
Team-solvability:
A Model-Theoretic Perspective

Alessandro Agostini
�

Abstract. At present,theextensionof formal learningtheoryto the
multi-agentcaseconsiders“teams”of agentssharingacommonend.
Successis achievedif oneor moreof theagentsis successful,andco-
operationis not involvedin theteamformation.Unfortunately, this is
rarelytheideaof “successfulteam”we have in mind.Onegenerally
expectsagents’behavior to influenceeachotherin a way that is not
capturedby thepresentparadigms.A realproblemin extendingsin-
gleagentlearningmethodsto multi-agentsettingis thusdetermining
paradigmsof cooperation. Thispapermakesacontributionto theso-
lution of this problem.First, we advancea paradigmof cooperation
as a kind of two-personrepeatedgameandcompareit to a major
paradigmof solvability for isolatedagents.Second,wepayattention
to a subsetof unsuccessfulagentswho take advantagefrom team-
work. For theseagents,cooperationis provedto bea key of success.
Theformal resultsareraisedwithin themodel-theoretictraditionof
formal learningtheory.

1 INTR ODUCTION

Therehasbeena growing interestin AI in thedesignandtheoriza-
tion of systemsof multiple autonomousagentsthat interactin var-
ious waysasthey pursuetheir own ends,or perhapsseekcompati-
ble goals.Of specialinterestaresystemsin which individual agents
sharethesamegoalsor utility function. In suchsettings,theagents
haveto choosebetweentwo courseof actions.Thus,theagentseither
actcollectively or separatelyto thecommondesiredends.Two col-
lective actionsaremore investigatedthanothers:coordinationand
cooperation.The former has received the bulk of attentionby AI
(e.g., [4, 22, 26, 1]) andgametheory, wherethecoordinationspace
arisingfrom a successfulcoordinationproblemis calledequilibrium
(seefor instance[15, 14]). Thelatterhasbeenextensively studiedin
AI, wherefully cooperativeproblemsarisein taskdistributionaswell
aswithin the historicallyolder sub-areaof the multi-agentproblem
solving(e.g., [20, 28,29]).

In this paper, our goal is to investigatecooperationandteamwork
from a learning-by-discovery [27] perspective. To this end,we fo-
cuson the model-theoretictradition of Formal LearningTheory—
say [23, 7, 18, 17, 11], that descendsfrom the pioneeringstudies
on inductive inferencedevelopedby [25, 21, 8, 3]. The work in
therecursive-theoretictraditionconcernsalgorithmsfor inferringre-
cursive functionsfrom finite samplesof their graphs,andhasbeen
adaptedsuccessively to characterizeabstractlanguagesin the limit.
Themodel-theoretictradition is morerecent;its mainaim is to pro-
videaformal framework for learningfirst ordertheoriesandmodels.
Therecursive-functionalapproachto learninghasbeenextendedby
�
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MontagnaandOsherson[13] to characterizerecursive functionsby
meansof coordinationin the limit. Coordinationhasbeenrecently
addressedinto the model-theoretictradition in [1, 2]. Sincelearn-
ability andproblemsolvinghave beenstudiedextensively in formal
learningtheoryand AI in the context of single agentsystems,the
questionnaturally arises:to what extent can modelsor paradigms
for singleagentlearningbeextendedto thecooperative multi-agent
setting?

The paperis thus structuredas follows. In Section2 we briefly
review theparadigmof Ex

�
-solvability [16], our startingpoint.We

also introducepreliminaryconceptsandnotationthat will be used
throughoutthe whole paper. Section3 presentsthe main contribu-
tion of thepaper. It dividesinto two relatedparts,involving respec-
tively cooperative andunsuccessfulagentsproblemsolving.Finally,
in Section4 weaddsomefurtherremarksonrelatedandfuturework
andtheconclusion.

