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Abstract. Non-taxonomic relations between concepts appear as a
major building block in common ontology definitions. In fact, their
definition consumes much of the time needed for engineering an on-
tology. We here describe a new approach to discover non-taxonomic
conceptual relations from text building on shallow text processing
techniques. We use a generalized association rule algorithm that does
not only detect relations between concepts, but also determines the
appropriate level of abstraction at which to define relations. This
is crucial for an appropriate ontology definition in order that it be
succinct and conceptually adequate and, hence, easy to understand,
maintain, and extend. We also perform an empirical evaluation of
our approach with regard to a manually engineered ontology. For
this purpose, we present a new paradigm suited to evaluate the de-
greeto which relations that are learned match relationsin amanually
engineered ontology.

1 Introduction

Ontologies? have shown their usefulness in application areas such
as intelligent information integration, information brokering and
natural-language processing, to name but afew. However, their wide-
spread usage is still hindered by ontology engineering being rather
time-consuming and, hence, expensive.

Therefore a number of proposals have been made to facili-
tate ontological engineering through automatic discovery from do-
main data, domain-specific natural language texts in particular (cf.
[2, 3, 4, 8, 10, 14]). Nevertheless, most of these approaches have
only looked at how to learn the taxonomic part of ontologies. Com-
mon approaches collect relevant domain concepts and cluster them
into a hierarchy using combinations of statistic and linguistic data.
Though this aready helps alot, major efforts in ontology engineer-
ing must be dedicated to the definition of non-taxonomic conceptual
relationships, e.g. hasPart relations between concepts.

The determination of non-taxonomic conceptua relationships is
not this well-researched. In fact, it appears to be the more intricate
task as, in generad, it is less well known how many and what type
of conceptua relationships should be modeled in a particular ontol-
ogy. This paper presents an approach for discovering non-taxonomic
conceptual relations from text and, hence, for facilitating this second
part of ontology engineering. Building on the taxonomic part of the
ontology, our approach analyzes domain-specific texts. It uses shal-
low text processing methods to identify linguistically related pairs
of words (cf. Section 2). An agorithm for discovering generalized
association rules analyzes statistical information about the linguistic
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2 We restrict our attention in this paper to domain ontologies that describe a
particular small model of of the world asrelevant to applications, in contrast
to top-level ontologies and representational ontologies that aim at the de-
scription of generally applicable conceptual structures and meta-structures,
respectively, and that are mostly based on philosophical and logical point
of views rather than focused on applications.

output (cf. Section 3). Thereby, it uses the background knowledge

from the taxonomy in order to propose relations at the appropriate

level of abstraction. For instance, the linguistic processing may find

that the word “costs’ frequently co-occurs with each of the words

“hotel”, “guest house”, and “youth hostel” in sentences such as (1)2
(1) Costs at the youth hostel amount to $ 20 per night.

From this statistical linguistic data our approach derives correla-
tions at the conceptual level, viz. between the concept Costs and the
concepts, Hotel, Guest House, and Youth Hostel. The discovery algo-
rithm determines support and confidence measures for the relation-
ships between these three pairs, as well as for relationships at higher
levels of abstraction, such as between Accommodation and Costs. In
afinal step, the agorithm determines the level of abstraction most
suited to describe the conceptual relationships by pruning appear-
ingly less adequate ones. Here, the relation between Accommodation
and Costs may be proposed for inclusion in the ontology. A more
comprehensive example will be presented in Section 4.

We have evaluated our approach against an ontology about the
tourism domain that we had modeled before using standard knowl-
edge acquisition techniques. Linguistic processing was done on atext
corpus extracted from a web site about tourist information. We have
performed evaluation with regard to standard measures, however, we
have also found that evaluation needs to take account of the sliding
scale of adequacy prevalent in a hierarchical target structure. Thus,
we have also conceived of a new evaluation measure to evaluate our
experiments (cf. Section 5). Then, we conclude with a brief survey
of related work and an outline of further work.

