured search space to reduce
runtime. Caching and pruning are also used to speed searching.
The second method is a heuristic, market-based approach. It sets
up a virtual multi-round auction in which a virtual agent
represents each original bid bundle and places bids, according to
a fixed strategy, for each good in the bundle.

7 EXPERIMENTAL SETUP AND RESULTS
We conducted various empirical tests to evaluate a) the general
performance of the GA and the depth-first search algorithm, b)
how the run time of the GA varies with different deal length/size
distribution, and c) how percentage optimality of the GA varies

with time, given a particular deal length distribution and a fixed
number of deals and services. We executed our programs written
in Java on a PC (Pentium 200MHz with 64 RAM) to get the
results. All the results reported are averages over 25 different runs
and the optimization was based on a single criteria i.e. cost. In the
case of the GA, each run was terminated when the optimal
solution was found. The run times include the planning stage of
the brokering algorithm and the optimization is based on a single
criteria i.e. minimization of cost of services. We do not present
any experiments varying the number of services, service providers
and optimization criteria in this paper due to space constraints.
 The GA without any heuristics finds optimal solutions for
small problems (10 services) but the heuristics are required if the
GA is to find optimal solutions for large problems (100
services)[3]. In order to analyze the performance of the GA to
different deal length distributions we had to generate valid deals
to fit the distributions. In the absence of real data we tested our
algorithms against deals randomly generated using the service
data in the broker’s repository. Each deal was created by
randomly selecting services from 1..m services. Each service has
1 to 5 providers and an appropriate provider was also randomly
selected to provide the selected service. The price of deals for n
services is randomly distributed between [c(1-d), c(1+d)] where
c= sum(price1..pricen) and d=0.1. The size of deals (i.e. number of
services in a deal) plays an important role in the complexity of the
winner determination problem - which affects performance of the
search algorithm. For our experiments, the deal sizes/lengths were
based on two different distributions:
Exponential (Exp): Deals of shorter length appear more often
than deals of longer lengths. For n services, there will be many
deals of length less than n than of length n and the frequency of
the appearance of different lengths is dictated by an exponential
function. DealLength = N.e(x/p) where N = Total number of
services, x = random number[0,1], and p = (1/ln(1/N)). For
example, if there are 30 services and 1000 deals then about 70%
of deals would have length <10, 20% would have length between
11 and 20 and the rest between 21 and 30.
Random (Ran): Length of a deal is x.N where N = Total number
of services, x = random number[0,1].
To answer questions a) and b) we measured the run time of the
algorithm for the two distributions and results are shown in
Figure 4.

Figure 4: Run Time Comparison

The GA demonstrates excellent performance both in finding
optimal solutions and as an anytime algorithm in comparison to
the modified depth-first search algorithm. The depth-first search
takes a much longer r

1. Get data on - Services, Providers and Deals.
2. Set length L = Number of services required (includes

service repetition.)
3. Find a deal of length l, where l = L initially.
4. For remaining search space equal to (L-l) generate all

deal and service combinations. Unnecessary
combinations are pruned.

5. Find the cheapest set of deals and/or services to satisfy
the various combinations generated.

6. Set l = l (check for more deals of the same length) or l =
(l – 1), then go to step 3. Or terminate if l = 0.

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000

Deals (30 services)

Av
er

ag
e

Ti
m

e
(s

ec
s)

GA Exp GA Ran DF Exp DF Ran

un time than GA whatever the deal/bid

length distribution. The difference in run time of the algorithms is
considerable when the number of deals are greater. Both
algorithms perform better when deal length distribution is
random. The search time is greater for the exponential
distribution because the search space is larger due to many
shorter length deals. For each short deal, the algorithm has to try
various possible deal and/or service combinations for the services
not included in the short deal. These possible deal and/or service
combinations is lesser when the deal length is longer. Both the
GA curves in Figure 4 grow sub-linearly on the logarithmic
graph, suggesting polynomial-time performance. The GA’s
effectiveness is strongly influenced by the distribution of deal
lengths, particularly as the number of deals increase.
 To answer question c) we measured the optimality of the
output for both deal size distributions. Figures 5 and 6 show the
anytime behavior of the GA for a particular problem. The
behavior shown is similar for other problems.

