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Abstract. At presenttheextensionof formallearningtheoryto the
multi-agentcaseconsidersteams”of agentsharingacommonend.
Successs achievedif oneor moreof theagentds successfulandco-
operatioris notinvolvedin theteamformation.Unfortunatelythisis
rarelytheideaof “successfuteam”we have in mind. Onegenerally
expectsagents’behaior to influenceeachotherin away thatis not
capturedoy the presenparadigmsA real problemin extendingsin-
gleagentiearningmethod€o multi-agentsettingis thusdetermining
paradigmsof coopeation. This papemakesa contributionto theso-
lution of this problem.First, we adwancea paradigmof cooperation
asa kind of two-personrepeatedgameand compareit to a major
paradignof solvability for isolatedagents Secondwe pay attention
to a subsetof unsuccessfuhgentswho take adwantagefrom team-

work. For theseagentsgcooperatioris provedto beakey of success.

Theformal resultsareraisedwithin the model-theoretidradition of
formallearningtheory

1 INTRODUCTION

Therehasbeena growing interestin Al in the designandtheoriza-
tion of systemsof multiple autonomousgentsthatinteractin var-
ious ways asthey pursuetheir own ends,or perhapsseekcompati-
ble goals.Of specialinterestaresystemsn which individual agents
sharethe samegoalsor utility function.In suchsettingsthe agents
haveto choosebetweertwo courseof actionsThus,theagenteither
actcollectively or separatelyo the commondesiredends.Two col-
lective actionsare more investigatedthan others:coordinationand
cooperation.The former hasreceved the bulk of attentionby Al
(eq., [4, 22, 26, 1]) andgametheory wherethe coordinationspace
arisingfrom a successfutoordinationproblemis calledequilibrium
(seefor instancg15, 14]). Thelatterhasbeenextensvely studiedin
Al, wherefully cooperatie problemsarisein taskdistributionaswell
aswithin the historically older sub-areaf the multi-agentproblem
solving(e.g., [20, 28, 29]).

In this paper our goalis to investigatecooperatiorandteamvork
from a learning-by-disceery [27] perspectie. To this end, we fo-
cuson the model-theoretidradition of Formal Learning Theory—
say[23, 7, 18, 17, 11], that descenddrom the pioneeringstudies
on inductie inferencedevelopedby [25, 21, 8, 3]. The work in
therecursve-theoretidraditionconcernsalgorithmsfor inferring re-
cursie functionsfrom finite samplesof their graphs,and hasbeen
adaptedsuccessiely to characterizeabstractanguagesn the limit.
The model-theoretid¢raditionis morerecent;its mainaim s to pro-
vide aformalframework for learningfirst ordertheoriesandmodels.
Therecursve-functionalapproacho learninghasbeenextendedby
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Montagnaand Oshersorf13] to characterizeecursve functionsby
meansof coordinationin the limit. Coordinationhasbeenrecently
addressednto the model-theoretidradition in [1, 2]. Sincelearn-
ability andproblemsolving have beenstudiedextensvely in formal
learningtheoryand Al in the contet of single agentsystemsthe
questionnaturally arises:to what extent can modelsor paradigms
for singleagentlearningbe extendedto the cooperatie multi-agent
setting?

The paperis thus structuredas follows. In Section2 we briefly
review the paradigmof Ex™ -solvability [16], our startingpoint. We
alsointroducepreliminary conceptsand notationthat will be used
throughoutthe whole paper Section3 presentghe main contriku-
tion of the paper It dividesinto two relatedparts,involving respec-
tively cooperatie andunsuccessfuhgentgproblemsolving. Finally,
in Sectiond we addsomefurtherremarkson relatedandfuturework
andtheconclusion.