2 PRELIMIN ARY CONCEPTS AND NOTATION

We fix a first-orderlanguage�����	��
 with vocabulary � andcount-
able set of variablesVar. Unlessstatedotherwise,� and Var will
remainfixed.We use����
�� and ����� ��� � to denote,respectively, theset
of sentences(no freevariablesoccur)andthesetof literals(or basic
formulas) of �����	��
 . We areparticularly interestedin the collection
of all thefinite sequencesover � ��� ��� � . We denotesuchcollectionby
SEQ. Somefurthernotationis asfollows.Theset ���������! ��#"$"%" & of nat-
ural numbersis denotedby ' , the set �(�)�! ��*"%"%" & of positive natural
numbersis denotedby ',+ . If - is a set, -/. is the setof infinite
sequencesover - . A sequencein -/. is calledan 0 -sequence(over
- ). Let 1 be an 0 -sequence.We write 132�4�5 , 4768' , for the finite
sequence9�1�:<;#;*;=1�>@? , and 1BA > for theproperinitial segmentof length
4 in 1 . Thus, 132�4�5DCE1BA > + � . We write length2�FG5 for the lengthof a
finite sequenceand F > for the 4 th elementof F , �IHJ4LK length2�FG5 .
We write range2�FM5 for the set of elementsof any sequence.We
denotethe finite sequenceof length zero by N . Otherwise,our se-
manticnotionsarestandard.In particular, structureO is a modelofPRQ � ���	��
 , and

P
is said to be satisfiablein O , if thereis an as-

signmentSJT Var UWVXAYOZA with OEA C P\[ SB] . P is satisfiableif it is
satisfiablein somestructure.

2.1 GamesI: IsolatedagentsagainstNature

The following pictureof scientificinquiry cited from [16] givesan
informal ideaof thebasicelementsof thegamewe areinterestedin.
“First, a classof possiblerealitiesis specifiedin advance;the class
is known to bothplayersof thegame.Natureis conceivedaschoos-
ing onememberfrom the classto be the ‘actual world’; her choice
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is initially unknown to the scientist[agent].Naturethenprovidesa
seriesof cluesaboutthis reality. Thesecluesconstitutethedataupon
which thescientistwill basehis hypotheses.Eachtime Naturepro-
videsa new clue, the scientistmay producea new hypothesis.The
scientistwins the gameif thereis sufficient guaranteethat his suc-
cessive conjectureswill stabilizeto anaccuratehypothesisaboutthe
reality Naturehaschosen.” (p. 740)

We mentionpossiblerealitiesand“worlds”. Formally, by world
we shall mean any countablestructure that interprets � , or � -
structure. Worlds may be conceived as the “possible truths” for
the agents.We shall be interestedin aggregationsof suchworlds,
namely, countablecollectionsof worlds. Thesecollectionsmay be
intuitively thoughtasthesetof realitiesof agivenagent.To seehow,
wemustfirst saywhatwemeanby an“agent”.In thesequel,weshall
use“structure”in placeof “ � -structure”.

Definition 1 Letmapping_a`bT SEQ UMVc����
�� andnonemptyclass
A of structuresbegiven.Wesaythat _dCe9@_�`�� A ? is a (basic)agent.

For all fg6 SEQ, we thenwrite _D2�f�5 for _ ` 2�f�5 . We saythat � ��
��
is theagent’s language. Accordingto theterminologyadoptedin the
literaturewithin formal learningtheory, if A is empty we say that
9@_a`@�hNi? is a (basic)scientistor alsoa learner. Agentmightbepartial
or total, recursive or nonrecursive. Although we will keepour dis-
cussionasgeneralaspossible,particularattentionto computational
agentsis givenin multi-agentsystems.Thus,we canassumeto deal
with computableagents.Of the two componentsof any agent,the
first is saidto be the agent’s communicationability andthe second
componentis said to be the agent’s background world. To fix in-
tuitions onemight think of a backgroundworld asrepresentingthe
agent’s belief space.In thepictureof scientificinquiry above, some
furtherelementsneedto beexplained.

We considertheinformationmadeavailableto agents.This infor-
mationis of two differentkinds,andcomesfrom “environments”as
definedbelow. We assumeto have an assignmentto all worlds we
will considerin the sequel.2 Our formulationof environmentsis a
restatementof [18] (Definition 3.1A).

