
Learning to Reason about Actions
David Lorenzo1 and Ramon P. Otero2

Abstract. We focus on learning representations of dynamical sys-
tems that can be characterized by logic-based formalisms for reason-
ing about actions and change, where system’s behaviors are naturally
viewed as appropriate logical consequences of the domain’s descrip-
tion. To this end, logic-based induction methods are adapted to iden-
tify the input/output behavior of a dynamical system corresponding
to an environment. The study of dynamic domains is started with do-
mains modelable with classical action theories and is progressively
enhanced to manage more complex behaviors.

1 Introduction

Dynamical system identification is defined as inference of the causal
laws relating actions to their effects where inputs correspond to the
actions executed and outputs correspond to the perceptual informa-
tion available in particular states of an environment. System identifi-
cation has been studied in a variety of disciplines including control
theory, neural networks, and automata theory. The inferred model
might correspond to a system of differential equations, a set of pro-
duction rules [13], or a set of states and transition probabilities.

We focus on learning representations of environments that can be
characterized by logic-based formalisms forreasoning about actions
and change. These formalisms aim to be an unifying theory of dy-
namics, grounded on a mathematical and computational foundation,
where system’s behaviors are naturally viewed as appropriate logical
consequences of the domain’s description. To address this problem
is a non trivial task, taking into account the range of phenomena to
accommodate, among others:

� The causal laws relating actions to their effects.
� The conditions under which an action can be performed.
� Unreliable sensors.
� Environments partially known to an agent.

Recently there has been a lot of progress in formulating theo-
ries of actions, particularly in progressing from simple and/or re-
stricted theories and ‘example centered approaches’, to general theo-
ries that incrementally consider various specification aspects. This al-
lows that more complex problems can be managed, includingCogni-
tive Roboticsaimed at the construction of robots whose architecture
is based on the idea of representing the world by sentences of formal
logic and reasoning about it by manipulating those sentences [12, 1].

Most of these formalizations define an entailment relationship (j=)
between the specifications (of effects of actions and relation among
objects of the world). This ability allows to make plans that will take
us to particular kind of worlds and explain observations about the

1 Computer Science Dept., University of Corunna, A Corunna, Spain, email:
david@dc.fi.udc.es

2 Computer Science Dept. Univ. Texas at El Paso, USA, email:
otero@cs.utep.edu

state of the world. As to learning, the problem is somewhat the con-
trary. The apprentice is provided with a sequence of states that leads
the system to a desired or undesired final state. Then, it must infer
how properties of a domain are (directly/indirectly) affected by the
execution of actions, or otherwise are subject to the general law of
persistence, that helps explain the final state.

This task needs the use of knowledge during learning, as well as
non-monotonic reasoning capabilities, where both default and clas-
sical negation are available, given that an apprentice needs to dis-
tinguish between what is true, what is false and what is unknown.
The use of Logic Programming (LP) makes it feasible to study the
integration of Inductive Logic Programming (ILP) with formalisms
for reasoning about actions. Specific challenges for action theories,
of which the most famous are, the Frame Problem, the Qualification
Problem, and the Ramification Problem, are also present in learning.

This paper is organized as follows. Section 2 briefly describes for-
malisms for reasoning about actions. Sections 3 and 4 show how clas-
sical action theories can be learned by adapting currentILP methods
for static domains, whereas in section 5 consistency requirement is
relaxed to allow the induction of default action theories. The paper
concludes with some future directions for research.

2 Action Theories

A formal framework to reason about actions and change requires the
basic notion of asituation, which is a partial snapshot of the world
at a particular instant of time. Adomain descriptionconsists of two
nonempty sets: a setF of fluent names, and a setA of action names.
An action, if executed in some state, leads to a “resulting” state. So-
called fluents serve to describe situations and are properties whose
truth values may change in the course of time.