2 PRELIMIN ARY CONCEPTSAND NOTATION

We fix a first-orderlanguagecl ... with vocalulary £ and count-
able setof variablesVar. Unlessstatedotherwise,£ and Var will

remainfixed. We useL ;.. and L. 10 denoterespectiely, theset
of sentenceéno freevariablesoccur)andthe setof literals (or basic
formulag of L. We areparticularlyinterestedn the collection
of all thefinite sequencesver L..i.. We denotesuchcollectionby
SEQ Somefurthernotationis asfollows. Theset{0, 1, 2, ...} of nat-
ural numbersis denotedby IV, the set{1, 2, ...} of positive natural
numbersis denotedoy N7T. If X is aset,X* is the setof infinite
sequencesver X . A sequencén X* is calledanw-sequencéover
X). Let g be anw-sequenceWe write o(z), ¢ € N, for the finite
sequencép, - -- p;), andp|; for theproperinitial segmentof length
1in . Thus, (i) = g|i+1. We write length(n) for thelengthof a
finite sequencandn, for theith elementof 5, 0 < i < length(n).
We write rangdn) for the set of elementsof ary sequenceWe
denotethe finite sequencef length zero by @. Otherwise,our se-
manticnotionsarestandardIn particular structureS is a modelof
I' C Lsorm, andT is saidto be satisfiablein S, if thereis an as-
signmenth : Var— |S| with § |= I'[h]. T is satisfiableif it is
satisfiablén somestructure.

2.1 Gamesl: Isolated agentsagainstNature

The following picture of scientificinquiry cited from [16] givesan
informalideaof the basicelementf the gamewe areinterestedn.

“First, a classof possiblerealitiesis specifiedin advance;the class
is known to both playersof the game Natureis conceved aschoos-
ing onememberfrom the classto be the ‘actual world’; her choice



is initially unknavn to the scientistfagent]. Naturethen providesa
serieof cluesaboutthisreality. Thesecluesconstitutethedataupon
which the scientistwill basehis hypothesesEachtime Naturepro-
videsa new clue, the scientistmay producea newv hypothesisThe
scientistwins the gameif thereis sufficient guaranteehat his suc-
cessve conjecturesvill stabilizeto anaccuratehypothesisaboutthe
reality Naturehaschosen. (p. 740)

We mentionpossiblerealitiesand “worlds”. Formally, by world
we shall meanary countablestructurethat interprets £, or £-
structue. Worlds may be conceved as the “possible truths” for
the agents.We shall be interestedn aggr@ationsof suchworlds,
namely countablecollectionsof worlds. Thesecollectionsmay be
intuitively thoughtasthe setof realitiesof agivenagent.To seehow,
we mustfirst saywhatwe meanby an“agent”.In thesequelwe shall
use“structure”in placeof “ £L-structure”.

Definition 1 Letmapping®’ : SEQ—s L., andnonemptyclass
A of structuesbegiven.We saythat & = {¥’, A) is a (basic)agent

Forall o € SEQ we thenwrite ¥ (o) for (o). We saythat L.,
is theagent'slanguage. Accordingto theterminologyadoptedn the
literaturewithin formal learningtheory if A is emptywe saythat
(', @) is a (basic)scientistor alsoalearner. Agentmight be partial
or total, recursve or nonrecursie. Althoughwe will keepour dis-
cussionasgeneralaspossible particularattentionto computational
agentds givenin multi-agentsystemsThus,we canassumeo deal
with computableagents.Of the two componentof ary agent,the
first is saidto be the agent's communicatiorability andthe second
components said to be the agent’s badkground world. To fix in-
tuitions one might think of a backgroundworld asrepresentinghe
agents belief spaceln the pictureof scientificinquiry abore, some
furtherelementseedto beexplained.

We considertheinformationmadeavailableto agentsThis infor-
mationis of two differentkinds,andcomesfrom “environments’as
definedbelon. We assumeo have an assignmento all worlds we
will considerin the sequef Our formulation of ervironmentsis a
restatementf [18] (Definition 3.1A).