Definition 2 Let j be an 0 -sequenceover ����� ���k� . We say that j
is a (basic)environment. Let world O and full assignmentS to O
be given. We say that environment j is for O via S just in case
range2�j)5lCJ��mn6/� �Y� ���k� A�OdA Com [ SB]�& .
Thus,an environmentis a sequenceof increasing,consistentor in-
consistentsetsof basicformulas.In particular, an environmentfor
O (via assignmentS ) lists thebasicdiagramof O using S to supply
temporarynamesfor themembersof AYOZA .3 Finite initial segmentsof
environmentsthusrecapitulatethe informationavailableto a single
agentabouttheunderlyingstructureof evidenceat a certaintime of
observation.

Definition 3 Let pq6r� ��
�� , environmentj andagent _ begiven. _
convergeson j to p just in casefor cofinitelymanys76/' , _t2�j3A u)5\C
p .

Thefollowing definition is on “approximate”solvability (seee.g.
[19] for adiscussiononapproximatesolvability). Thenext definition
is a restatementof [16] (Definition27 and29).v

Thenotionof assignmentweuseis standard.For structurew , anassignment
to w is any mappingof Varontothedomainof w . Seefor instance[5] for a
reference.x
Weuse“basicdiagram”as“diagram” in thesenseof A. Robinson;seee.g.
[5].

Definition 4 Let � Q �y��
�� , agent _ , structure O andenvironmentj
begiven.Supposethat j is for O .

1. _ Ex
�

-solves j just in casethereis pD6 � such that _ converges
on j to p and OdA Czp .

2. _ Ex
�

-solves O just in case _ Ex
�

-solvesevery environment
for O .

3. _ Ex
�

-solves collection K of structuresjust in case _ Ex
�

-
solvesevery Og6 K . In this case, K is saidto beEx

�
-solvable.

4. Ex
�

is thecollectionof Ex
�

-solvableclassesof structures.

Definition 4 completesthe formalizationof theelementsthat figure
in the game-theoreticpicture of scientific inquiry. Two further re-
marksandaninterestingquestionarise.First,agentsdonotusetheir
backgroundworld. This fact is fairly closeto the generalconcep-
tion of learningasempiricalinquiry [12, 9]. An agentcoulduseher
backgroundworld in principle; for example,a belief-revision based
agentcould eventually representsome“belief state” by using her
backgroundworld. So,theproblemof belief change—how anagent
shouldreviseherbeliefsuponlearningnew information,canbetaken
into account.For lack of space,we do not discussthis topic here.
Second,theparadigmof Ex

�
-solvability is exactly themodelof - -

solvability given in the literaturefor “approximatesolvability” (see
for instance[16, 19]). Third, the question:What happensif many
agentsjointly work to a problem?

3 MUL TI-A GENT PROBLEM SOLVING

Considerthe caseof the isolatedagentfacingnature:Time andre-
sourcesarescarce,andtheremayberisk or uncertaintyaboutfuture
statesof theworld. Ex

�
-solvability theorytell ushow suchanagent

will decidewhenfacingdifferentcircumstances:He haspreferences
andbeliefsandis rationalaccordingto someprincipleof rationality
(seefor instance[6, 10,12,11] andthereferencelistedthere).

Supposenow we introduceotheragentsinto out agent’s environ-
mentandmaketheminteract.Isatheoryof theirinteractionreducible
to atheoryof theisolatedagent?Onemightwonderwhy thereshould
beany difficulty here.After all, theonly differencebetweena natu-
ral environmentandasocialenvironmentis just thepresenceof other
people;rationalchoicelooksthesamein bothcases.To answerthat
we mustfirst saywhat we meanby “interaction”. In what follows
we considera very specialkind of interaction,ie: cooperation. In-
deed,cooperationallow us to shift thesingle-agentprocessesof the
paradigmEx

�
into actualteamwork, in the sensethat convergence

to a stablestate(partial solution) is achieved only if a cooperative
responseis givenby theagentson thecommon,possiblypartialrep-
resentationof theproblemto besolved.

3.1 GamesII: Cooperative agentsagainstNature

To addressthemodelor paradigmof cooperationformally, we focus
on the importanceof communicationin cooperative actionsw.r.t.,
say, mentalattitude.Thus,weextendagentsto “collaborative” agents
asfollows.(For any set - , let pow 2�-r5 denotethepower setof - .)

