
Integrating Individual, Organizational and Market Level
Reasoning for Agent Coordination

Mihai Barbuceanu1 and Wai-Kau Lo2

Abstract. In this paper we articulate a multi-level view of agent
coordination and provide solutions for an integrated agent architec-
ture that addresses all the levels. At theindividual agent level, we
model the decision making problem faced by individual agents that
need to discover their highest utility goals and the plans to achieve
them. Individual level plans normally contain goals that lie outside
the agent’s control. To achieve them, the agent needs to team up with
other agents in the organization. At theorganizational level, we show
how organizational structures can be used to form the minimum cost
teams needed to achieve such goals. Individual and organizational
reasoning rely on knowing the utilities of the options available to
agents. Often, these utilities are not given in advance, they must be
discovered dynamically by market driven interaction. At themar-
ket level, we give a constraint optimization formulation to Multi At-
tribute Utility Theory and introduce interaction processes that allow
agents to discover how to cooperate to optimize their objectives. All
levels translate their specific models into a common reasoning infras-
tructure integrating randomized and systematic search.

1 INTRODUCTION

As the connectivity provided by the Internet increases, the coordina-
tion problem faced by the interconnected agents and organizations
becomes more and more difficult. Global systems for manufacturing
and service provisioning for example, connecting suppliers, produc-
ers, distributors and customers all over the world need to coordinate
the activities of agents inside their different component organizations
and the organizations themselves on the global market place to pro-
vide value for all participants.

In this paper we articulate a multi-level view of coordination and
we provide solutions for an integrated agent architecture that ad-
dresses all the levels. All levels use acommon representation and
reasoning infrastructure that represents an agent’s goals, constraints
and utilities (section 2). A MAXSAT-type solver produces a high (or
the highest) utility behavior. This is used as the solution of the agent’s
decision problem at theindividual level (section 3). Individual behav-
iors normally contain goals that the agent can’t achieve without the
collaboration of other agents in the organization. At theorganization
level, organization models are dynamically generated for these goals.
These models, based on the Steiner tree problem [2], are compiled
into a form solvable by the same MAXSAT-type solver, determining
the structure of the teams that can achieve the goals with minimal
cost (section 4). Individual and organizational reasoning both rely

1 Enterprise Integration Laboratory, University of Toronto, 4 Taddle Creek
Road, Toronto, Ontario, Canada, M5S 3G9, email: mihai@eil.utoronto.ca

2 Enterprise Integration Laboratory, University of Toronto, 4 Taddle Creek
Road, Toronto, Ontario, Canada, M5S 3G9, email: wklo@eil.utoronto.ca

on knowing the utilities of the goals. In many cases, these are not
given in advance, they have to be discovered dynamically by market
interaction. At themarket level (section 5), we use Multi-Attribute
Utility Theory (MAUT) [6] to evaluate and negotiate the optimal ex-
changes between agents or organizations, given their multiple inter-
dependent objectives and their preferences. This is done by giving
a constraint optimization formulation to the MAUT problem and by
using the same MAXSAT constraint optimization solver to find the
best offerings or responses in negotiation. We end with related work,
applications and future work hints.

2 BDL REASONING INFRASTRUCTURE

Agents act and thus we first need a language to describe and rea-
son about agent behavior (the Behavior Description Language, or
BDL). A behavior consists of partially ordered goal achieving ac-
tivities that satisfy given constraints. In our representation there are
two kinds of goals,composed andatomic. Composed goals consist
of other (sub)goals, while atomic goals do not. We allow three kinds
of compositions.

Sequential compositions,a = seq(a1; a2; :::an) denote that all
component goalsai must be executed in the given order.

Parallel compositions,a = par(a1; a2; :::am) denote that all
component goals must be executed, but without imposing any order.

Choice compositions,a = choice(a1; a2; :::ap) denote execution
of only a non-empty subset of sub-goals, also without imposing any
order.Exclusive choices (xchoice) require the execution of exactly
one component sub-goal.