This work deals with a logical approach to modeling dynamical
systems based on a dialect of first order logic called the Situation
Calculus [8]. SC programs are logic programs with a fixed clausal
structure where any aspect of a system which can change as the result
of an action is indexed by a situation. A situation argument may be in
the form of a constantsi or else a situation resulting after executing
an actiondo(action; sit), and a special situations0 is included to
represent the initial situation. A sequence of situations is encoded in
the form of chainsdo(act,do(act,..do(act,s)..)) start-
ing from the initial situation.

Logic programming (LP) can be used to represent the effects of
actions by importing the ontology of SC [11, 2], representing effect
axioms as logic program clauses and using negation-as-failure (NAF)
as a means of overcoming the frame problem (section 3). Formally
we have

Definition 1 (Situation Calculus Program) A SC program is the
conjunction of [11]:

� A finite set of general clauses

[:]Holds(f; s0) (1)

wheres0 denotes the initial situation.

� A finite set of clauses of the form

[:]Holds(f; do(a; s)) � (2)

where� does not mention theAffectspredicate and every occur-
rence of the Holds predicate in� is of the formHolds(F0; s). The
description states that, in any situation, if the precondition holds
then the effect will hold in the resulting situation. These axioms
are calledeffect axiomsor action laws.

� A finite set ofAffectsclauses of the form

Affects(a; f; s) � (3)

where� does not mention theAffectspredicate and every occur-
rence of theHoldspredicate in� is of the formHolds(f0; s).

� The universal frame axiom describes how the world stays the same
(as opposed to how it changes).

Holds(f; do(a; s)) Holds(f; s) ^ notAffects(a; f; s) (4)

:Holds(f; do(a; s)) :Holds(f; s) ^ notAffects(a; f; s) (5)

2

Most previous work on ILP consider definite Horn programs.
However, research work on Reasoning about actions has shown that
such monotonic programs are not adequate to represent the effects of
actions [2]. To overcome this and some derived problems, the class of
extended logic programs(ELP) [4] under the well-founded semantics
is adopted as the language representation.

3 Induction of Action Theories

The basic problem is to identify the effects of actions, values of flu-
ents (observations) and relationships between them, describing how
they progress a domain where they are performed. Rather than di-
rectly learning a strategy for acting, the apprentice must learn a
model of the world. Unlike [13] where the objective is to explore
the domain by acting on it, we consider the learning process and the
exploratory process as two separate processes, such that we are lim-
ited to a finite dataset.

Let us consider the following problem.

Example 1 (Circuit 1) A simple circuit that includes a lamp, a re-
lay, and three switchessw1, sw2 and sw3, together with some ac-
tions in the formtoggle(swi).

����

sw1

sw2

light

sw

¬

¬

���� ��

3

��

relay

����

�
�
�
�

+

¬

Figure 1. An electric circuit 2

This example concerns the representation of knowledge about the
objects in a circuit, and how such knowledge is acquired. In this case,
machine learning helps to construct the description of the circuit
from actions, where measurements accumulated during simulations
are the input to learning. We assume that actions are separated from

their consequences, i.e., an agent can execute its actions in any en-
vironment regardless of which consequence the action might cause.
Furthermore, actions may occur apart from those needed to explain
the facts. A situation in which many irrelevant actions may be present
is when the same training data is being used to learn many different
concepts, as it is our case.

Input data consists of holds/2 observations for the initial situ-
ation and for every situation included in the examples, representing
the truth values for fluents at each situation.

-holds(sw1,s0).
holds(sw2,s0).
holds(sw3,s0).
-holds(light,s0).
-holds(relay,s0).
...
holds(sw1,do(t1,s0)).
-holds(sw2,do(t1,s0)).
holds(relay,do(t1,s0)).
...

Examples are then observations of the shape holds(f; do(a; s))
(resp. :holds(f; do(a; s))), whereas negative examples are nega-
tions of observations. To allow multiple sequences, we include dif-
ferent initial situations si0, so that not all sequences must begin in the
same state (same values for all fluents).