2 Shallow Text Processing

Our approach has been implemented on top of SMES (Saarbriicken
Message Extraction System), a shallow text processor for German
(cf. [9]) that has been adapted to the tourism domain (cf. [13] for
a project description). This is a generic component that adheres to
several principles that are crucia for our objectives. (i), it is fast fast
and robust, (ii), it yields dependency relations between terms, and,
(iii), it returns pairs of concepts the coupling of which is motivated
through linguistic constraints on the corresponding textual terms. In
addition, we made some minor changes such that principle (iv), lin-
guistic processing delivering a high recall on the number of depen-
dency relations occuring in atext, is also guaranteed. We here give
a short survey on SMES in order provide the reader with a compre-
hensive picture of what underlies our evaluation.

The Architecture of SMES comprises atokenizer based on regular
expressions, a lexical analysis component including a word and a
domain lexicon, and a chunk parser.

Tokenizer. Its main task is to scan the text in order to identify
boundaries of words and complex expressions like “$20.00" or
“M ecklenburg-Vorpommern™, and to expand abbreviations.

3 For ease of presentation we mostly give English examples, however, our
evaluation is based on our implementation that processes German texts.
4 Mecklenburg-Vorpommern isaregion in the north east of Germany.



Lexicon. The lexicon contains more than 120.000 stem entries
and more than 12,000 subcategorization frames describing informa-
tion used for lexical analysis and chunk parsing. Furthermore, the
domain-specific part of the lexicon associates word stems with con-
ceptsthat are available in the concept taxonomy. In our case, we have
defined a set of concepts, C' := {a;}, and the domain-specific part
of thelexicon contains 486 entries referring to one of these concepts.

Lexical Analysis uses the lexicon to perform, (1), morphological

analysis, i.e., the identification of the canonica common stem of a

set of related word forms and the analysis of compounds, (2), recog-

nition of name entities, (3), retrieval of domain-specific information,
and, (4), part-of-speech tagging:

1. In German compounds are extremely frequent and, hence, their
analysis into their parts, e.g. “database” becoming “data’ and
“base”, is crucial and may yield interesting relationships between
concepts. Furthermore, morphological analysis returns possible
readings for the words concerned, e.g. the noun and the verb read-
ing for aword like “man” in “The old man the boats.”

2. Processing of named entities includes the recognition of proper
and company names like “Hotel Schwarzer Adler” assingle, com-
plex entities, aswell asthe recognition and transformation of com-
plex time and date expressions into a canonical format, e.g. “Jan-
uary 1st, 2000” becomes “1/1/2000".

3. The next step associates single words or complex expressions
with a concept from the ontology if a corresponding entry in the
domain-specific part of the lexicon exists. E.g., the expression
“Hotel Schwarzer Adler” is associated with the concept Hotel.

4. Finally, part-of-speech tagging disambiguates the reading returned
from morphological analysis of words or complex expressions us-
ing the local context.

Chunk Parser. SMES uses weighted finite state transducers to effi-

ciently process phrasal and sentential patterns. The parser works on

the phrasal level, before it analyzes the overall sentence. Grammati-
cal functions (such as subject, direct-object) are determined for each
dependency-based sentential structure on the basis of subcategoriza-
tions framesin the lexicon.

Dependency Relations. Our primary output derived from SMES
consists of dependency relations [6] found through lexical analysis

(compound processing) and through parsing at the phrase and sen-

tential level. Itisimportant for our approach that on these levels syn-

tactic dependency relations coincide rather closely with semantic re-
lations that are often found to hold between the very same entities

(cf. [5]). Thus, we derived our motivation to output those conceptual

pairsto the learning algorithm the corresponding terms of which are

dependentially related. Thereby, the grammatical dependency rela-
tion need not even hold directly between two conceptually meaning-
ful entities. For instance, in (2) “Hotel Schwarzer Adler” and “Ro-
stock”, the concepts of which appear in the ontology as Hotel and

City, respectively, are not directly connected by a dependency rela-

tion. However, the preposition “in” acts as a mediator that incurs the

conceptual pairing of Hotel with City (cf. [11] for a complete survey
of mediated conceptual relationships).

