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Abstract. In this paper we articulate a multi-level view of agent on knowing the utilities of the goals. In many cases, these are not
coordination and provide solutions for an integrated agent architegiven in advance, they have to be discovered dynamically by market
ture that addresses all the levels. At iindividual agent level, we  interaction. At themarket level (section 5), we use Multi-Attribute
model the decision making problem faced by individual agents thatltility Theory (MAUT) [6] to evaluate and negotiate the optimal ex-
need to discover their highest utility goals and the plans to achievehanges between agents or organizations, given their multiple inter-
them. Individual level plans normally contain goals that lie outsidedependent objectives and their preferences. This is done by giving
the agent’s control. To achieve them, the agent needs to team up wighconstraint optimization formulation to the MAUT problem and by
other agents in the organization. At thrgganizational level, we show  using the same MAXSAT constraint optimization solver to find the
how organizational structures can be used to form the minimum cosiest offerings or responses in negotiation. We end with related work,
teams needed to achieve such goals. Individual and organizatiorebplications and future work hints.

reasoning rely on knowing the utilities of the options available to

agents. Often, these utilities are not given in advance, they must be

discovered dynamically by market driven interaction. At thar- 2 BDL REASONING INFRASTRUCTURE

ket level, we give a constraint optimization formulation to Multi At- Agent ¢ and th first dal 0 d ib d
tribute Utility Theory and introduce interaction processes that allow gents act an us we Tirst need a language 1o describe and rea-
on about agent behavior (the Behavior Description Language, or

agents to discover how to cooperate to optimize their objectives. Al DL). A behavi ists of partiall dered | achievi

levels translate their specific models into a common reasoning infrat_- i )- th te at\_/lor consIsts °tp"?“t'a Iy ordered goa ta(t:' |e\:|hng ac-

tructure integrating randomized and systematic search. IVIties that sa isfy given constraints. N our representation there are
two kinds of goalscomposed and atomic. Composed goals consist

of other (sub)goals, while atomic goals do not. We allow three kinds
1 INTRODUCTION of compositions.
Sequential compositionsa = seq(ai, a2, ...a,) denote that all
As the connectivity provided by the Internet increases, the coordingomponent goals; must be executed in the given order.
tion problem faced by the interconnected agents and organizations pgrg||el compositions,a = par(as,as,...a,) denote that all

becomes more and more difficult. Global systems for manufacturingomponent goals must be executed, but without imposing any order.
and service provisioning for example, connecting suppliers, produc- Choice compositionsa = choice(ax, as, ...a,) denote execution
ers, distributors and customers all over the world need to coordinaigt only a non-empty subset of sub-goals, also without imposing any
the activities of agents inside their different component organizationgrder. Exclusive choices (zchoice) require the execution of exactly
and the organizations themselves on the global market place to prgne component sub-goal.

vide value for all participants. From the execution viewpoint, choices hawe(xor for xchoices)

In this paper we articulate a multi-level view of coordination andsemantics in that a choicg is ‘on’ - meaning will be executed
we provide solutions for an integrated agent architecture that agynd writtenOn(g) - iff at least one component is on (exactly one
dresses all the levels. All levels usecammon representation and  for xchoices) and ‘off’ - meaning will not be executed and written
reasoning infrastructure that represents an agent's goals, constraints) ¢ ¢(4) - iff all components are off. Sub-goals can occur negated
and utilities (section 2). A MAXSAT-type solver produces a high (or within choices and parallels, but not within sequences. Thus,
the highest) utility behavior. This is used as the solution of the agentspoice (a, —b) denotes a choice between achievingnd not achiev-
decision problem at thiadividual level (section 3). Individual behav- jng 5. Sequences and parallels both hawel semantics - ‘on’ iff
iors normally contain goals that the agent can’t achieve without thg|| components are on, and ‘off’ otherwise. The difference is that
collaboration of other agents in the organization. Atdhganization  sequences also requicedered execution of subgoals, while paral-
level, organization models are dynamically generated for these goale|s don't. At the planning level we address this by enforcing spe-
These models, based on the Steiner tree problem [2], are compilegic constraints for sequences. For exam@e,(seq(a;, ait1)) D
into a form solvable by the same MAXSAT-type solver, determiningoff(seq(aiﬂ, a;)). From this we derive that if a sequence is ‘on’,
the structure of the teams that can achieve the goals with minimgjj| its sub-sequences are also ‘on’, and if a subsequence is ‘off’
cost (section 4). Individual and organizational reasoning both relyhen all its super-sequences are also ‘off’. EQf.f (seq(a1, as)) D