The use of logic-based formalisms raises specific challenges for
action theories, of which the most famous is the Frame Problem, that
is also present in learning. When we specify action laws we are only
interested in describing changes, assuming that all the rest will re-
main unaffected. LP uses negation-as-failure (NAF) as a means of
overcoming the frame problem through the Universal inertia axiom.
However the frame problem is also present in the evidence, namely,
if a fluent does not change after executing an action, its truth value
must be explicitly asserted in the input data. A system without the
inertia principle would have an intractable, or even impossible, rep-
resentation. The inclusion of inertia values as examples for a fluent f ,
we should induce an inertia axiom (for completeness) for each pair
(a; f) where action a does not change fluent f .

[:]Holds(f; do(a; s)) [:]Holds(f; s) (6)

Furthermore, as the apprentice cannot distinguish caused values
from inertia values, it will try to find a consistent clause that might
cover both types of examples [6]. To avoid this, inertia values should
be “separated” before learning and used as background knowledge
(BK). With the inclusion of axioms (4,5) in the BK, positive ex-
amples are only explicitly given for those situations where a fluent
changes, whereas the inertia axiom propagates not affected truth val-
ues from one situation to the next one, completing every situation.
An important consequence is that induction is done only over caused
values. This requires that positive affects/3 atoms are generated
for caused values of fluents and added to BK. In the final theory, rules
for affects/3 are duplicates of those for holds/2.

On the other hand, due to the inertia assumption, once we supply
values for all fluents in the initial situation, we specify values for
all possible situations and thus, situations are completed for those
fluents that have an unknown value. As to evidence, we need a fluent
to be affectedto disable inertia, e.g., when it becomes unknown after
executing an action. To achieve it, additional affects/3 atoms
should be used for missing values. As to the final theory, we need
to disable the inertia rule not only when the preconditions for the
change in the value of a fluent are known to hold, but whenever there
is no evidence that they do not hold [2]. This requires that rules for
predicate affects/3 in the final theory are to be in the form:

Affects(a; f; s) not :Holds(f 0; s); : : : : (7)

We therefore consider the following learning problem, where E

contains examples for m fluents such that E+ and E� are divided
into m subsets E+

fi
and E�

fi
.

Definition 2 (Learning SC Programs)
Given (for each fi 2 F and a 2 A):

� A set E+
fi

of positive examples (ground facts)
[:]holds(fi; do(a; s)), representing observations where fi
changed.

� A set E�

fi
of negative examples (ground facts).

� Background knowledge (BK), including holds/2 ground facts
for fluents at the initial situation s0, holds/2 ground facts for
every fj 6= fi and s 6= s0, affects/3 ground facts for every e

such that 9k : e 2 E+

fk
, and the universal inertia axiom (ax. 4,5).

Find a SC program Hfi , such that:

(8e+ 2 E+
fi
) BK [H j= e

+

(8e� 2 E�

fi
) BK [H 6j= e

�

2

4 Implementation

A prototype consisting of a top-down ILP algorithm has been inte-
grated with a Prolog interpreter and implemented in XSB Prolog. The
design methodology is to present the user with a Prolog interpreter
augmented with inductive capabilities where the syntax for exam-
ples, background knowledge and hypotheses is the Prolog syntax.
This makes possible to include arbitrary Prolog programs as back-
ground knowledge by calling the Prolog interpreter to derive ground
atoms from intensionally coded specifications of background predi-
cates, and default negation.

The implemented ILP algorithm is mostly based on Progol [9].
The search is delimited by the empty clause and the so-called ?-
clause (most specific generalization) constructed from a seedand
the BK, whose size and form are controlled by applying a syntac-
tic bias. Search is done in a top-down fashion, adding literals until a
consistent clause is found with maximal compression. The induction
problem is decomposed into two separate problems, one for learning
true values of fluents, and one for false values, and independently for
each action that affects the fluent. The order of learning the fluents is
determined by the seeds.

1. If E = ? return H = ?
2. Let e be the first example in E
3. Construct clause ? for e
4. Construct clause He from ?
5. Let H = H [He

6. Let E0 = fe : e 2 E and H [BK j= eg
7. Let E = E � E0

8. Goto 1

Figure 2. Progol covering algorithm

Two situations are included in a SC formulae, namely, the previous
situation and the situation resulting of executing an action. We intro-
duce an implicit bias for the clauses to be induced, where only the
previous situation can appear in the body of a hypothesized clause.