Definition 5 Let mapping _ ` from pow 2�� ��
�� 5|{ SEQ to � �Y� ���k� {
� ��
�� andnonemptyclassA of structuresbegiven.We saythat _8C
9@_ ` � A ? is a collaborative agent.

We saythat � ��� ��� �y} � �@
�� is the agent’s language.Similarly to ba-
sic agents,collaborative agentsmay be partial or total, computable
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or noncomputable.For all f~6 SEQ and all � Q �y��
�� , we
write _<2@�D�hf�5 for _ ` 2@�D�hf�5 . Moreover, observe that _<2@�t��f�5�C
9h2@_D2@�D�hf�5h5 : ��2@_<2@�t��f�5h5 � ? . To help intuitions, for every agent _ ’s
input � ,f , onemight think to 2@_<2@�D�hf�5�5 : asthe“public output” of
theagent.Thiscomponentis usedby theagentto communicatewith
otheragents;it is, say, a socialcomponent.In contrast,2@_<2@�t��f�5h5 �
may be interpretedas the “private output” of the agent.This sec-
ond componentis usedby the agentto guesssolutionsand doing
hypothesesin problemsolving. We note that for fixed � Q �y��
�� ,� f�"$2@_<2@�D�hf�5�5 � is a basicagent.Thus,

� f�"$2@_<2@�D�hf�5�5 � is a kind of
“oracle” that the agentprovides to a secondagentinteractingwith
him in a inquiry process.4 The agentsprivateoutput is what makes
collaborative agentssimilar to basic,say noncollaborative, agents.
The usagemeaningof the secondcomponentis madecloseto ba-
sic agents’behavior in the next definition, which thus generalizes
Definition 3 to collaborative agents.Let pg68����
�� , environment j
andcollaborative agent _ be given. We saythat _ convergeson j
to p just in casefor some � Q � �@
�� , � f="$2@_<2@�t�hf�5h5 � convergeson
j to p . Supposethat environment j is for someworld madeactual
by Nature.Then,thedefinitionmakesclearwhatwe meanby a col-
laborative agentcommunicatingwith Nature:Definition 4 extends
onto collaborative agentsin the obvious way. It remainsto seein
what sensecollaborative andnoncollaborative agentsdiffer in their
matchesagainstNature.

3.1.1 Cooperation

In a multi-agentsetting,informationseemsto be coming from es-
sentially two quite different sources:Natureand agents.When an
agentinteractswith an agent,an environmentis often the behavior
of theopponent.Roughly, wecall thisbehavior enumeration. In con-
trast to environments,information from enumerationsis thus “ac-
tive”. Agentsshouldbemadeableto manageinformationfrom dif-
ferentinformationsourcesasenvironmentsandenumerations.Oth-
erwise,only one-way interactionis possible,that is the interaction
betweenthe agentandhis “passive” environment.The information
we are looking for doesnot dependon worlds, but only on the
agents’communicationabilities.At this stageof development,this
fact reflectsan “external” [24], say communicativeperspective on
cooperative activity andteamformation.In the sequelwe shall see
how this externalperspective combineswith an “internal” perspec-
tive. For now, we only record that next terminologydoesnot in-
volve worlds.Let environment j andcollaborative agents_ and �
begiven.Theenumerationfrom _ and � in j is thepair

[ � 2�j�5W� ��2�j�5�]
of pairs of 0 -sequences

� 2�j�5�C�9 � : � � � ? and ��2�j)5�C�9 � : � � � ?
definedby inductionas follows. We define

� :h: C�2@_<2�N3�hN(5h5 : and� : � C�2@_<2�N3��N�5h5 � ; � :h: C�2@�a2�NB�hNi5h5 : and � : � C�2@�a2�NB�hNi5h5 � .
Let

� � A ��C�9 � : � ;*;*; ��� �3� ���@� ? and � � A ��C�9 � : � ;*;�; � � ��� ���@� ? .
Then, we define