Of f(seq(a1,as,as3)).
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Bi ased- WBAT( goal Net wor k) { Br anchAndBound( maxUti | ) {
for i =1 to maxTries{ . top:while(true){ . . o .
A = a random y generated on-off assignment; if Conplete solution found with utility=util{
for | =1 to maxFlips . ifoutil > mxUWil{maxUil = util; .
if Ais a solutionreturnit; . Save current solution;}
el se {G = randomy chosen i nconsistent goal; Backtrack; . .
Wth probability’ P, . if Backtracking not possible exit ;]»
Flip Gor one of Its subgoals that results in el se{goal =sel ect nmost constrained goal;
the greatest utility increase; ush goal onto stack; . .
O herw se (with Pr obability 1-P) whi | e?goal inconsistent with past assignnents
FllpGor one of its subgoals ) or current solution worse than maxUtil){
that results in the greafest . if Another assignment for goal and
decrease in_the nunmbéer of inconsistent goals;}}} its subgoal s exists
return failure;} {Continte with top;}

el se {Backtrack; .
I f Backtracking not possible
exit;}}}}}

Figurel. Biased WSAT algorithm.

Figure2. Branch and Bound algorithm.

to achieve the goal. Often, one or more collectively achievable goals
are part of an agent’s plans. In such cases, the agent has to determiyeded goals. In each case ties are brokefawor of theother crite-
the best set of agents to collaborate with to achieve these goals. Thisn. Based on the current experience, this method has consistently
is addressed later on. produced high utility solutions, in many cases finding the optimal
Planning Behavior. Let G = {g1,...gn} be a set of goals, or solution.
a goal network. An on-off labeling of the network is a mapping The branch and bound method (figure 2) is a systematic backtrack-
L : G — {on,of f} associating either ‘on’ or ‘off’ labels to each ing search procedure that is guaranteed to find the optimal solution.
goal inG. A labeling isconsistent iff the labels of each composed The procedure maintains the utility of the current best solution. If the
node and of its subgoals are consistent with the node’s execution sgartial solution currently explored can not be extended to one with
mantics. E.g. if a sequence goal is ‘on’, then all its subgoals are ‘orbetter utility than the current best, then it is dropped and a new one
and no other contradictory sequences are 'on’. If a sequence is ‘offis explored. The procedure uses the variable selection heuristic of
either some subgoal is ‘off’ or else the ordering of the sequence iselecting the most constrained goal first (the one with most subgoals
not implied by the current ‘on’ sequences. Consistent labelings thusssigned) and forward checks any proposed assignment to ensure itis
defineexecutable behaviors. not inconsistent with past assignments (figure 2). The solver provides
LetC = {c1,...cm } be a set of constraints, where eaghs ei-  API-s for the integration of the two methods, for example by using
ther a simple constraint of the forfdn(g;) or Of f(gr), or anim-  random search first for a number of runs and then taking the utility
plication on both sides of which there are conjunctions of simpleof the best solution produced as the bound for branch and bound.
constraints.
LetU = {(g1,uon(91), Uosr(g1))---(g1, uon (1), tors(g1)) } e
a utility list, tﬁat is a set of goglj;‘ with their associatedfuftilitie)g}.(g) 3 INDIVIDUAL LEVEL
is the utility obtained ify is achievedu, s ;(g) is the utility obtained
if g is not achieved. Given a utility ligt/ and a consistent labeling
L of G, the total utility of the labeling[/til(L,U), is the sum of
on-utilities for the "on’ labeled goals plus the sum of off-utilities for
the 'off’ labeled goals.