Thus, any literal added to a clause holds(F,do(a,S)) :- ...
will refer to S (not to do(a,S)). This is the form of so-called effect
axioms.

As a first step, positive observations are converted into LP syn-
tax and negative examples and Background Knowledge are gen-
erated. Negative examples are given for every positive example
[-]holds(f,s) when the opposite value holds (persists or is
caused). For simplicity, noise is treated as a kind of non-determinism,
and dealt with by relaxing the consistency requirement (see sec-
tion 5), whereas for unknown values inertia is applied (by default)
over the most recent situation where the fluent was known.

For instance, in example 1, we obtained the following clauses3:

| ?- domain(circuit1).
| ?- induce.
-holds(sw1,do(t1,A)) :- holds(sw1,A).
holds(sw1,do(t1,A)) :- -holds(sw1,A).
-holds(sw3,do(t3,A)) :- holds(sw3,A).
holds(sw3,do(t3,A)) :- -holds(sw3,A).
-holds(light,do(t1,A)) :- holds(light,A).
-holds(light,do(t2,A)) :- holds(light,A).
-holds(light,do(t3,A)) :- holds(light,A).
holds(light,do(t1,A)) :- -holds(sw1,A), holds(sw2,A).
holds(light,do(t2,A)) :- holds(sw1,A), -holds(sw2,A).
-holds(sw2,do(t1,A)) :- holds(sw2,A), holds(sw3,A).
-holds(sw2,do(t2,A)) :- holds(sw2,A).
-holds(sw2,do(t3,A)) :- holds(light,A).
holds(sw2,do(t2,A)) :- -holds(sw2,A), -holds(relay,A).
-holds(relay,do(t1,A)) :- holds(relay,A).
-holds(relay,do(t3,A)) :- holds(relay,A).
holds(relay,do(t1,A)) :- holds(sw3,A), -holds(relay,A).
holds(relay,do(t3,A)) :- holds(sw1,A), -holds(sw3,A).

According to the rules, action t1 (resp. t3) toggles switch sw1
(resp. sw3), such that no other action modifies them. For the rest
of fluents, the system induced 5 clauses for light and 4 for relay
–where all actions (t1; t2; t3) affect them–, and 4 for sw2.

The syntactic bias forces the explicit representation of all the ef-
fects of an action as direct effects, producing the so-called ramifica-
tion problem. For instance, according to Fig. 1, the light is on when
both sw1 and sw2 are closed, and however they actually affect light
not directly but through actions that modify them (t1; t2; t3). The re-
sult is that effect axioms need more clauses to cope with all possible
cases, hence the inductor has to produce a high number of clauses
based possibly on little evidence, thus the induced hypotheses may
be unnecessarily complex and thereby also less reliable and accurate.
The consequences increase as more dependences among fluents exist
in the domain.

Actually, light is an indirect effectof the switches. Such indirect
effects are usually represented as consequences of general laws de-
scribing dependences between components of the world description.
Formally, a domain constraint is a formula

Holds(f; s) � (8)

where the Holds literals in � are only of the form Holds(f0; s).
The form of the clauses to induce must be changed, because with the
normal bias we cannot refer to other effects in the current situation.
The use of indirect effects is a key point for learning because some
features are better predicted when they are considered indirect effects
than as direct effects. In this case, forcing all effects as indirect, the
new clauses for light and relay are:

holds(light,A) :- holds(sw1,A), holds(sw2,A).
-holds(light,A) :- -holds(sw1,A).
-holds(light,A) :- -holds(sw2,A).

holds(relay,A) :- holds(sw1,A), holds(sw3,A). (a)
-holds(relay,A) :- -holds(sw1,A).
-holds(relay,A) :- -holds(sw3,A).