(2) The Hotel Schwarzer Adler in Rostock celebrates Christmas.
Heuristics. Chunk parsing such as performed by SMES still returns
many phrasal entities that are not related within or across sentence
boundaries. This however means that our approach would be doomed
to missmany relations that often occur in the corpus, but that may not
be detected due to the limited capabilities of SMES. For instance, it
does not attach prepositional phrasesin any way and it does not han-
dle anaphora, to name but two desiderata. We have decided that we
needed a high recall of the linguistic dependency relations involved,
even if that would incur aloss of linguistic precision. The motiva-
tion isthat with alow recall of dependency relations the subsequent

algorithm may learn only very little, while with less precision the
learning algorithm may still sort out part of the noise. Therefore, the
SMES output has been extended to include heuristic correlations be-
side linguistics-based dependency relations:

e The NP-PP-heuristic attaches all prepositiona phrasesto adjacent
noun phrases.

e The sentence-heuristic relates all concepts contained in one sen-
tence if other criteriafail. Thisis a crude heuristic that needs fur-
ther refinement. However, we found that it yielded many inter-
esting relations, e.g. for enumerations, which could not be parsed
successfully.

e Thetitle-heuristicisvery specific for our domain. It links the con-
cepts such as referred to in the HTML title tags with all the con-
cepts contained in the the overall document. This strategy might
utterly fail in other domains, but it was successful for our hotel
and sight descriptions.

To sum up, linguistic processing outputs a set of concept pairs,
CP := {(ai,1,a:,2)|ai; € C}. Their coupling is motivated through
various direct and mediated linguistic constraints or by several gen-
eral or domain-specific heuristic strategies.

3 Learning Algorithm

Our learning mechanism is based on the algorithm for discovering
generalized association rules proposed by Srikant and Agrawal [12].
Their algorithm finds associations that occur between items, e.g. su-
permarket products, in a set of transactions, e.g. customers pur-
chases, and describes them at the appropriate level of abstraction,
e.g. “snacks are purchased together with drinks’ rather than “chips
are purchased with beer” and “peanuts are purchased with soda” .

Thebasic association rule algorithm is provided with aset of trans-
actions T := {t;|t = 1...n}, where each transaction ¢; consists of
aset of itemst; := {ai,j |j =1... mi,Qi; € C} and each item a;,j
is from a set of concepts C. The algorithm computes association
rules X, = Y3, (X, Y C C, X, NY;, = {}) such that measures
for support and confidence exceed user-defined thresholds. Thereby,
support of arule X;, = Y is the percentage of transactions that
contain X}, U'Y}, asasubset, and confidence for X, = Y}, isdefined
as the percentage of transactions that Yy, is seen when X, appearsin
atransaction, viz.

(3) support(Xy = Yi) = |

_ _ ] Xe UYE C 8}
(4) confidence( Xy = Yi) = s =]

Srikant and Agrawal have extended this basic mechanism to de-
termine associations at the right level of ataxonomy, formally given
by ataxonomic relation H C C x C'. For this purpose, they first ex-
tend each transaction ¢; to also include each ancestor of a particular
itema; j,i.e. t; :=t; U{as,|(ai,;,a:,;) € H}. Then, they compute
confidence and support for all possible association rules X3, = Y
where Y}, does not contain an ancestor of X, as thiswould be atriv-
ialy valid association. Finally, they prune al those association rules
X, = Y} that are subsumed by an “ancestral” rule X, = Y%, the
itemsets X, Y, of which only contain ancestors or identical items
of their corresponding itemset in X, = Y.

For the discovery of conceptual relationswe may directly build on
their scheme, as described in the following four steps that summarize
our learning module;

1. Determine T := {{ai,1,aiz2, .-, ai,mi}|(ai,1,ai,2) € CPA

>3- ((ai,1,ai0) € HV (ai,2,a0:,;) € H)}.