Let us now introduce the example that will be used throughout the
paper to illustrate the components of our architecture. The problem is
that of an organization that needs to decide whether to make or buy a
certain type of Customer Service Software (CSS). Figure 3 shows the
. : . . goal network, the constraints and the best solution individual level
Finally, a behavior planning problem is a tuple =< . . o

G, C, U, criterion > wherecriterion € {maz,min}. A prob- solution, as viewed by the member of the organization who has the

N, ; . |eading role in solving it, agerntP- Sam In the figure bt ai nCSS

lem specifies a goal network, a set of constraints, a utility list and an . . .
| SPEC | 90: . . : y andBuy CSS are both xchoices, while the other goals are choices.
optimization criterion, eithemax or min. A solution to a problem

P is alabelingL such thatUtil(L, U) is either maximal or minimal,
according to theriterion. 4 ORGANIZATIONAL LEVEL
The Solver. The problem of finding a consistent labeling (with-
out enforcing the sequencing constraints) is equivalent to satisfiabiBeveral of the goals in figure 3 can only be achieved by
ity (SAT). The problem of finding a labeling that maximizes (min- groups of agents working togetheDevel opl nt er nal | yCSS,
imizes) utility is a form of MAXSAT. The Solver we provide in- Adapt | nt er f ace andAdapt Dat aBase. The organization will
tegrates an incomplete random search procedure based on biasireed to assembteams for developing the software internally, or for
the WSAT method of [11], and a systematic (complete) branch anddapting a vendor solution. Because of that, the utility of any be-
bound procedure, both operating over the same representation of gbalior involving the goals in figure 3 can only be computed after
networks. In both cases enforcing the sequencing constraints is dooensidering the cost of the teams that can be formed for achieving
polynomially each time the main loop of the algorithm finds a solu-the collective goals.
tion. As known, the random search method is not guaranteed to find Determining these teams and selecting the min-cost one is the pur-
a solution, but performs very well on large scale problems. pose of our organizational reasoning method. The key to the method
The random search method (figure 1) always keeps a complete ois-the use oforganization models. Figure 4 shows such an organi-
off assignment to goals. Goals are ‘flipped’ (their value is changedzation model, a graph representation of the agents that can take part
with probability P (usually around 0.2) to increase the utility of the in achieving the collective goddevel opl nt er nal | yCSS. The
assignment (unlike the standard WSAT which flips randomly), andupper part of the figure contains all agents and groups that can be in-
with probability 1 — P to increase the number of consistently la- volved. Individual agents (lik€r oj ect Myr - Ci ndy) and groups
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Figure 3. Individual reasoning about the Make or Buy problem.

(like DevTean®) are shown as nodes. Encircled nodes without out- Figure4. Organization model with team structure.