In both cases, we obtained a complete solution. Clause (a) states
that the relay is controlled by two switches, i.e., the relay is active

3 Actions in the form toggle(swi) will be denoted as ti for brevity.

whenever both sw1 and sw3 hold simultaneously. Note also that the
new clauses subsumeall effect axioms for relay, i.e., they can be
used to derive information about its state. Similarly for light4. Forc-
ing indirect effects in other fluents, e.g., sw1 and sw3, may produce
strange generalizations or even no compression at all. Fluent sw2 is
more problematic because no complete set of clauses were found,
and however some clauses individually were meaningful and sub-
sumed some of the effect axioms.

In general, some fluents can be direct effects of some actions and
indirect effects of others. To actually find the right set of axioms, we
should induce direct and indirect effects separately, take all induced
clauses, and search all subsets of clauses that are complete which a
preference criterion (covering problem). The worst-case complexity
isO(cn) where c is the number of clauses and n is the largest number
of clauses allowed in the solution.

Another possibility we considered is to allow the inductor to de-
termine at each step whether a fluent should be induced as a direct
or a indirect effect, thus inducing (possibly) a mix of axioms. Under
these conditions the system correctly returned:

holds(sw2,do(t2,A)) :- -holds(sw2,A), -holds(relay,A).
-holds(sw2,A) :- holds(relay,A).
-holds(sw2,do(t2,A)) :- holds(sw2,A).

According to the rules, sw2 is in some cases a direct effect and
in other cases an indirect effect. In both cases, a bad selection of
the first clauses can cause a “snowballing” effect over subsequent
clauses in the cover. In many cases, some helpful information can
be extracted from the examples through a procedure to compute so-
called influence information [7] among fluents.

Another potentially problematic form of dependency that could
arise when learning action theories is cyclic dependencesbetween
effects. Cyclic definitions can appear even in the description of per-
fectly normal, well-behaved physical systems. However, care must
be taken to ensure that the addition of indirect effects to a SC pro-
gram does not cause a mutual recursion. Let us consider the most
classical example:

Example 2 (Gear wheels) Consider two connected gear wheels to-
gether with actions to start (resp. stop) them. 2

Forcing all effects as direct effects, every wheel is considered a di-
rect effect of all actions that affect any of them, i.e., any force causing
a wheel to start or stop turning propagates to the rest of wheels (and
vic.). When learning indirect effects, our Progol-based algorithm eas-
ily induced the two counterparts of a double implication5 .

holds(turn(wheel1),A) :- holds(turn(wheel2),A).
-holds(turn(wheel1),A) :- -holds(turn(wheel2),A).
holds(turn(wheel2),A) :- holds(turn(wheel1),A).
-holds(turn(wheel2),A) :- -holds(turn(wheel1),A).

This theory is a complete solution for learning, i.e., the theory
extensionally covers all examples. Unfortunately, this theory is use-
less as it covers no examples intensionally [10]. In a correct action
theory, every fluent must be a direct effect or an indirect effect of
any action. In this case, we must introduce some direct effects in the
theory. Intuitively we considered turn(wheeli) as a direct effect of
push(wheeli) and stop(wheeli).

4 A dialect of SC [5] is used with a predicate Caused instead of Affects.
that allows to express fluent-triggered causal statements (apart from action-
triggered ones) which are needed for representing the indirect effects of
actions.

5 Note that, under the normal LP semantics, we need to impose a syntactical
restriction (no cycles) that guarantees termination.

holds(turn(wheel1),do(push(wheel1),A)).
-holds(turn(wheel1),do(stop(wheel1),A)).
holds(turn(wheel1),A) :- holds(turn(wheel2),A).
-holds(turn(wheel1),A) :- -holds(turn(wheel2),A).
holds(turn(wheel2),do(push(wheel2),A)).
-holds(turn(wheel2),do(stop(wheel2),A)).
holds(turn(wheel2),A) :- holds(turn(wheel1),A).
-holds(turn(wheel2),A) :- -holds(turn(wheel1),A).

Now, turn(wheel1) is a direct effect of push(wheel1) and an
indirect effect of push(wheel2) –and similarly for turn(wheel2).
However, there is no general rule as to what fluents should be con-
sidered direct effects of what actions. In this particular domain, we
could just as well to consider turn(wheel1) totally as a direct effect
and turn(wheel2) as as an indirect effect (or vic.), which makes
the induced theory to suffer from the ramification problem, for those
fluents where the cycle is broken.