From the execution viewpoint, choices haveor (xor for xchoices)
semantics in that a choiceg is ‘on’ - meaning will be executed
and writtenOn(g) - iff at least one component is on (exactly one
for xchoices) and ‘off’ - meaning will not be executed and written
Off(g) - iff all components are off. Sub-goals can occur negated
within choices and parallels, but not within sequences. Thus,c =
choice(a;�b) denotes a choice between achievinga and not achiev-
ing b. Sequences and parallels both haveand semantics - ‘on’ iff
all components are on, and ‘off’ otherwise. The difference is that
sequences also requireordered execution of subgoals, while paral-
lels don’t. At the planning level we address this by enforcing spe-
cific constraints for sequences. For example,On(seq(ai; ai+1)) �
Off(seq(ai+1; ai)). From this we derive that if a sequence is ‘on’,
all its sub-sequences are also ‘on’, and if a subsequence is ‘off’
then all its super-sequences are also ‘off’. E.g.,Off(seq(a1; a3)) �
Off(seq(a1; a2; a3)).

From an agent’s viewpoint, a goal isindividually achievable if the
agent acting alone can achieve it. A goal iscollectively achievable if
a coalition of agents must be put together and coordinated in order

Biased-WSAT(goalNetwork){
for i = 1 to maxTries{
A = a randomly generated on-off assignment;
for j = 1 to maxFlips{
if A is a solution return it;
else {G = randomly chosen inconsistent goal;
With probability P,
Flip G or one of its subgoals that results in
the greatest utility increase;
Otherwise (with probability 1-P)
Flip G or one of its subgoals
that results in the greatest
decrease in the number of inconsistent goals;}}}

return failure;}

Figure 1. Biased WSAT algorithm.

to achieve the goal. Often, one or more collectively achievable goals
are part of an agent’s plans. In such cases, the agent has to determine
the best set of agents to collaborate with to achieve these goals. This
is addressed later on.

Planning Behavior. Let G = fg1; :::gng be a set of goals, or
a goal network. An on-off labeling of the network is a mapping
L : G ! fon; offg associating either ‘on’ or ‘off’ labels to each
goal inG. A labeling isconsistent iff the labels of each composed
node and of its subgoals are consistent with the node’s execution se-
mantics. E.g. if a sequence goal is ‘on’, then all its subgoals are ‘on’
and no other contradictory sequences are ’on’. If a sequence is ‘off’,
either some subgoal is ‘off’ or else the ordering of the sequence is
not implied by the current ‘on’ sequences. Consistent labelings thus
defineexecutable behaviors.

Let C = fc1; :::cmg be a set of constraints, where eachci is ei-
ther a simple constraint of the formOn(gj) or Off(gk), or an im-
plication on both sides of which there are conjunctions of simple
constraints.

Let U = f(g1; uon(g1); uoff(g1)):::(gl; uon(gl); uoff (gl))g be
a utility list, that is a set of goals with their associated utilities.uon(g)
is the utility obtained ifg is achieved.uoff(g) is the utility obtained
if g is not achieved. Given a utility listU and a consistent labeling
L of G, the total utility of the labeling,Util(L;U), is the sum of
on-utilities for the ’on’ labeled goals plus the sum of off-utilities for
the ’off’ labeled goals.

Finally, a behavior planning problem is a tupleP =<
G;C; U; criterion > wherecriterion 2 fmax;ming. A prob-
lem specifies a goal network, a set of constraints, a utility list and an
optimization criterion, eithermax or min. A solution to a problem
P is a labelingL such thatUtil(L; U) is either maximal or minimal,
according to thecriterion.

The Solver. The problem of finding a consistent labeling (with-
out enforcing the sequencing constraints) is equivalent to satisfiabil-
ity (SAT). The problem of finding a labeling that maximizes (min-
imizes) utility is a form of MAXSAT. The Solver we provide in-
tegrates an incomplete random search procedure based on biasing
the WSAT method of [11], and a systematic (complete) branch and
bound procedure, both operating over the same representation of goal
networks. In both cases enforcing the sequencing constraints is done
polynomially each time the main loop of the algorithm finds a solu-
tion. As known, the random search method is not guaranteed to find
a solution, but performs very well on large scale problems.