Figure 5: Anytime Behavior – Exponential Distribution

Figure 6: Anytime Behavior – Random Distribution

Good initial results are found quicker by the GA when deal
lengths are exponentially distributed but the final results (i.e.
optimal solution) are found quicker when the deal lengths are
randomly distributed. The initial search space is greater in a
random distribution as the deals are longer and finding the right
length of deals to combine is difficult. The GA solves a small
problem (30 services, 1000 deals) with randomly distributed deal
lengths to optimality in 39 seconds whereas it takes 133 seconds
when the deal lengths are exponentially distributed. The big
jumps in the graph shown in Figure 6 are due to finding long
deals that reduce the total cost greatly.

8 CONCLUSION AND ONGOING WORK
We presented a new brokering algorithm for optimal anytime
winner determination in combinatorial auctions. Determining the
winners so as to minimize a set of measures (cost, bandwidth,
etc.) is NP-complete. The brokering algorithm described is a new

two-stage algorithm for optimal anytime winner determination. In
the first stage, a hierarchical task network planner is used to
decompose a task into subtasks that can be solved by the
available services. In the second stage, a genetic algorithm with
heuristics is used to find the optimal combination of service
providers to provide the services identified. The results from
various experiments were provided. The results show the GA
performs better than the modified depth-first search algorithm.
The GA renders an anytime algorithm as it keeps track of best
solution found from the start of the search process. We analyzed
the run time and anytime performance behavior of the algorithm
for exponential and random deal length distributions. The
performance of the algorithm is better when the deal length
distribution is random. The techniques developed to solve the
brokering problem can be applied to similar NP-complete
problems like the constraint satisfaction problem.
 The brokering algorithm presently works on static data i.e. any
changes to the data in the repository is not considered during the
execution of the algorithm. The algorithm is currently modified to
deal with dynamic data. We will also be applying the brokering
algorithm to provide VPN (virtual private networks) service
based on cost and quality of service.

ACKNOWLEDGEMENTS
We acknowledge support for this work (CASBAh project) from
EPSRC, under grant GR/L34440. This project is being
undertaken in collaboration with Nortel Networks and their
support is gratefully appreciated.

REFERENCES
[1] P. J. Brewer and C. R. Plott. A Binary Conflict Ascending Price

(BICAP) Mechanism for the Decentralized Allocation of the Right
to use Railroad Tracks. Int. J. of Industrial Organization, 14:857-
886, 1996.

[2] A. M. Easwaran and S. Drossopoulou. A Parallel Genetic
Algorithm Approach To The Knife Change Minimisation Problem.
In the Proceedings of the sixth Parallel Computing Workshop
(PCW'96), Japan, November, 1996.

[3] A. M. Easwaran and J. Pitt. A Brokering Algorithm for Cost & QoS-
based Winner Determination in Combinatorial Auctions.
International Conference on Industrial & Engineering Applications
of Artificial Intelligence & Expert Systems (IEAAIE), New Orleans,
Louisiana, USA, 2000.

[4] A. M. Easwaran, J. Pitt and S. Poslad. The Agent Service Brokering
Problem As A Generalised Travelling Salesman Problem.
Autonomous Agents, Seattle, WA USA, 1999.

[5] Y. Fujishima, K. Leyton-Brown and Y. Shoham. Taming the
Computational Complexity of Combinatorial Auctions: Optimal
and Approximate Approaches. International Joint Conference on
Artificial Intelligence (IJCAI), Sweden, 1999.

[6] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Publishers: Addison Wesley, 1989.

[7] E. Kutluhan. Hierarchical Task Network Planning: Formalization,
Analysis & Implementation. PhD Thesis, Dept. of Computer
Science, University Of Maryland, College Park, 1995.

[8] T. Sandholm. An Algorithm for Optimal Winner Determination in
Combinatorial Auctions. International Joint Conference on
Artificial Intelligence (IJCAI), pp. 542-547, Sweden, 1999.

[9] R. G. Smith and R. Davis. Negotiation as a Metaphor for
Distributed Problem Solving. Artificial Intelligence,20:63-109,1983

[10] S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen. Generalised
Travelling Salesman Problem Through n Sets of Nodes. CORS
Journal, 97-101, 1969.

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60 70

Time (secs) - 30 Services, 1000 Deals, Random Dist.

Pe
rce

nta
ge

 O
pti

m
ali

ty

90%

92%

94%

96%

98%

100%

102%

0 20 40 60 80 100 120 140 160 180 200

Time (secs) - 30 Services, 1000 Deals, Exp Dist.

Pe
rce

nta
ge

 O
pti

m
ali

ty