5 Qualification problem

In other than artificial environments, complete knowledge of all rel-
evant facts cannot be assumed. With regard to example 1, when we
toggle a switch then, contrary to our expectations, the light may actu-
ally not turn on –due to, for instance, a broken bulb, a malfunction of
the battery, or loose wiring etc. The presence of just a single “abnor-
mal” example avoids to induce the general rulethat apply to normal
cases. In that case, induced rules should contain the general condi-
tions and all the possible exceptions.

However, the successful execution of actions depends on many
more conditions than we are usually aware of. In an extreme case,
data includes observations where the prediction of the same action
under the same (known) conditions may succeed at one time but fail
at another, adding inconsistency to data. Even if BK includes all pos-
sible determining factors, the quality of the training set can make an
induction algorithm to find a different clause rather than the general
one with all the possible exceptions.

In these cases, it is useful to relax the consistency requirement
and learn more general clauses that cover a small amount of coun-
terexamples. In dynamic domains, this is particularly interesting as
it allows the possibility of discovering default rulesthat describe the
most common situations. In so doing, the definitions learned for the
positive and negative concepts may overlap, or overlap with the third
case (inertia) (Fig. 3). The rectangle represents all situations where
an action a is executed6 .

FF

Unseen valuesCaused Inertia Predicted

Figure 3. Overlapping concepts

In order to account for exceptions, we introduce for each fluent a
unique ’abnormality’ predicate abi. The ability to assume away, by
default, exceptional disqualifications requires some non-monotonic
features [4]. In this case, each effect axiom is enhanced by a normal-
ity condition, which restricts the axiom to all but abnormal circum-
stances (using NAF)7.

6 In the normal ILP semantics, it is required that the induced program is
consistent only with respect to the examples but not necessarily for unseen
atoms. Following Lamma et al. the conflict can be resolved by classifying
them as undefined through a negative cycle

7 Truth value must be reified to distinguish when a fluent is abnormal in
positive or in negative

Holds(f; do(a; s)) Holds(f 0; s); : : : ; not Ab(f; true; a; s)

To allow for the induction of default rules, we set an upper bound
on the number of negative examples that can be covered by any ac-
ceptable clause, such that, induction returns a definition for the con-
cept, consisting of default rules, together with definitions for the ab-
normality literals. Let us consider the following circuit.

Example 3 (Circuit 2) The circuit consists of the following 15 en-
tities (6 switches, 4 bulbs, 3 resistors and 2 relays): There is only a
type of action in this domain, changing the position of switches.

r3

r2

r1

re2

s3

s2

re1

s1

s3’
li3

li2

li1
s1’

s2’

li

Figure 4. Another electric circuit
2

According to the circuit, the relays, in case of activation, attract
the switches located above, thus changing the state of lamps. We
included some examples where resistor r1 failed randomly, hence,
when s1 is closed and r1 is working abnormally, relay re1 no longer
works correctly. These abnormal examples resulted in the impossi-
bility to learn a definition for li2. We repeated the learning process
relaxing the consistency criterion and found

holds(li2,do(t1,A)) :-
-holds(s1,A), holds(s2p,A), not ab(li2,+,t1,A).

ab(li2,+,t1,do(...,s0)...).
...

which is the rule previously obtained without abnormal examples.
The extension ofabnormal/4 is generated from negative examples
covered by the rules and output as a set of ground atoms.

When abnormal examples do not cause inconsistency, we can try
to define the circumstances under which a particular abnormality oc-
curs. If exceptions have some common properties, the simple enu-
meration is not informative and rules about exceptions are useful.
This is accomplished by repeating the learning process for ab lit-
erals. Positive (resp. negative) examples for abnormal/4 are ob-
tained from the set of negative (resp. positive) examples covered by
the induced rules.

In turn, exceptions to the definitions of ab(li2) might be found
and so on, thus leading to a hierarchy of exceptions [4] (denoted
as abi). This procedure would continue specializing until a correct
theory is obtained.