going arcs (likeSof t Dev and QA) represent the goals achievable
by agents. Directed edges between an agent (or a group) and a goal
node signify that the agent (group) will achieve the goal with the costhese results, we have adopted their method for use in our architec-
attached to the edge. Directed edges between two agents (groupsie.
signify that the source node hasthority to manage the target node  Given an organization mod€) =< a, A, E,G >, the method
for achieving some goal, according to theeial contract that agents  first pre-computes the best (least cdspaths in the graph between
have agreed to abide by. These edges are labeled with the total costloé leadera and each of the nodes i&. The intuition is that the
involving the target agent (group). Thu&,0j ect Myr - G ndy has  tree structured best team can be composed by assembling some of
authority to manage botbevLead- John andQALead- Ki mata  these paths together. By computing a maximunk piiths between
cost of 1 each, to achieve ti8af t Dev and QA goals respectively. the leader and every goal, as opposedtsuch paths, we guarantee
If a target agent can achieve several goals, we allow a different coatpropositional encoding with size linear in the number of edges in
for each goal (this is not shown in the figure). Finally, we also re-O (otherwise the encoding would be quadratic). This approximation
quire that any agent (group) must be on a path ending in a goal nodeorks well in practice and there exists empirical evidence about the
- anybody contributes to some goal - and that an organization modbkst values fok for various sizes oF andG (see [4] for details).
is directionally acyclic. Second, we create a new MAXSAT problefs and a new goal
An organization model represents the views of one agent. Eaametwork for it, according to the method of [4]. For each edge between
agent has a number of such models representing its beliefs about htwo nodes inD we create an atomic goal. The on-utility of this goal
authority is distributed, what itself and others can do and what thés the cost of the edge i@. For each path between the leader and a
costs of doing things are. We use the notatidr=< a, A, E,G > goal inG (there are at most such paths) we create another atomic
to denote organization models representing ag&ntiewpoint and  goal. After creating alk such goals, we define a constraint imposing
containing agents (or groupd) (a € A), labeled edge& and goals that exactly one of these goals can be true. That is only one path
G. Given an organization modé), a team structure (or a coalition) between the leader and each goaGirwill be allowed. Finally, for
T led bya and able to achieve the set of goélss a tree rooted i each path goal created above, we add a constraint stating that if the
and spanning all goal§'. In other words, it is a group of agents that goal is ‘on’ then all goals associated with the edges will be ‘on’.
a believes it can manage at the top, with specified management andThe Steiner tree problefy thus created is solved for minimiz-
goal execution roles that ensure that a set of goals will be achievethg the sum of utilities. The result is the set of ‘on’ edges such that
The cost of a team structu®® cost(T'), is the sum of all costs of all the total cost is minimal and there is a path between the leader and
edges ifr. each organization graph goal. The elements of the tree (except for the
A minimal cost team structure is a team structure that has the mireaves) are the agents (or groups) that need to be involved in the team.
imum cost inO. Figure 4 (lower part) shows a minimal cost team This team structure not only has minimal cost, but it also describes a
structure that achieves both tisef t Dev (software development) number of aspects related to teamwork: what goal each agent is sup-
and QA (quality assurance) goals for developing internally the CS$hosed to achieve, which agents are coordinators and whom they co-
software). ordinate, the costs associated with every goal achievement or coordi-
Finding the Minimal Cost Team Structure. As defined above, the nation relation. In general, the costs can be interpreted as containing
problem of finding a minimal cost team structure in an organizatiorthe pay-offs to be paid to the team agents to obtain their commitment
graph is equivalent to the Steiner tree problem studied in operatioris the joint work.
research [2]. Recently, [4] have shown that this NP-complete prob- In the end, to determine an agent’s best behavior we have to com-
lem can be very competitively solved by a stochastic satisfiabilitypine the previous individual behavior planning with the organiza-
method. They have reported very good time performance (sometimésnal planning method presented here. Assum$his a solution
orders of magnitude better than specialized OR methods) as well & the individual planning problem, there will b& C S collec-
scalability to complex problems with thousands of nodes. Based otive goals which are ‘on’. For each goal B the agent has to use



A's goals: g0, g1, g2, g3 ...[tn—1, tn] be a decomposition d,; into n subintervals such that

v io = I, i, = h and for anyz € [i;,4+1) we havelU,,;(z) =
_______ u; (figure 5). For each domain sub-interval, 7,+:] we create an
uz atomic goalgfll. which is ‘on’ iff the value ofa; is in the subin-
terval [i,4;+1). As the subintervals cover the domain and are dis-
ul joint, in any situation only one of these goals can be ‘on’. This is
u3 enforced by posting, for each attribuig the constrainOn(za;)
0 whereza; = zchoice(gl,, ga.,-..gi ") (we call these attribute en-

coding constraints). The utility function ef is translated into a util-
ity list whereuo, (gk,) = w andueyys(gh,) = 0.