� : � C 2@_D2 range2 � � A � 5!��j�A � 5h5 : and � : � C
2@�a2 range2 � � A �M5!��j�A �B5h5 : ; and

� � � C�2@_<2 range2 � � A �M5!�hj3A �G5h5 � and
� � � C�2@�|2 range2 � � A �G5!��j�A �G5�5 � . Let sn6�' begiven.Theenumer-

ation from _ and � in j startingat s is thepair
[ � 2�j�5

� u � � ��2�j�5
� u � ] ,

where
� 2�j�5

� u �
and ��2�j�5

� u �
are obtainedfrom

� 2�j�5 and ��2�j�5 by
deletingthefirst s��I� elementsin

� : and � : , respectively. In therest
of thispaper, wesometimeswrite �<9@_ : ����? for

� : and s - �<9@_ : ����?
for
� :
� u �

. In both the notation,we shall leave implicit theenviron-
menttheenumerationfrom _ and � is in. Thus, �<9@_ : ����? is meant
as _ ’spublic responseto � in someenvironment.
�

Cf. the definition anduseof oraclesin empirical inquiry asstatede.g. in
Martin andOsherson’s book[12], Section3.4.3.

Our interestis in two-person cooperation games. Theseare de-
finedby two agentswhoseplay is uniquelydefinedby their commu-
nicationabilities (“external” perspective, cf. [24]). Theagentshave
internalstatesto servethemasabasisof choices(e.g., beliefsandex-
pectations;cf. the “internal” perspective, ibidem). An intuitive con-
ceptionof cooperationimplies that agentshave the sameoutcomes
in principle.Following thisconception,we formally introducecoop-
erationasfollows.

Definition 6 Let p�6�� ��
�� , environment j , collaborative agents
9@_�� A ? and 9@�L� B ? and enumeration

[ � 2�j�5W� ��2�j�5�] from 9@_t� A ? and
9@�L� B ? in j begiven. 9@_D� A ? and 9@�L� B ? cooperatein j with respect

to p just in casefor somesr6�' ,
� :
� u �

is an environmentfor some� 6 A, �=:
� u �

is anenvironmentfor some��6 B, for cofinitelymany  6e' ,
� � � C � � � C¡p , � A C¢p and �¡AC¢p . In this case, we

call p a cooperationsentenceandwesaythat 9@_t� A ? and 9@�L� B ? are
cooperative.

The next definition fixes the criterion of successfor cooperative
agentsproblemsolving.

Definition 7 Let � Q ����
�� , collaborativeagents_ and � , structure
O andenvironmentj begiven.Supposethat j is for O .

1. _ Co
�

-solves j with � just in casethere is pI6 � such that _
and � cooperate in j with respectto p and OzA Czp .

2. _ Co
�

-solves O with � just in case _ Co
�

-solvesevery envi-
ronmentfor O with � .

3. Let K be a classof structures. _ Co
�

-solvesK with � just in
case _ Co

�
-solvesevery OE6 K with � . In this case, we say

thatK is Co
�

-solvablewith � .
4. Co

� CJ� K Ah_ Co
�

-solvesK with � for some_ and �£& .
With Definition 7 in handit is easyto prove a resulton the limit of
cooperationasa paradigmof problemsolving.

Proposition1 Let � Q � ��
�� . Co
� C Ex

�
.

Theresultmaybeviewedasafundamentallimitation to useof coop-
erationto enlarge thecollectionof solvableproblems(accordingto
theparadigmEx

�
). However, it couldbediscusseda sensein which

data(representedby anenvironmentfor some“actual” world) canbe
usedmoreefficiently by cooperatingwith someagentthatwithout.5

3.2 GamesIII: UnsuccessfulagentsagainstNature

In this sectionwe studya paradigmof problemsolvingwherecoop-
erativebehavior of some“unsuccessful”agentsis provedto beuseful
to improve the agentsproblemsolving ability. Our aim is therefore
to givesomefurtherinsightto theparadigmCo

�
andits connections

with Ex
�

-solvability.