2. Determine support for al association rules X;, = Y}, where

| Xk| = |Yi| = 1.

{ti|Xk- uY, C t1}|
n




3. Determine confidence for all association rules X = Y}, that ex-
ceed user-defined support in step 2.

4. Output association rules that exceed user-defined confidence in
step 3 and that are not pruned by ancestral rules with higher or
equal confidence and support.

The reader may note that we here have chosen a baseline ap-
proach considering the determination of the set of transactions 7'.
Actually, one may conceive of many strategies that cluster multiple
concept pairs into one transaction. For instance, given a set of 100
texts each describing a particular hotel in detail. Each hotel might
come with an address, but it might also have an elaborate description
of the different types of public and private rooms and their furnish-
ing resulting in 10.000 concept pairs returned from linguistic pro-
cessing. Our baseline choice considers each concept pair as a trans-
action. Then support for the rule {Hotel}=-{Address} is equal or,
much more probably, (far) lessthan 1%, while rules about rooms and
their furnishing or their style, like {Room}=-{Bed}, might achieve
ratings of several percentage points. This means that an important
relationship between {Hotel} and {Address} might get lost among
other conceptua relationships. In contrast, if one considers complete
texts to congtitute transactions, an ideal linguistic processor might
lead to more balanced support measures for {Hotel}={Address} and
{Room}=-{Bed} of up to 100% each.

Thus, discovery might benefit when background knowledge about
the domain textsis exploited for compiling transactions. In the future,
we will have to further investigate the effects of different strategies.

4 Example

For the purpose of illustration, this chapter gives a comprehensive
example, which is based on our actual experiments. We have pro-
cessed a text corpus by a WWW provider for tourist information
(URL: http://www.all-in-all.de). The corpus describes actual objects,
like locations, accomodations, furnishings of accomodations, admin-
istrative information, or cultural events, such as given in the follow-
ing example sentences.

(5) a Mecklenburg’'s schonstes Hotel liegt in  Rostock.
(Mecklenburg’s most beautiful hotel is located in Ro-
stock.)

b. Ein besonderer Service fur unsere Gaste ist der Frisorsalon
in unserem Hotel. (A hairdresser in our hotel is a specia
service for our guests.)

c. DasHotel Mercure hat Balkone mit direktem Strandzugang.
(The hotel Mercure offers balconies with direct access to the
beach.)

d. Alle Zimmer sind mit TV, Telefon, Modem und Minibar
ausgestattet. (All rooms have TV, telephone, modem and
minibar.)

Processing the example sentences (5a) and (5b), SMES (Section
2) outputs dependency relations between the terms, which are indi-
cated in slanted fonts (and some more). In sentences (5¢) and (5d)
the heuristic for prepositional phrase-attachment and the sentence
heuristic relate pairs of terms (marked by slanted fonts), respectively.
Thus, four concept pairs — among many others — are derived with
knowledge from the domain lexicon (cf. Table 1).

Table1l. Examplesfor linguistically related pairs of concepts

Term; a1 Terms a2
Mecklenburgs area hotel hotel
hairdresser hairdresser  hotel hotel
balconies balcony access access
room room TV television

root
furnishing

| area |
accomodation \ev—ent[

Figurel. Anexample scenario

The algorithm for learning generalized association rules (cf. Sec-
tion 3) uses the domain taxonomy, an excerpt of which is depicted
in Figure 1, and the concept pairs from above (among many other
concept pairs). In our actual experiments, it discovered a large num-
ber of interesting and important non-taxonomic conceptual relations.
A few of them are listed in Table 2. Note that in this table we also
list two conceptual pairs, viz. (area, hotel) and (room, television), that
are not presented to the user, but that are pruned. The reason is that
there are ancestral association rules, viz. (area, accomodation) and
(room, furnishing), respectively with higher confidence and support
measures.