Definition 2 Let e be an w-sequenceover Lp..:.. We say that e
is a (basic)environment Let world S and full assignment to S
be given. We say that ervironmente is for S via h justin case

rangde) = {8 € Liasic | S |= B[h]}.

Thus,an ervironmentis a sequencef increasingconsistenor in-
consistentsetsof basicformulas.In particular an environmentfor
S (via assignment) lists the basicdiagramof S usingh to supply
temporarynamedor themembersf | S|.2 Finiteinitial segmentsof
environmentsthusrecapitulatethe information availableto a single
agentaboutthe underlyingstructureof evidenceat a certaintime of
obseration.

Definition 3 Letd € L., ervironmente andagent¥ be given. ¥
corvergesone to @ justin casefor cofinitelymanyk € N, ¥(e|r) =
6.

Thefollowing definitionis on “approximate”sohability (seee.g.
[19] for adiscussioronapproximatesolvability). Thenext definition
is arestatemendf [16] (Definition 27 and29).

2 Thenotionof assignmenive useis standardFor structureS, anassignment
to S is ary mappingof Varontothedomainof S. Seefor instancg5] for a
reference.

3 We use“basicdiagram”as“diagram”in the senseof A. Robinsonseee.g.

(5]
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Definition 4 Letw C Ls.n, agent ¥, structue S andernvironment
begiven.Supposéhate is for S.

1. ¥ Ex™-solvese justin casethereis € 7 sudthat ¥ corverges
onetof andS = 6.

2. ¥ Ex"-solvesS justin case® Ex™-solvesevery ervironment
for S.

3. ¥ Ex"-solves collectionK of structuregust in case¥ Ex” -
solvesavery S € K. In thiscaseK is saidto be Ex-solvable

4. Ex™ isthecollectionof Ex™-solvableclasseof structues.

Definition 4 completeghe formalizationof the elementshat figure
in the game-theoretipicture of scientificinquiry. Two further re-

marksandaninterestingquestionarise.First, agentsdo not usetheir

backgroundworld. This factis fairly closeto the generalconcep-
tion of learningasempiricalinquiry [12, 9]. An agentcould useher
backgroundworld in principle; for example,a belief-revision based
agentcould eventually represenssome“belief state” by using her
backgroundvorld. So,the problemof belief change—hw anagent
shouldreviseherbeliefsuponlearningnew information,canbetaken

into account.For lack of spacewe do not discussthis topic here.
Secondthe paradigmof Ex™ -solvability is exactly the modelof X -

solvability givenin the literaturefor “approximatesohability” (see
for instance[16, 19]). Third, the question:What happensf mary

agentgointly work to a problem?

3 MULTI-AGENT PROBLEM SOLVING

Considerthe caseof the isolatedagentfacing nature: Time andre-
sourcesarescarceandtheremayberisk or uncertaintyaboutfuture
statesof theworld. Ex™ -solvability theorytell ushow suchanagent
will decidewhenfacingdifferentcircumstancedde haspreferences
andbeliefsandis rationalaccordingto someprinciple of rationality
(seefor instancg6, 10,12, 11] andthereferencdistedthere).

Supposenow we introduceotheragentsinto out agents erviron-
mentandmalke theminteract.s atheoryof theirinteractionreducible
to atheoryof theisolatedagent®nemightwonderwhy thereshould
be ary difficulty here.After all, the only differencebetweena natu-
ral ervironmentandasocialervironmentis justthe presencef other
people;rationalchoicelooksthe samein bothcasesTo answerthat
we mustfirst say what we meanby “interaction”. In what follows
we considera very specialkind of interaction,ie: coopeation. In-
deed,cooperatiorallow usto shift the single-agenprocessesf the
paradigmEx™ into actualteamvork, in the sensethat corvergence
to a stablestate(partial solution)is achiezed only if a cooperatie
responses given by theagentsonthecommon possiblypartial rep-
resentatiorof the problemto be solved.