3.2.1 Unsuccessfulagents

Let agent _ beunsuccessful.Informally, this meansthat thereis at
leasta structureO that _ cannotsolve. However, is often the case
thatanagentthatdoesnot solve a problemfor somereason,solves
somepartof theproblem.Then,a suitabledefinitionof “unsuccess-
ful” agentshould take into accountboth ability and limits of the
agent.Formally, let collaborative agent _ andstructureO begiven.
¤

Wedonot discussefficiency of cooperative problemsolvinghere.
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We say that _ is Ex
�

-unsuccessfulon O just in case _ doesnot
Ex
�

-solve a finite, positive numberof environmentsfor O and _
Ex
�

-solvessomeenvironmentfor O . Now, supposethatstructureO
is Ex

�
-solvable.Then _ can try to solve O by looking for coop-

eration.We do not investigateherethe generalreasonsthat lead _
to recognizethe “potential of cooperative action” (cf. [29], p. 574,
wherethis first stageof the cooperative problem-solvingprocessis
called:Recognition). In our setting,thesereasonsaretwo, namely:
for someenvironment j for O , either _ doesnot converge on j to
any sentenceor _ convergeson j to somesentencewhich is falsein
O . Despiteof recognitionarises“because[(a)] an agenthasa goal
thatit doesnot have theability to achieve on its own or elsebecause
[(b)] the agentprefersa cooperative solution” (ibidem, p. 574),our
paradigmformalizes(a) anddoesnot formalize(b).6

3.2.2 Teamwork

How could _ solve O by teamwork?In previoussectionwesaw that
_ solvesat leastapartof O , namely, hesolvessomeenvironmentfor
it. A conditio sinequa non for _ to be assistedis to communicate
the problem.Of course,next stepfor _ shall be to ensurethat the
agentwho responseto his requestis eventuallyableto help.This is
roughlythemeaningof teamformationin [29]. We formalizein our
framework the fact that _ recognizesthepotentialof a cooperative
actionby forcing _ to beconsistenton O in thefollowing sense.

Definition 8 Let collaborative agent _ and nonemptyclassA of
structuresbegiven. _ is A-consistentjust in casefor everycollabo-
rativeagent � , �<9@_ : ����? is an environmentfor some

� 6 A.

To remindthe story, _ doesnot solves O , andasksfor help.Then,
Definition8 saysthatanecessaryconditionfor _ to find someagent
thateventuallyhelpshim is to be ��O£& -consistent.It followsthatthere
mustbein _ ’sbackgroundworld astructureelementarilyequivalent
to O .7 In other words, _ must be able to communicateconsistent
and completeinformation on O which is potentially known to the
agent.Weemphasize“potentially” becauseis notassumedin all our
paradigmsthatagentsareawareof their worlds.Theorderby which
_ communicatesthe informationwill dependon thehelperwho re-
spondsto _ . Our requirementon _ to form a teamis not sufficient.
To seewhy, weneeda new definitionof teamwork success.

Definition 9 Let � Q ����
�� , ¥E6,' + , collaborativeagent _ , struc-
ture O andenvironmentj begiven.Supposethatenvironmentj is for
O .

1. _ Co¦ Ex
�

-solves j just in casethere is a set §¨C©§<2�j�5 of ¥
agentssuch that for every �z6I§ ,

i. there is sª6,' such that s - �<9@_ : �!��?lCdj ;
ii. � convergeson j to somepD6 � with OzA CJp , and

iii. _ and � cooperate in j with respectto p .
2. _ Co¦ Ex

�
-solves O just in case_ Co¦ Ex

�
-solveseveryen-

vironmentfor O .
3. _ Co¦ Ex

�
-solves class K of structures just in case _

Co¦ Ex
�

-solvesevery O¡6 K . In this case, we say that K is
Co
[ _|] ¦ Ex

�
-solvable.

4. Co
[ _|] ¦ Ex

� C«� K A�_ Co¦ Ex
�

-solvesK & .
¬

Thoughagents’preferencesmaybeintegratedin themodelasapreference
relation(preorder)onagents’backgroundworld.­
Seefor instance[5] for thenotionof elementarilyequivalentstructures.