Ab(f; true; a; s) Holds(f 0; s); : : : ; not Ab1(f; true; a; s)

A question arises as to when default rules should be generated.
The strategy above, will necessarily result in fitting the noise in noisy
domains. A naive option we have considered is to repeat learning, in-
creasing the number of exceptions allowed, while accuracy improves.
A simple heuristics is that the set of exceptions must be smaller than
non-exceptions, however more advanced criteria need to be devel-
oped that, e.g., allow us to distinguish noisy data from abnormal “ex-
amples” .

6 Conclusions

This paper investigates how logic-based induction methods can be
adapted for agents to identify the input/output behavior of a dynami-
cal system corresponding to an environment, where the learning out-
put is represented as an action theory. The most distinguishing aspect
of action theories is that the specification of actions and their effects
should be as intuitive and natural as possible. To this end, Inductive
Logic Programming is reformulated using Logic Programming for
dynamic systems, and some examples are shown to show its adequa-
tion.

Situation Calculus is used as a basic framework, that contributes
to a better understanding without requiring complex formalization.
Furthermore, the expressivity of SC has been proved sufficient for
modeling a wide range of domains and some extensions exist that
deal with concurrent actions, continuous change, and so on.

A current research issue is to use more real domains, with a larger
number of fluents and actions and with different noise and uncer-
tainty levels. The most challenging domain is Cognitive Roboticsthat
is concerned high level cognitive functions of robots that reason, act
and perceive in changing, incompletely known, unpredictable envi-
ronments. In this case, an almost complete description of a robot’s
actions and its environment is required, which it is a time consuming
task [3]. Learning can help construct that description, which will re-
quire more recent advances in Action formalisms based on SC to be
incorporated.

REFERENCES
[1] C. Baral and S.C. Tran, ‘Relating theories of action and reactive con-

trol’ , Linkoping Electronic Articles in Computer Science, 3(9), (1998).
[2] M. Gelfond and V. Lifschitz, ‘Representing action and change by logic

programs’ , Journal of Logic Programming, 17, 301–321, (1993).
[3] V. Klingspor, K. Morik, and A. Rieger, ‘Learning concepts from sensor

data of a mobile robot’ , Machine Learning, 23, 305–332, (1996).
[4] E. Lamma, F. Riguzzi, and L. Moniz Pereira, ‘Strategies in combined

learning via logic programs’ , Machine Learning, (38), 63–87, (2000).
[5] Fangzhen Lin, ‘Embracing causality in specifying the indirect effects

of actions’ , in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), ed., C. S. Mellish, Montreal, Canada,
(August 1995). Morgan Kaufmann.

[6] D. Lorenzo and R. P. Otero, ‘Learning action theories with causality’ ,
in Proceedings of the Ninth Inductive Logic Programming Workshop
(ILP99), Late Breaking Papers Volume, eds., P. Flach and S. Džeroski,
(1999).

[7] D. Lorenzo and R.P. Otero, ‘Learning action theories as logic pro-
grams’ , in International Joint Conference on Declarative Program-
ming, pp. 383–396, (1999).

[8] J. McCarthy and P.J. Hayes, ‘Some philosophical problems from the
standpoint of artificial intelligence’ , Machine Intelligence, 4, 463–502,
(1969).

[9] S. Muggleton, ‘ Inverse entailment and progol’ , New Generation Com-
puting Journal, (13), 245–286, (1995).

[10] L. Raedt and N. Lavrac, ‘Multiple predicate learning in two ILP set-
tings’ , J. of the IGPL, 4(2), 227–254, (1996).

[11] M. Shanahan, Solving the Frame Problem. A Mathematical Investiga-
tion of the Common Sense Law of Inertia., The MIT Press, 1997.

[12] M. Shanahan, ‘A logical account of the common sense informatic sit-
uation for a mobile robot’ , Linkoping Electronic Articles in Computer
Science, (1999). to appear.

[13] W. M. Shen, Autonomous Learning from the Environment, Computer
Science Press, 1994.