Table2. Examples of discovered relations

Discovered relation Confidence  Support
(area, accomodation) 0.38 0.04
{areahotel) 01 B8:63
(room, furnishing) 0.39 0.03
{room-television) 0:29 06.02
(accomodation, address) 0.34 0.05
(restaurant, accomodation) 0.33 0.02

5 Evaluation

For our evaluation we analyzed 2234 HTML documents, 16 million
words and HTML tags, from our text corpus (cf. Section 4) with
SMES (Section 2). The linguistic and heuristic preprocessing came
up with approx. 51.000 linguistically related pairs, such astheonesin
Table 1. For our overall project we had modeled an ontology, which
contained 284 concepts and 88 non-taxonomic conceptua relations.
The ontology, O := (C, H, R), served for two purposes. On the one
hand, the taxonomic structure of concepts, C, of our domain ontol-
ogy wasgiven asaninput, viz. asthetaxonomicrelation H C CxC,
to the learning algorithm described in Section 3. On the other hand,
we evaluated the success of our learning approach against the set of
non-taxonomic relations, R C C x C, that had been hand-coded into
the very same ontology before. Thus, we could compare the learning
approach against human performance. Though human decisions in
this matter should not be taken for pure gold®, wethink it is necessary
to have measures that allow the comparison of different approaches
and parameter settings — even when the bases of these measures
depend to some extent on the quality of and on rather arbitrary, but
equally plausible, choices between modeling decisions.
Precision and Recall. The first measures that we considered were
precision and recall such as often used ininformation retrieval. When
we denote the set of discovered relationsby D C C x C, they are
defined by precision := |D N R|/|D| andrecall :== |D N R|/|R].
Running our experiments we found that precision and recall gave
us some hints about how to gauge our thresholds for support and
confidence (cf. Table 3). Nevertheless, these measures lacked a sense

5 Infact, we are currently preparing an experiment. \We want to determine the
extent to which conceptual relations coincide when several ontology engi-
neers introduce them independently from each other into a given taxonomy.



for the dliding scale of adequacy prevalent in our hierarchical tar-
get structures. To evaluate the quality of relations proposed to the
ontology engineer, we also wanted to add some bonus to relations
that almost fitted a hand-coded relation and, then, to compare dif-
ferent learning schemes on this basis. For this reason, we conceived
of a new evaluation measure that reflected the distance between the
automatically discovered relations D and the set of non-taxonomic,
hand-coded relations R.

The Generic Relation Learning Accuracy (RLA) is defined to
capture intuitive notions for relation matches like “utterly wrong”,
“rather bad”, “near miss” and “direct hit”. RLA is the averaged ac-
curacy that the instances d of discovered relations D match against
their best counterparts from R — disregarding arbitrary relational
directions.

(6) RLA(D, R) = 1557 Xycp RLA(d, R).
(7) RLA(d, R) = max,cr{MA(d,r), MA(d,r1)}.

We determine the accuracy that two relations match, MA, based
on the geometric mean value of how close their domain and range
concepts match such as given by the conceptual learning accuracy
CLA (Notethat MA(d, r) = MA((a1, a2), (b1,b2))).t

(8) MA((al,az), (bl,bg)) = \/CLA(al,bl) . CLA(az,bg).

CLA is very similar in style to learning accuracy as introduced
by Hahn & Schnattinger [4] who evaluate the categorization of un-
known objects in a taxonomy. However, they assume that the target
concept that is to be learned is aways a leaf concept and, hence, a
categorization learned for an object may not be more specific than
the correct categorization. In our approach this assumption does not
hold, hence our CLA isaslight, symmetric variant of their measure.
Basically, this accuracy measure reaches 100% when both concepts
coincide (i.e, their distance é(a, b) in the taxonomy H is 0); it de-
grades to the extent to which their distance increases; however, this
degradation is seen as relative to the extent of their agreement such
as given by the distance between their least common superconcept,
Ics, and the top concept root.”