The random search method (figure 1) always keeps a complete on-
off assignment to goals. Goals are ‘flipped’ (their value is changed)
with probabilityP (usually around 0.2) to increase the utility of the
assignment (unlike the standard WSAT which flips randomly), and
with probability 1 � P to increase the number of consistently la-

BranchAndBound(maxUtil){
top:while(true){

if Complete solution found with utility=util{
if util > maxUtil{maxUtil = util;

Save current solution;}
Backtrack;
if Backtracking not possible exit;}

else{goal=select most constrained goal;
Push goal onto stack;
while(goal inconsistent with past assignments

or current solution worse than maxUtil){
if Another assignment for goal and

its subgoals exists
{Continue with top;}
else {Backtrack;

if Backtracking not possible
exit;}}}}}

Figure 2. Branch and Bound algorithm.

beled goals. In each case ties are broken infavor of theother crite-
rion. Based on the current experience, this method has consistently
produced high utility solutions, in many cases finding the optimal
solution.

The branch and bound method (figure 2) is a systematic backtrack-
ing search procedure that is guaranteed to find the optimal solution.
The procedure maintains the utility of the current best solution. If the
partial solution currently explored can not be extended to one with
better utility than the current best, then it is dropped and a new one
is explored. The procedure uses the variable selection heuristic of
selecting the most constrained goal first (the one with most subgoals
assigned) and forward checks any proposed assignment to ensure it is
not inconsistent with past assignments (figure 2). The solver provides
API-s for the integration of the two methods, for example by using
random search first for a number of runs and then taking the utility
of the best solution produced as the bound for branch and bound.

3 INDIVIDUAL LEVEL

Let us now introduce the example that will be used throughout the
paper to illustrate the components of our architecture. The problem is
that of an organization that needs to decide whether to make or buy a
certain type of Customer Service Software (CSS). Figure 3 shows the
goal network, the constraints and the best solution individual level
solution, as viewed by the member of the organization who has the
leading role in solving it, agentVP-Sam. In the figure,ObtainCSS
andBuyCSS are both xchoices, while the other goals are choices.

4 ORGANIZATIONAL LEVEL

Several of the goals in figure 3 can only be achieved by
groups of agents working together:DevelopInternallyCSS,
AdaptInterface andAdaptDataBase. The organization will
need to assembleteams for developing the software internally, or for
adapting a vendor solution. Because of that, the utility of any be-
havior involving the goals in figure 3 can only be computed after
considering the cost of the teams that can be formed for achieving
the collective goals.

Determining these teams and selecting the min-cost one is the pur-
pose of our organizational reasoning method. The key to the method
is the use oforganization models. Figure 4 shows such an organi-
zation model, a graph representation of the agents that can take part
in achieving the collective goalDevelopInternallyCSS. The
upper part of the figure contains all agents and groups that can be in-
volved. Individual agents (likeProjectMgr-Cindy) and groups

x

x

ObtainCSS

Best Solution: {On(ObtainCSS), On(DevelopInternallyCSS), Off(BuyCSS), Off(AdaptCSS)...}

Constraints: {On(ObtainCSS), On(BuyVendor1) => On(AdaptInterface),
On(BuyVendor2) => On(AdaptDataBase)}

Utilities: {(BuyVendor1, 3, 0)(BuyVendor2, 4, 0) (BuyVendor3, 3, 0)

BuyVendor1

BuyVendor2

BuyVendor3

 (AdaptInterface, -1, 0) (AdaptDataBase, -2, 0) (DevelopInternally 4, 0)}

AdaptCSS
AdaptDataBase

AdaptInterface

OutsourceCSS

DevelopInternallyCSS

Figure 3. Individual reasoning about the Make or Buy problem.

(like DevTeam2) are shown as nodes. Encircled nodes without out-
going arcs (likeSoftDev andQA) represent the goals achievable
by agents. Directed edges between an agent (or a group) and a goal
node signify that the agent (group) will achieve the goal with the cost
attached to the edge. Directed edges between two agents (groups)
signify that the source node hasauthority to manage the target node
for achieving some goal, according to thesocial contract that agents
have agreed to abide by. These edges are labeled with the total cost of
involving the target agent (group). Thus,ProjectMgr-Cindy has
authority to manage bothDevLead-John andQALead-Kim, at a
cost of 1 each, to achieve theSoftDev andQA goals respectively.
If a target agent can achieve several goals, we allow a different cost
for each goal (this is not shown in the figure). Finally, we also re-
quire that any agent (group) must be on a path ending in a goal node
- anybody contributes to some goal - and that an organization model
is directionally acyclic.