3.1 Gamesll: Cooperative agentsagainstNature

To addresshemodelor paradigmof cooperatiorformally, we focus
on the importanceof communicationin cooperatie actionsw.r.t.,
say mentalattitude . Thus,we extendagentgo “collaborative” agents
asfollows. (For ary setX, let pow(X) denotethe power setof X.)

Definition 5 Let mapping®’ from pow(Lsen) X SEQLO Lipasic X
Lsen andnonemptyclassA of structuesbe given.We saythat & =
(', A} is a collaboratie agent

We saythat Lp...c U Lser iS the agents language Similarly to ba-
sic agentscollaboratve agentsmay be partial or total, computable
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or noncomputableFor all ¢ € SEQandall ® C Lsen, We
write ¥ (0, o) for ¥'(0,0). Moreover, obsere that ¥(0,0) =
((¥(©,0))0, (¥(O,0))1). To helpintuitions, for every agent¥’s
input ©,0, onemightthink to (¥ (O, o))o asthe“public output” of
theagent.This components usedby theagentto communicatevith
otheragentsijt is, say a socialcomponentin contrast,(¥(0,s))1
may be interpretedas the “private output” of the agent.This sec-
ond componentis usedby the agentto guesssolutionsand doing
hypothesesn problemsolving. We note that for fixed® C Lsen,
Ao.(¥(0,0)):1 is abasicagent.Thus,A\o.(¥(0O, ¢))1 is akind of
“oracle” thatthe agentprovidesto a secondagentinteractingwith
him in ainquiry procesg. The agentsprivate outputis what makes
collaboratve agentssimilar to basic,say noncollaboative, agents.
The usagemeaningof the secondcomponenis madecloseto ba-
sic agents’behaior in the next definition, which thus generalizes
Definition 3 to collaboratve agents.Let § € L., environmente
and collaboratve agent¥ be given. We saythat ¥ corvergeson e
to 6 justin casefor some®© C Lien, Ao.(¥(0, 0)):1 convergeson
e to 6. Supposeahat environmente is for someworld madeactual
by Nature.Then,the definition makesclearwhatwe meanby a col-
laboratve agentcommunicatingwith Nature: Definition 4 extends
onto collaboratve agentsin the obvious way. It remainsto seein
what sensecollaboratve and noncollaboratie agentsdiffer in their
matchesgainstNature.

3.1.1 Coopeation

In a multi-agentsetting,information seemsto be coming from es-
sentially two quite different sources:Nature and agents.When an
agentinteractswith an agent,an environmentis often the behaior
of theopponentRoughly we call thisbehaior enumeation. In con-
trastto environments,information from enumerationss thus “ac-
tive”. Agentsshouldbe madeableto managenformationfrom dif-
ferentinformationsourcesasenvironmentsandenumerationsOth-
erwise,only one-way interactionis possible thatis the interaction
betweenthe agentand his “passie” ernvironment.The information
we are looking for doesnot dependon worlds, but only on the
agents’communicatiorabilities. At this stageof development.this
fact reflectsan “external” [24], say communicativeperspectie on
cooperatie activity andteamformation.In the sequelwe shall see
how this external perspectie combineswith an“internal” perspec-
tive. For now, we only recordthat next terminology doesnot in-
volve worlds. Let environmente and collaboratve agents? and
begiven.Theenumeationfrom® and® in e is thepair[1)(e) , #(e)]

of pairs of w-sequencesi(e) = (1hy,%:;) andg(e) = (o, 1)

definedby induction asfollows. We definetb,, = (¥(#,0))o and
Yo = (\I/(Q),(Z)_))1; ¢(m = (@(@,@)lo and ¢01_= (‘11(070))1