. d(Ics(a, b), root)
(9) CLA(@:) = 5ricsta 1) root) + 8(a. )

The length of the shortest path §(as, a.) between a, and a. inthe
taxonomy H is defined via an auxiliary predicate Path that denotes
all thevalid pathsin H.

(10) Path(ao,...,an) = Vi € 1...n :
(ai,ai_l) € H.

€ [0,1].

(aifl,ai) € HU

(11) é(as,ae) := min{n|ai,...,an-1 € C A
Path(as,a1,...,an—1,a.)}.

Theonly restriction for CLA appliesto extremely general relations
that use the root concept in their domain or in their range. In our
scenario, no such relation appeared in the hand-coded ontology O.
Indeed, we found it appropriate to consider such relations as derived
from noise that may easily be pruned.

Thus, RLA captures the fact that relations can be introduced at
different levels of the taxonomy and that the quality of relations that
are learned may vary within arange of degrees.

Example Evaluation. Figure 2 illustrates our definition of the
generic relation learning accuracy with two small examples. On the

6 The geometric mean reflects the intuition that if either domain or range
concepts utterly fail to match, the matching accuracy converges against 0,
whereas the arithmetic mean value might still turn out avalue of 0.5.

7 Multiple inheritance may result in several least common superconcepts for
apair (a, b). Then we continue using the best value for CLA. All the other
definitions remain applicable asthey are stated here.

left hand side of Figure 2 the relation that best matches d' :=
(a},ab) is v = (b},b5). The distances between domain and

range concepts count 1 each. The distances §(Ics(a’, b} ), root) and
d(lcs(a’, by), root) counts 1 and 2, respectively. Hence, we compute

(12) RLAW, R) = MA(@, ') = \[1h - 227 = /% ~ 0.58.

Similarly, for d” := (a,a%) and " := (b}, 05).

(13) RLA@", R) = MA(@",r") = /75 - &5 = \/§ = 041,

Figure2. Relation Learning Accuracy

Results. An excerpt of our evaluation that surveys the most char-
acterigtic results is given in Table 3. We have computed the num-
ber of discovered relations D, RLA, recall and precision for varying
support and confidence thresholds. Calculating all relations using a
support and confidence threshold of 0 yields 8058 relations, scoring
aRLA of 0.51. As expected, both the number of discovered rela-
tions D and recall isdecreasing with growing support and confidence
thresholds. Precision isincreasing monotonically at first, but it drops
off when so few relations are discovered that almost no one is a di-
rect hit. Higher support thresholds correspond to larger RLA values.
Moving confidence thresholds from 0 to 1, RLA peaks between 0.1
and 0.2, but decreases thereafter. This behaviour may be due to our
definition of transaction sets and will have to be further explored.
The best RLA is reached using a support threshold of 0.04 and a
confidence threshold of 0.01 and achieves 0.67 (better then example
12). This constellation also results in the best trade off between re-
call and precision (13% and 11%). The RLA value of 0.53 remains
meaningful, even when recall and precision fall to 0%, due to alack
of exactly matching relations.

Table3. Evauation Results — number of discovered relations, RLA,
recall, precision

Confidence
Support 0.01 0.1 0.2 04
0.0001 24297055 8657/0.57 4857057 2387051
66% / 2% 31%/ 3% 18% /3% 2%/ 1%
0.0005 15447057 651/0.59 380/0.58 198705
59% / 3% 30%/ 4% 17% /4% 1%/ 1%
0.002 889/0.6 426/0.61 24570.61 1317052
47% | 5% 27% 1 6% 16%/6% 1%/1%
0.01 342/0.64 225/0.64 1437/0.64 747053
31%/ 8% 19%/ 8% 14%/8% 1%/ 1%
0.04 98/0.67 96/0.67 70/ 0.65 32/0.51
13% /11% 11%/10% 6%/ 7% 0%/ 0%
0.06 56/0.63 56/0.63 48/0.62 30/0.53
6% / 9% 6%/ 9% 3%/ 6% 0% / 0%