An organization model represents the views of one agent. Each
agent has a number of such models representing its beliefs about how
authority is distributed, what itself and others can do and what the
costs of doing things are. We use the notationO =< a;A;E;G >

to denote organization models representing agenta’s viewpoint and
containing agents (or groups)A (a 2 A), labeled edgesE and goals
G. Given an organization modelO, a team structure (or a coalition)
T led bya and able to achieve the set of goalsG is a tree rooted ina
and spanning all goalsG. In other words, it is a group of agents that
a believes it can manage at the top, with specified management and
goal execution roles that ensure that a set of goals will be achieved.
The cost of a team structureT , cost(T), is the sum of all costs of all
edges inT .

A minimal cost team structure is a team structure that has the min-
imum cost inO. Figure 4 (lower part) shows a minimal cost team
structure that achieves both theSoftDev (software development)
andQA (quality assurance) goals for developing internally the CSS
software).

Finding the Minimal Cost Team Structure. As defined above, the
problem of finding a minimal cost team structure in an organization
graph is equivalent to the Steiner tree problem studied in operations
research [2]. Recently, [4] have shown that this NP-complete prob-
lem can be very competitively solved by a stochastic satisfiability
method. They have reported very good time performance (sometimes
orders of magnitude better than specialized OR methods) as well as
scalability to complex problems with thousands of nodes. Based on

ProjectMgr-Bob

ProjectMgr-Cindy

VP-Sam
2

1

ProjectMgr-Cindy

VP-Sam

Minimum cost team structure for DevelopInternallyCSS

Organization Model for DevelopInternallyCSS

1

1

2

DevLead-Mike

DevLead-John

QALead-Kim

2

1

2

3

1

2

DevTeam1

DevTeam2

DevTeam3

QATeam1

QATeam2

2

1

DevTeam2

QATeam1

2

DevLead-John

QALead-Kim

2

1

2

1

1 SoftDev

QA

QA

SoftDev1

2

1

1
1

1

Figure 4. Organization model with team structure.

these results, we have adopted their method for use in our architec-
ture.

Given an organization modelO =< a;A;E;G >, the method
first pre-computes the best (least cost)k paths in the graph between
the leadera and each of the nodes inG. The intuition is that the
tree structured best team can be composed by assembling some of
these paths together. By computing a maximum ofk paths between
the leader and every goal, as opposed toall such paths, we guarantee
a propositional encoding with size linear in the number of edges in
O (otherwise the encoding would be quadratic). This approximation
works well in practice and there exists empirical evidence about the
best values fork for various sizes ofE andG (see [4] for details).

Second, we create a new MAXSAT problemPO and a new goal
network for it, according to the method of [4]. For each edge between
two nodes inO we create an atomic goal. The on-utility of this goal
is the cost of the edge inO. For each path between the leader and a
goal inG (there are at mostk such paths) we create another atomic
goal. After creating allk such goals, we define a constraint imposing
that exactly one of these goals can be true. That is only one path
between the leader and each goal inG will be allowed. Finally, for
each path goal created above, we add a constraint stating that if the
goal is ‘on’ then all goals associated with the edges will be ‘on’.

The Steiner tree problemPO thus created is solved for minimiz-
ing the sum of utilities. The result is the set of ‘on’ edges such that
the total cost is minimal and there is a path between the leader and
each organization graph goal. The elements of the tree (except for the
leaves) are the agents (or groups) that need to be involved in the team.
This team structure not only has minimal cost, but it also describes a
number of aspects related to teamwork: what goal each agent is sup-
posed to achieve, which agents are coordinators and whom they co-
ordinate, the costs associated with every goal achievement or coordi-
nation relation. In general, the costs can be interpreted as containing
thepay-offs to be paid to the team agents to obtain their commitment
to the joint work.