Let P1ln = (o1 P-1y1) AN d1ln = (Bo1 " P_1y1)-

Then, we define v, = (¥(rangd,|»),el))o and ¢,, =

(_q)(rangfﬁ/ﬂln):e_ln))O; andd’m = (‘P(ra”gd¢1|n)ve|n))l and
&1, = (®(rangdi,|n),eln))1. Letk € N begiven. Theenumer
ationfrom ¥ and @ in e startingat & is the pair [E(e)(k) ,$(e)(k)],

where %(e)™ and %(e)*’ are obtainedfrom 3 (e) and $(e) by
deletingthefirst &+ 1 elementsn v, andd,, respectiely. In therest
of this paper we sometimeswrite R(¥o, ®) for 1, andk-R(¥o, )

for Eo(k). In both the notation,we shall leave implicit the erviron-

menttheenumeratiorfrom ¥ and® is in. Thus,R{¥,, ®) is meant
as¥’spublicrespons¢o ® in someenvironment.

4 Cf. the definition and useof oraclesin empiricalinquiry asstatede.g. in
Martin andOshersors book[12], Section3.4.3.
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Our interestis in two-peson coopeation games Theseare de-
finedby two agentsvhoseplay is uniquelydefinedby their commu-
nicationabilities (“external” perspectie, cf. [24]). The agentshave
internalstatego senethemasabasisof choicege.g., beliefsandex-
pectationstf. the “internal” perspectie, ibiderm). An intuitive con-
ceptionof cooperatiorimplies that agentshave the sameoutcomes
in principle.Following this conceptionye formally introducecoop-
erationasfollows.

Definition 6 Let § € Ls.n, environmente, collaborative agents
(T, A) and (@, B) and enumeation [¢)(e) , ¢(e)] from (¥, A) and
(®,B) in e begiven.(¥, A) and(®, B) cooperaten e with respect
to @ justin casefor somek € N, Eo(k) is an ervironmentfor some

A€A, Eo(k) is an ervironmentfor someB € B, for cofinitelymany
n € N, ¢, = ¢, =60, A §andB E 6. In this case we
call 8 a cooperatiorsentencandwe saythat (¥, A) and(®, B) are
cooperatie.

The next definition fixes the criterion of succesdor cooperatie
agentgroblemsolving.

Definition 7 Letm C Lsen, collaborativeagents® and®, structue
S andenvironment begiven.Supposehate is for S.

1. ¥ Co™-solvese with ® justin casetheris € 7 sud that ¥
and ® coopertein e with respecto § andS |= 6.

2. ¥ Co"-solvesS with @ justin case¥ Co”-solvesevery ervi-
ronmentfor S with ®.

3. LetK bea classof structues. ¥ Co”-solvesK with & justin
case¥ Co”-solvesevery S € K with &. In this case we say
thatK is Co™ -solvablewith &.

4. Co™ = {K | ¥ Co™-solvesK with & for some¥ and ®}.

With Definition 7 in handit is easyto prove a resulton the limit of
cooperatiorasa paradigmof problemsolving.

Proposition1 Letw C Len. Co™ = EXT.

Theresultmaybeviewedasafundamentalimitation to useof coop-
erationto enlage the collectionof solvable problems(accordingto
theparadigmEx™). However, it couldbediscusse@ sensdn which
data(representely anenvironmentfor some*actual” world) canbe
usedmoreefficiently by cooperatingvith someagentthatwithout®

3.2 Gameslll: UnsuccessfubgentsagainstNature

In this sectionwe studya paradigmof problemsolvingwherecoop-

erative behaior of some*unsuccessfulagentds provedto beuseful

to improve the agentsproblemsolving ability. Our aim is therefore
to give somefurtherinsightto the paradigmCo™ andits connections
with Ex™ -solvability.

3.2.1 Unsuccessfuhgents

Let agent¥ be unsuccessfullnformally, this meansthatthereis at
leasta structureS that ¢ cannotsolve. However, is often the case
thatan agentthatdoesnot solve a problemfor somereasonsolves
somepartof the problem.Then,a suitabledefinition of “unsuccess-
ful” agentshouldtake into accountboth ability and limits of the
agent.Formally, let collaboratve agent® andstructureS be given.