Standard deviation ranged between 0.22 and 0.32 in our exper-
iments. Given that our average RLA scored well in the sixties, this
means that we had a significant portion of bad guesses, but — what is
more important — alarge number of very good matches, too. Hence,
we may infer that our approach is well-suited for integration into an
interactive ontology editor. The reason is that an ontology engineer



does not require near perfect discovery, but arestriction from alarge
number of relations, e.g. 283 = 80089 (squared number of concepts
leaving out root), to a selection, e.g. a few hundred, that contains a
reasonable high percentage of good recommendations.

Random Choice. Finally, we have explored the significance of our
RLA measure as compared against a uniform distribution of all pos-
sible, viz. 2832, conceptual relations. The RLA computed from this
set was 0.39 and, thus, significantly worse than learning results in
our approach. Standard deviation achieved 0.17 and, thus, it was
lower than for our discovery approach — the good match by ran-
domisindeed very rare. One may note that though the overall mean
of 0.39 is still comparatively high (comparable to the one of ex-
ample (13)), there are relations that score with the minimum, i.e.
3Ad € D : RLA(d, R) = 0, in our ontology.

6 Related Work

As mentioned before, most researchers in the area of discovering
conceptual relations have “only” considered the learning of taxo-
nomic relations. To mention but a few, we refer to some fairly re-
cent work, e.g., by Hahn & Schnattinger [4] and Morin [8] who used
lexico-syntactic patterns with and without background knowledge,
respectively, in order to acquire taxonomic knowledge.

For purposes of natural language processing, severa researchers
[1, 10, 14] have looked into the acquisition of verb meaning, sub-
categorizations of verb frames in particular. Resnik [10] has done
some of the earliest work in this category. His model is based on
the distribution of predicates and their arguments in order to find se-
lectional constraints and, hence, to reject semantically illegitimate
propositions like “The number 2 is blue” His approach combines
information-theoretic measures with background knowledge of ahi-
erarchy given by the WordNet taxonomy. He is able to partialy ac-
count for the appropriate level of relations within the taxonomy by
trading off a marginal class probability against a conditional class
probability, but he does not give any application-independent evalua-
tion measures for his approach. He considers the question of finding
appropriate levels of generalization within ataxonomy to be very in-
triguing and concedes that further research is required on this topic
(cf. p. 123f in[10]) .

Faure and Nedellec [3] have presented an interactive machine
learning system called ASIUM, which is able to acquire taxonomic
relations and subcategorization frames of verbs based on syntactic
input. The ASIUM system hierarchically clusters nouns based on the
verbs that they co-occur with and vice versa.

Wiemer-Hastings et al. [14] am beyond the learning of selec-
tional constraints, as they report about inferring the meanings of un-
known verbs from context. Using WordNet as background knowl-
edge, their system, Camille, generates hypotheses for verb meanings
from linguistic and conceptual evidence. A statistical analysisidenti-
fiesrelevant syntactic and semantic cues that characterize the seman-
tic meaning of averb, e.g. aterrorist actor and a human direct object
are both diagnostic for the word “kidnap”.

The proposal by Byrd and Ravin [2] comes closest to our own
work. They extract named relations when they find particular syn-
tactic patterns, such as an appositive phrase. They derive unnamed
relations from concepts that co-occur by calculating the measure for
mutual information between terms — rather similar as we do. Even-
tually, however, itishard to assess their approach, astheir description
israther high-level and lacks concise definitions.

To contrast our approach with the research just cited, we want to
mention that all the verb-centered approaches may miss important
conceptual relations not mediated by verbs. Regarding evaluation,
they have only appealed to the intuition of the reader [2, 3] or used

application-dependent evaluation measures. We have evaluated our
approach in blind experiments using two standard and our original
RLA measure. The latter has been thoroughly tested for plausibility
and validated against the set of all possible relations.