In the end, to determine an agent’s best behavior we have to com-
bine the previous individual behavior planning with the organiza-
tional planning method presented here. AssumingS is a solution
to the individual planning problem, there will beSc � S collec-
tive goals which are ‘on’. For each goal inSc the agent has to use

u0

u1

u2

u3

U

i0 i1 j1 i2 i3 j2 i4 ai

A’s goals: g0, g1, g2, g3 B’s goal: q

Figure 5. Representing and encoding attributes.

its corresponding organization model to generate and solve the min
cost team formation problem. Then the final utility of a behaviorS

is utilf (S) = utili(S)�
P

c2Sc
cost(tc).

If branch and bound is used, we can generate the best solution wrt
utilf (), by usingutilf (S) as the bound, because alwaysutilf (S) �
utili(S). This requires that the min cost team formation problem be
solved at each iteration of branch and bound. Research is needed to
find more efficient ways of integrating these methods in this case.

Once the min-cost team determined, the commitments of the
agents composing it are obtained through negotiation. If members
are not willing to commit, their pay-off can be increased (up to the
cost of the next min-cost team), or new teams can be formed exclud-
ing the agents who do not wish to participate.

5 MARKET LEVEL

If our agent knew the utilities of buying the CSS software from the
three vendors in figure 3, then the previous methods would have been
enough to decide how to achieve its goals. In reality however, the
utilities are not given in advance, they have to be discovered dynami-
cally by interaction on the market. The utility of an offer for the CSS
depends on how the offer satisfies a number of relevant and interde-
pendent objectives, including e.g. the price, the overall quality, the
level of support offered, the warranties, etc. We address this problem
by using Multi-Attribute Utility Theory (MAUT) [6] in a constraint
optimization formulation that allows the use of our MAXSAT solvers
for determining the best offering and supports agent interaction by
means of Pareto optimal negotiation protocols.

Encoding attributes. Let A = a1; a2; :::an be a set of attributes
shared by a number of agents. In our example, interesting attributes
include theprice, the overallquality, the level ofsupport etc. The
domain of an attributeai, Dai is an interval[l; h] wherel andh are
integers or reals. The domain describes the range of values that the
attribute can take. Each value in the domain is assumed to be mea-
sured in a unit specific to the attribute. E.g., forprice a domain can
beDprice = [5; 100] measured in dollars. Agents interact by ex-
changing multi-attribute specifications formed by means of a shared
set of attributes that have shared domain specifications.

An agent’s utility function is approximated in the form shown in
figure 5. The domain of the attribute is decomposed into a set of dis-
joint sub-intervals that cover the entire domain, such that on each
sub-interval the utility is constant. LetDai = [i0; i1) [[i1; i2) [

:::[in�1; in] be a decomposition ofDai inton subintervals such that
i0 = l, in = h and for anyx 2 [il; il+1) we haveUai(x) =
ul (figure 5). For each domain sub-interval[il; il+1] we create an
atomic goalglai which is ‘on’ iff the value ofai is in the subin-
terval [il; il+1). As the subintervals cover the domain and are dis-
joint, in any situation only one of these goals can be ‘on’. This is
enforced by posting, for each attributeai, the constraintOn(xai)
wherexai = xchoice(g0ai ; g

1
ai
; :::gn�1ai

) (we call these attribute en-
coding constraints). The utility function ofai is translated into a util-
ity list whereuon(glai) = ul anduoff(glai) = 0.

Agents may add their own constraints about what attribute values
or combinations of values are acceptable. For example, an agent may
only acceptsupport 2 f4; 5g, where support levels range between
0 and 5. Or an agent may accept to pay more than $50 only if the
quality is greater than some given limit. A proposal from another
agent will not be accepted unless all these acceptability constraints
are satisfied.

Using the common BDL infrastructure, we encode a MAUT prob-
lem as a behavior planning problem whose goals are all the goals
generated for all attributes of interest, whose constraints are all the
attribute encoding constraints plus all the acceptability constraints
and whose utility list is obtained by merging the utility lists of each
encoded attribute. A solution of a MAUT problem is an on-off as-
signment to the goals of the problem that satisfies all constraints.
The optimal solution is the solution that has maximum utility.