5 We do notdiscussefficieng of cooperatie problemsolvinghere.
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We saythat ¥ is Ex™ -unsuccessfubn S just in case¥ doesnot
Ex™-solve a finite, positive numberof environmentsfor S and ¥
Ex™-solvessomeenvironmentfor S. Now, supposehatstructureS
is Ex™-sohvable. Then ¥ cantry to solve S by looking for coop-
eration.We do not investigateherethe generalreasonghat lead ¥
to recognizethe “potential of cooperatie action” (cf. [29], p. 574,
wherethis first stageof the cooperatre problem-solvingorocesss
called: Recanition). In our setting,thesereasonsaretwo, namely:
for someenvironmente for S, either ¥ doesnot corverge on e to
ary sentencer ¥ convergeson e to somesentencavhichis falsein
S. Despiteof recognitionarises‘because(a)] an agenthasa goal
thatit doesnot have the ability to achiese onits own or elsebecause
[(b)] the agentprefersa cooperatie solution” (ibidem p. 574), our
paradignformalizes(a) anddoesnotformalize(b).?

3.2.2 Teamwork

How could ¥ solve S by teamvork?In previous sectionwe sav that
U solvesatleasta partof S, namely hesolvessomeervironmentfor
it. A conditio sinequanonfor ¥ to be assisteds to communicate
the problem.Of course,next stepfor ¥ shall be to ensurethatthe
agentwho responseo his requests eventuallyableto help. Thisis
roughlythe meaningof teamformationin [29]. We formalizein our
frameawork the factthat ¥ recognizeghe potentialof a cooperatie
actionby forcing ¥ to be consistenbn S in thefollowing sense.

Definition 8 Let collaborative agent ¥ and nonemptyclass A of
structuesbegiven.¥ is A-consistenfustin casefor every collabo-
rativeagent®, R(¥y, ®) is an ervironmentfor someA € A.

To remindthe story ¥ doesnhot solvesS, andasksfor help. Then,

Definition 8 saysthata necessargonditionfor ¥ to find someagent
thateventuallyhelpshimis to be{S}-consistentlt followsthatthere
mustbein ¥’s backgroundvorld a structureelementarilyequivalent
to S.” In otherwords, ¥ must be able to communicateconsistent
and completeinformationon § which is potentially known to the

agentWe emphasizépotentially” becausés notassumedn all our

paradigmghatagentsareawareof theirworlds. The orderby which

¥ communicateshe informationwill dependon the helperwho re-

spondgo ¥. Our requiremenbn ¥ to form ateamis not suficient.

To seewhy, we needa new definitionof teamvork success.

Definition 9 Letr C L,.., m € NT, collaborative agent ¥, struc-
ture S andernvironment begiven.Supposé¢hatervironment is for
S.

1. ¥ Co™Ex"-solvese justin casether is a setTl = TI(e) of m
agentssud thatfor every® € 11,

i. therisk € N sudthatk-R(¥o, @) =¢;
ii. ® corvergesone tosomed € = withS = 6, and
iii. ¥and® coopentein e with respecto 6.

2. ¥ Co™Ex™-solvesS justin case® Co™Ex"-solvesevery en-
vironmentfor S.

3. U Co™Ex"-solwes class K of structuresjust in case ¥
Co™Ex™-solvesevery S € K. In this case we saythat K is
Co[¥]™Ex™-solvable

4. Co[¥|™EX™ = {K | ¥ Co™EXx"-solve }.

6 Thoughagents’preferencesnay beintegratedin the modelasa prefeence
relation (preorder)on agents’backgroundvorld.
7 Seefor instancd5] for the notionof elementarilyequialentstructures.
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We say that the setII(e) is helpful for agent ¥ in ervironmente.
Eachagentin the setsucceed helping ¥ in solving a partof the
problem.More generallywe have:

Proposition2 SupposeK be a Ex™-solvable class of structues.
For all collaborative agents ¥, if ¥ is Ex” -unsuccessfubn some
S € K and {S}-consistentthenther is m € NT sud that
K € Co[Z]™EX™.