Agents may add their own constraints about what attribute values
or combinations of values are acceptable. For example, an agent may
only acceptsupport € {4,5}, where support levels range between
0 and 5. Or an agent may accept to pay more than $50 only if the
quality is greater than some given limit. A proposal from another

Figure5. Representing and encoding attributes. agent will not be accepted unless all these acceptability constraints
are satisfied.
Using the common BDL infrastructure, we encode a MAUT prob-
) ) o lem as a behavior planning problem whose goals are all the goals
its corresponding organization model to generate and solve the Mierated for all attributes of interest, whose constraints are all the
cost team formation problem. Then the final utility of a behaor  ,ihyte encoding constraints plus all the acceptability constraints
is utily (S) = utili(S) = 3 s cost(te). _and whose utility list is obtained by merging the utility lists of each

If branch and bound is used, we can generate the best solution i, .o qeq attribute. A solution of a MAUT problem is an on-off as-
utily (), by usingutil; (S) as the bound, because alwaysl; (S) < gjgnment to the goals of the problem that satisfies all constraints.
util; (S). This requires that the min cost team formation problem bel’he optimal solution is the solution that has maximum utility.
solved at each iteration of branch and bound. Research is needed 19 et S be a solution to agent’s MAUT problem anda; an at-
find more efficient ways of integrating these methods in this case. yjhte of the problem. Because of the attribute encoding constraint,

Once the min-cost team determined, the commitments of tgnq and only one of the goals associated with the subintervals of the
agents composing it are obtained through negotiation. If membertgin e will be ‘on’ in S. The subinterval associated with this goal
are not willing to commit, their pay-off can be increased (up 10 theygfines the acceptable set of values for the attribute in the given so-
cost of the next min-cost team), or new teams can be formed exclugjion, in the sense that any value in the set is equally acceptable to
ing the agents who do not wish to participate. the agent. Let nows4 and Sz be solutions tod’s, respectivelyB’s

MAUT problem. The two solutions intersect iff for each attribute
5 MARKET LEVEL _the acce_ptable _sets of.va!ue.s for Fhe two ggents’ have asnon-empty
intersection. In figure $is, j»] is the intersection ofi’s goalg” and

If our agent knew the utilities of buying the CSS software from theB’s goalq for the represented attribute. If an intersection exists for
three vendors in figure 3, then the previous methods would have be8gch attribute, then the two solutions intersect. The existence of inter-
enough to decide how to achieve its goals. In reality however, thgecting solutions represents a possible agreement between the agents,
utilities are not given in advance, they have to be discovered dynamecause each solution contains non-empty ranges of values for each
cally by interaction on the market. The utility of an offer for the CSSattribute which are acceptable to each agent. o
depends on how the offer satisfies a number of relevant and interde- The Negotiation Process. Assume we have two negotiating agents
pendent objectives, including e.g. the price, the overall quality, the! @nd B. For each agent, an acceptable solution specifies, for each
level of support offered, the warranties, etc. We address this problegftribute in part, an interval of acceptable values that the attribute can
by using Multi-Attribute Utility Theory (MAUT) [6] in a constraint take. The branch and bound solver allows an agent to generate its
optimization formulation that allows the use of our MAXSAT solvers Solutions in decreasing order of utility. The first (best) solution is ob-
for determining the best offering and supports agent interaction biined by running the solver on the original constraints. The next best
means of Pareto optimal negotiation protocols. solution is obtained by logically negating the previous best solution,

Encoding attributes. Let A = a1, as, ...a» be a set of attributes @dding it as a constraint and solving the resulting more constrained
shared by a number of agents. In our example, interesting attribut@soblem. This allows each agent to generate all its acceptable solu-
include theprice, the overallguality, the level ofsupport etc. The  tionsin decreasing order of utility. Figure 6 shows an interaction pro-
domain of an attribute;, D,, is an intervall, h] wherel andh are tocol allowing two agents to determine the best deal they can achieve
integers or reals. The domain describes the range of values that ti/en their valuations and acceptability constraints. Each agent gen-
attribute can take. Each value in the domain is assumed to be me@ates its solutions in decreasing order of utility, and sends each solu-
sured in a unit specific to the attribute. E.g., fotice a domain can  tion to the other agent. If any agent discovers an intersection between
be Dprice = [5,100] measured in dollars. Agents interact by ex- the current solution received from the other agent and one of its own
changing multi-attribute specifications formed by means of a share@@St solutions, then this is the Pareto optimal deal (no other pair of
set of attributes that have shared domain specifications. solutions can be better for both agents). _

An agent's utility function is approximated in the form shown in ~ Going back to the situation in figure 3, we see that by representing
figure 5. The domain of the attribute is decomposed into a set of dighe attributes of interest and the associated utility functions, our agent

joint sub-intervals that cover the entire domain, such that on eacfihe buyer) can negotiate with each of the three vendors the best deal
sub-interval the utility is constant. Léb., = [io,i1) U [i1, 42) U for the CSS system. The utility of each deal can then be used as the

i2 ai



multi-objective negotiations in e-commerce applications. However,
we have not seen any concrete technical solution as to how this inte-
gration can be achieved, other the one presented here.