We say that the set §D2�j�5 is helpful for agent _ in environment j .
Eachagentin thesetsucceedsin helping _ in solvinga partof the
problem.More generally, we have:

Proposition2 SupposeK be a Ex
�

-solvableclass of structures.
For all collaborative agents _ , if _ is Ex

�
-unsuccessfulon some

O®6 K and ��O£& -consistent,then there is ¥¯6°' + such that
K 6 Co

[ _L] ¦ Ex
�

.

Proof: (sketched)Let O�6 K and ��O£& -consistentcollaborativeagent
_ begiven.Supposethat _ doesnot Ex

�
-solve environment j � for

O and that _ Ex
�

-solves environment j for O . We needto show
that thereis ¥±6²' + suchthat K 6 Co

[ _L] ¦ Ex
�

. To this end,
we definecollaborative agent � � suchthat: (a) for some s©6R' ,
s - �<9@_ : ��� � ?tC�j � and s - �D9@� �: ��_b?�C�j ; (b) � � convergeson j �
to some pJ6 � suchthat O³AC°p ; (c) _ and � � cooperatein j �
with respectto p . Since O is Ex

�
-solvable, _ is ��O£& -consistentby

assumptionand �<9��h? is uniquelydefinedon j � , it is easyto verify
that such � � exists.Similarly, for every environment j > for O such
that _ doesnot Ex

�
-solve j > , we defineagent � > . Becauseof _ is

Ex
�

-unsuccessfulon O by assumption,it follows that the resulting
setof agentsis finite andnonempty. Let �)� � �#"�"*"*��� ¦ & suchfinite
setwith ¥°6�' + . Then,for every environment j for eachOe6 K ,
thereis a set �)_D�!� � �*"#"*"*����¦b& of agentsthatsatisfiesDefinition 9.
It follows immediatelythatK 6 Co

[ _L] ¦ Ex
�

. ´
The sketchedproof of Proposition2 highlights the meaningof the
parameter¥ in theparadigm.For Oz6 Co

[ _L] ¦ Ex
�

, ¥ is thenum-
berof theenvironmentsfor O that _ doesnotEx

�
-solve.Intuitively,

Proposition2 saysthatevery agentthatpartiallysolvesastructureis
potentiallyableto fully solve it by looking for cooperation.Thepro-
cessof finding an helpful setof agentsstartswith a requirementof
consistency. Then,any unsuccessfulagenthasonly to recognizethat
communicationandcooperationis betterthanisolation.As a corol-
lary, it canbe shown that for particularly“dif ficult problems”there
is no teamof helpful computableagents.

4 CONCLUDING REMARKS

We have demonstratedthat nothing is gain in cooperative problem
solving w.r.t. the classof solvable problemsaccordingto a fixed
paradigmof solvability. Nevertheless,inductivecooperationhasbeen
proved to serve as an useful paradigmfor cooperative actionsto
understandhow unsuccessfulagentscan improve their problem-
solvingability by jointly solvinga problem.Theparadigmof team-
solvability we proposedis a paradigmof teamwork in a strict sense,
wherecooperationis formalizedaccordingly.

As far aswe know, this is the first attemptto introducecoopera-
tion within theframework of themodel-theoretictraditionof Formal
LearningTheory[16, 9]. A proposalhasbeenrecentlyput forth in
AI that is quiterelatedto oursin spirit, thoughnot in theformal de-
velopment.That is [29]. Theuseof cooperationin problemsolving
appearsin [29] similarto whatpresentedhere.Somedifferenceshave
beenpointedoutdirectly in thetext.

A numberof importantdirectionsremainto be pursued.The ex-
tensionof Co

�
-solvability to teamsof ¥ agentsfor ¥¶µe is one.

It is alsoimportantto developaparadigmof teamwork for “rational”
agents,a paradigmthat would explain how agents’beliefsabouta
givenproblemin a givenenvironment(which includesthebehavior
of othersinsofar asit affectseachagent’s decisions)evolve until the
agentshave cometo agreewith the actualsolutionof the problem.
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The supplementationof rationalchoicetheorywe requireis a the-
ory of belief formationin socialprocesseslikecooperation,thatis, a
theoryof rationalcooperative problemsolving.
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