Proof: (sketched)Let S € K and{S}-consistentollaboratve agent
¥ begiven. Supposehat ¥ doesnot Ex™ -solve environmente; for
S andthat ¥ Ex™-solves environmente for S. We needto shaw
thatthereis m € N suchthatK € Co[¥]™EX™. To this end,
we definecollaboratve agent®! suchthat: (a) for somek € N,

k-R(To, ®') = e; andk-R{®5, T) = ¢; (b) @' corvergeson e;

to somef € w suchthatS | 6; (c) ¥ and &' cooperatén e;

with respectto 4. SinceS is Ex™-solvable, ¥ is {S}-consistenby
assumptiorand R{, ) is uniquelydefinedon e, it is easyto verify

thatsuch®"' exists. Similarly, for every ervironmente; for S such
that & doesnot Ex -solve e;, we defineagent@". Becausef ¥ is
Ex™-unsuccessfubn S by assumptionit follows thatthe resulting
setof agentsis finite andnonempty Let {®*, ..., ®™} suchfinite
setwith m € N™T. Then,for every ervironmente for eachS € K,

thereis aset{¥, &', ..., ®™} of agentsthatsatisfiesDefinition 9.

It follows immediatelythatK € Co[¥]™Ex™.

The sketchedproof of Proposition2 highlightsthe meaningof the
parametern in the paradigmFor S € Co[¥]™Ex™, m is the num-
berof theervironmentsfor S that¥ doesnot Ex™ -solve. Intuitively,
Proposition2 saysthatevery agentthatpartially solvesa structureis
potentiallyableto fully solve it by looking for cooperationThe pro-
cessof finding an helpful setof agentsstartswith a requiremenbf
consisteng. Then,ary unsuccessfuhgenthasonly to recognizethat
communicatiorandcooperatioris betterthanisolation.As a corol-
lary, it canbe shavn thatfor particularly“difficult problems”there
is no teamof helpful computableagents.

4 CONCLUDING REMARKS

We have demonstratedhat nothingis gainin cooperatie problem
solving w.r.t. the classof solvable problemsaccordingto a fixed
paradignof sohability. Neverthelessinductive cooperatiorhasbeen
proved to sene as an useful paradigmfor cooperatre actionsto
understandhowv unsuccessfubgentscan improve their problem-
solving ability by jointly solvinga problem.The paradigmof team-
solvability we proposeds a paradigmof teamvork in a strict sense,
wherecooperatioris formalizedaccordingly

As far aswe knaw, this is the first attemptto introducecoopera-
tion within theframework of themodel-theoretidraditionof Formal
Learning Theory[16, 9]. A proposalhasbeenrecentlyput forth in
Al thatis quiterelatedto oursin spirit, thoughnotin the formal de-
velopment.Thatis [29]. The useof cooperatiorin problemsolving
appeardn [29] similarto whatpresentedhiere Somedifferencehave
beenpointedout directlyin thetext.

A numberof importantdirectionsremainto be pursued.The ex-
tensionof Co™ -solvability to teamsof m agentsfor m > 2 is one.
It is alsoimportantto developa paradignof teamvork for “rational”
agentsa paradigmthat would explain how agents’beliefsabouta
given problemin a given ervironment(which includesthe behaior
of othersinsofar asit affectseachagents decisions)volve until the
agentshave cometo agreewith the actualsolutionof the problem.
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The supplementatiomf rational choicetheorywe requireis a the-
ory of beliefformationin socialprocessefike cooperationthatis, a
theoryof rationalcooperatre problemsolving.
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