Agent A’s
solutions in
decreasing order

Agent B’s
solutions in
decreasing order

2; g; The levels of the architecture have been validated in several ap-
A3 B3 plications. Max-utility behavior planning has been used to determine
A4 B4 how subscribers requests for multiple telecommunications “features”
A5 B5 can be serviced consistently with the constraints and preferences of

B6 subscribers, thus providing a new solution to an important industry
B7 problem known as “feature interaction”. The MAUT based negotia-
tion system has been used to negotiate the acquisition of electronic
components.

The next step is the integration of all levels into a significant ap-
plication. Toward this goal, we are developing a supply chain system
where market level interaction determines what to buy from which
suppliers, team formation determines the teams of contractors to be
involved in manufacturing an order and individual level planning de-
cides on the best course of action for each team member. To integrate
an application on this scale, we are extending the BDL infrastructure
in a number of directions. First, we are integrating probabilistic rea-
soning to allow agents to make more informed decisions under uncer-
tainty. At the market level, probabilities will be used to measure the
likelihood of partners accepting offers, pruning unlikely offers and
shortening the duration of negotiation. Second, BDL specifications
will be made more expressive by allowing temporal and resource
constraints. This will require the addition of a scheduler and a tem-
poral execution system, turning BDL into a more complete behavior

time

Connections define intersecting pairs of solutions of A and B.
(A3, B2) is the Pareto optimum.

A B

Generate and send B1

B1 not intersecting Al

Generate and send B2
A2 not intersecting {B1, B2}

Generate and send B3
A3 intersects B2 - deal!

Generate and send A1l <——>
B1 not intersecting Al

Generate and send A2 <——>
B2 not intersecting {A1, A2}
Generate and send A3 <——>
B3 not intersecting {Al, A2, A3}

Figure6. The negotiation process.

utility of the BuyVendor 1. . 3 goals. Knowing these, the agent can ; s
use the integrated individual and organizational reasoning method Rj2nning and execution infrastructure.

discover its best course of action in the given situation.
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compared with a range of research on teamwork and coalition forma-
tion. Logical specifications for teamwork were first proposed in [7].

Practical architectures extending these specifications are reported
[13] and [3]. These models and systems address the issigarnf [1]
work execution, for example stipulating when and how an agent
should quit the team. We complement this work by addressing s
team design problem as part of a single decision making probler[g]
whose solution specifies the goals to adopt, the plans to execute and
the collaborations to pursue in order to maximize the agent’s utility.

With respect to coalition formation, this generally includes threld!
activities [10]. Coalition generation is the partitioning of the set of
agents into sets (coalitions), usually disjoint and exhaustive. Solving
the coalition problem is done by joining together the work and rés]
sources of member agents. Finally, the value generated by the activity
of the coalition has to be divided among its members. [9] presents
anytime algorithm for coalition generation with worst case perfo[7
mance guarantees. This solution produces flat (unstructured) coaﬂi-
tions which specify neither what work will be done by each agent nisi
what pay-offs will they receive. Our Steiner tree based solution pro-
ducesstructured coalitions where the roles and goals of every age
are specified and the pay-offs to be received are determined. In [5]
a coalition formation algorithm is presented which uses a two-aggh®]
auction method to determine the pay-off division and to introduce a
limited structure inside a coalition (with one agent being the mana
of the coalition and the others receiving an agreed pay-off).

The PERSUADER system [12] is an early system that used MAUT?2]
to resolve conflicts through negotiation in the domain of labour
disputes. It has been suggested [1] that a combination of MAU43I
and constraint satisfaction could lead to agents that could automate
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