7 Conclusion

We have presented an approach towards learning non-taxonomic
conceptua relations from text. We have evaluated the approach on
a set of real world texts against conceptual relations that had been
modeled by hand. For this purpose, we used standard measures, viz.
precision and recall, but we also devel oped an evaluation metrics that
took into account the scales of adequacy prevalent in our target struc-
tures. The evaluation showed that though our approach is too weak
for fully automatic discovery of non-taxonomic conceptual relations,
itishighly adequate to help the ontology engineer with modeling the
ontology through proposing conceptual relations. The presented ap-
proach has been integrated into the Ontology Learning Environment
TextToOnto (cf. [7]) supporting the entire ontology engineering pro-
cess from text.

Acknowledgments. Theresearch presented in this paper has been
partially funded by BMBF under grant number 01IN802 (project
“GETESS"). We thank our student Raphael Volz who implemented
large parts of the learning algorithm and our project partners, in par-
ticular Gunter Neumann, from DFKI, language technology group,
who supported us in using their SMES system.

References

[1] R.Basili, M. T. Pazienza, and P. Velardi, ‘Acquisition of selectional pat-
terns in a sublanguage’, Machine Trandation, 8(1), 175-201, (1993).

[2] R.Byrdand Y. Ravin, ‘Identifying and extracting relations from text’,
in NLDB'99 —4th International Conference on Applications of Natural
Language to Information Systems, (1999).

[3] D. Faure and C. Nedellec, ‘A corpus-based conceptua clustering
method for verb frames and ontology acquisition’, in LREC workshop
on adapting lexical and corpus resources to sublanguages and applica-
tions, Granada, Spain, (1998).

[4] U. Hahn and K. Schnattinger, ‘ Towards text knowledge engineering’,
in Proc. of AAAI '98, pp. 129-144, (1998).

[5] E. Hajicova, ‘Linguistic meaning as related to syntax and to semantic
interpretation’, in Language and Artificial Intelligence. Proceedings of
an International Symposium on Language and Artificial Intelligence,
ed., M. Nagao, pp. 327-351, Amsterdam, (1987). North-Holland.

[6] R.Hudson, English Word Grammar, Basil Blackwell, Oxford, 1990.

[7] A. Maedche and S. Staab, ‘ Semi-automatic engineering of ontologies
from text’, in Proceedings of the 12th Internal Conference on Software
and Knowledge Engineering. Chicago, USA. KSI, (2000).

[8] E. Morin, ‘Automatic acquisition of semantic relations between terms
from technical corpord, in Proc. of the Fifth International Congresson
Terminology and Knowledge Engineering - TKE' 99, (1999).

[9] G.Neumann, R. Backofen, J. Baur, M. Becker, and C. Braun, ‘Aninfor-
mation extraction core system for real world german text processing’,
in ANLP’ 97 — Proceedings of the Conference on Applied Natural Lan-
guage Processing, pp. 208-215, Washington, USA, (1997).

[10] P Resnik, Selection and Information: A Class-based Approach to Lexi-
cal Relationships, Ph.D. dissertation, University of Pennsylania, 1993.

[11] M. Romacker, K. Markert, and U. Hahn, ‘ Lean semantic interpretation’,
in Proc. of IJCAI-99, pp. 868-875, (1999).

[12] R. Srikant and R. Agrawal, ‘Mining generalized association rules’, in
Proc. of VLDB 95, pp. 407-419, (1995).

[13] S. Staab, C. Braun, A. Dusterhdft, A. Heuer, M. Klettke, S. Melzig,
G. Neumann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkor-
eit, and B. Wrenger, ' GETESS — searching the web exploiting german
texts', in CIA'99 — Proceedings of the 3rd Workshop on Cooperative
Information Agents, LNCS, Berlin, (1999). Springer.

[14] P Wiemer-Hastings, A. Graesser, and K. Wiemer-Hastings, ‘Inferring
the meaning of verbs from context’, in Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society, (1998).