Let S be a solution to agentA’s MAUT problem andai an at-
tribute of the problem. Because of the attribute encoding constraint,
one and only one of the goals associated with the subintervals of the
attribute will be ‘on’ inS. The subinterval associated with this goal
defines the acceptable set of values for the attribute in the given so-
lution in the sense that any value in the set is equally acceptable to
the agent. Let nowSA andSB be solutions toA’s, respectivelyB’s
MAUT problem. The two solutions intersect iff for each attributeai
the acceptable sets of values for the two agents have a non-empty
intersection. In figure 5[i3; j2] is the intersection ofA’s goalg3 and
B’s goal q for the represented attribute. If an intersection exists for
each attribute, then the two solutions intersect. The existence of inter-
secting solutions represents a possible agreement between the agents,
because each solution contains non-empty ranges of values for each
attribute which are acceptable to each agent.

The Negotiation Process. Assume we have two negotiating agents
A andB. For each agent, an acceptable solution specifies, for each
attribute in part, an interval of acceptable values that the attribute can
take. The branch and bound solver allows an agent to generate its
solutions in decreasing order of utility. The first (best) solution is ob-
tained by running the solver on the original constraints. The next best
solution is obtained by logically negating the previous best solution,
adding it as a constraint and solving the resulting more constrained
problem. This allows each agent to generate all its acceptable solu-
tions in decreasing order of utility. Figure 6 shows an interaction pro-
tocol allowing two agents to determine the best deal they can achieve
given their valuations and acceptability constraints. Each agent gen-
erates its solutions in decreasing order of utility, and sends each solu-
tion to the other agent. If any agent discovers an intersection between
the current solution received from the other agent and one of its own
past solutions, then this is the Pareto optimal deal (no other pair of
solutions can be better for both agents).

Going back to the situation in figure 3, we see that by representing
the attributes of interest and the associated utility functions, our agent
(the buyer) can negotiate with each of the three vendors the best deal
for the CSS system. The utility of each deal can then be used as the

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5
B6
B7

Agent A’s Agent B’s

time

A B

B1 not intersecting A1 B1 not intersecting A1
Generate and send A2 Generate and send B2
B2 not intersecting {A1, A2} A2 not intersecting {B1, B2}
Generate and send A3 Generate and send B3
B3 not intersecting {A1, A2, A3} A3 intersects B2 - deal!

Generate and send A1 Generate and send B1

solutions in
decreasing order

solutions in
decreasing order

(A3, B2) is the Pareto optimum.
Connections define intersecting pairs of solutions of A and B.

Figure 6. The negotiation process.

utility of theBuyVendor1..3 goals. Knowing these, the agent can
use the integrated individual and organizational reasoning method to
discover its best course of action in the given situation.

6 CONCLUSIONS

Our integration of individual and organizational reasoning can be
compared with a range of research on teamwork and coalition forma-
tion. Logical specifications for teamwork were first proposed in [7].
Practical architectures extending these specifications are reported in
[13] and [3]. These models and systems address the issue ofteam-
work execution, for example stipulating when and how an agent
should quit the team. We complement this work by addressing the
team design problem as part of a single decision making problem
whose solution specifies the goals to adopt, the plans to execute and
the collaborations to pursue in order to maximize the agent’s utility.

With respect to coalition formation, this generally includes three
activities [10]. Coalition generation is the partitioning of the set of
agents into sets (coalitions), usually disjoint and exhaustive. Solving
the coalition problem is done by joining together the work and re-
sources of member agents. Finally, the value generated by the activity
of the coalition has to be divided among its members. [9] presents an
anytime algorithm for coalition generation with worst case perfor-
mance guarantees. This solution produces flat (unstructured) coali-
tions which specify neither what work will be done by each agent nor
what pay-offs will they receive. Our Steiner tree based solution pro-
ducesstructured coalitions where the roles and goals of every agent
are specified and the pay-offs to be received are determined. In [5]
a coalition formation algorithm is presented which uses a two-agent
auction method to determine the pay-off division and to introduce a
limited structure inside a coalition (with one agent being the manager
of the coalition and the others receiving an agreed pay-off).

The PERSUADER system [12] is an early system that used MAUT
to resolve conflicts through negotiation in the domain of labour
disputes. It has been suggested [1] that a combination of MAUT
and constraint satisfaction could lead to agents that could automate

multi-objective negotiations in e-commerce applications. However,
we have not seen any concrete technical solution as to how this inte-
gration can be achieved, other the one presented here.

The levels of the architecture have been validated in several ap-
plications. Max-utility behavior planning has been used to determine
how subscribers requests for multiple telecommunications “features”
can be serviced consistently with the constraints and preferences of
subscribers, thus providing a new solution to an important industry
problem known as “feature interaction”. The MAUT based negotia-
tion system has been used to negotiate the acquisition of electronic
components.

The next step is the integration of all levels into a significant ap-
plication. Toward this goal, we are developing a supply chain system
where market level interaction determines what to buy from which
suppliers, team formation determines the teams of contractors to be
involved in manufacturing an order and individual level planning de-
cides on the best course of action for each team member. To integrate
an application on this scale, we are extending the BDL infrastructure
in a number of directions. First, we are integrating probabilistic rea-
soning to allow agents to make more informed decisions under uncer-
tainty. At the market level, probabilities will be used to measure the
likelihood of partners accepting offers, pruning unlikely offers and
shortening the duration of negotiation. Second, BDL specifications
will be made more expressive by allowing temporal and resource
constraints. This will require the addition of a scheduler and a tem-
poral execution system, turning BDL into a more complete behavior
planning and execution infrastructure.

7 ACKNOWLEDGEMENTS

This research is supported, in part, by Materials and Manufacturing
Ontario, Mitel Corp., Metex Systems and Communications and In-
formation Technology Ontario.

REFERENCES
[1] Gutman, R., Moukas,A., and Maes, P. Agent Mediated Electronic Com-

merce: A Survey.Knowledge Engineering Review, June 1998.
[2] Hwang, F.K, Richards, D.S. and Winter, P. The Steiner Tree Problem.

North-Holland (Elsevier Science Publications), Amsterdam 1992.
[3] Jennings, N. R. Controlling Cooperative Problem Solving in Industrial

Multi-Agent Systems Using Joint Intentions. Artificial Intelligence, 75
(2) pp 195-240, 1995.

[4] Jiang, Y., Kautz, H. and Selman, B. Solving Problems with Hard and
Soft Constraints Using a Stochastic Algorithm for MAXSAT.First In-
ternational Joint Workshop on Artificial Intelligence and Operations
Research, Timberline, Oregon, 1995.

[5] Ketchpel, S. Forming Coalitions in the Face of Uncertain Rewards.
Proc. of AAAI-94 vol1, 414-419, Seattle, WA, July 1994.

[6] Keeney,R. and Raiffa, H. Decisions with Multiple Objectives: Prefer-
ences and Value Tradeoffs.John Willey & Sons, 1976.

[7] Levesque, H., Coehn, P., Nunes, J. On acting together.Proc. of AAAI-
90, Boston. MA, 1990, 94-99.

[8] Pearl, J. Probabilistic Reasoning in Intelligent Systems,Morgan Kauf-
mann, 1988.

[9] Sandholm, T.V., Larson, K., Andersson, M., Shehory, O., and Tohme, F.
Anytime Coalition Structure Generation with Worst Case Guarantees.
Proc. of AAAI-98, Madison, WI, July 1998, 46-53.

[10] Sandholm, T. V. and Lesser, V.R. Coalitions among computationally
bound agents.Artificial Intelligence 94, 1997, 99-137.

[11] Selman, B., H.J. Levesque and D. Mitchell. 1992. A new method for
solving hard satisfiability problems.Proceedings of AAAI-92 San Jose,
CA, pp. 440446.

[12] Sycara, K. The PERSUADER. InThe Encyclopedia of Artificial Intel-
ligence, D. Shapiro (ed), JohnWilley & Sons, January 1992.

[13] Tambe, M. Towards flexible teamwork.Journal of Artificial Intelli-
gence Research 7, 1997, 83-124.

