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Abstract. A resolution based proof system for a Temporal Logic
of Possible Belief is presented and justified. This logic represents
a combination of the branching-time temporal logic CTL and the
modal logic KD45. Since such combinations of non-classical log-
ics are often used in agent theories for specifying complex properties
of rational agents, the resolution system presented here provides a
basis for the verification of such specifications.

1 INTRODUCTION

The use of agents is now seen as an essential tool in representing,
understanding and implementing complex software systems. In par-
ticular, the characterisation of complex components as intelligent or
rational agents [13] allows the system designer to analyse applica-
tions at a much higher level of abstraction. In order to provide formal
software engineering techniques, in particular to enable reasoning
about such agents, a number of theories of rational agency have been
developed, such as the BDI [11] and KARO [12] frameworks. The
semantics of these frameworks are usually represented as complex
multi-modal logics. In order that principled techniques for agent-
based software engineering can be developed, practical proof meth-
ods for these complex logics must (where possible) be established.
Proof in such logics provides a basis both for agent-based formal
methods and for the logical characterisation of agent computations.

The leading agent theories and agent-based formal methods all
share similar elements, in particular

an informational component, such as being able to represent an
agent’s beliefs or knowledge,
a dynamic component, allowing the representation of dynamic ac-
tivity, and,
a motivational component, often representing the agents desires,
intentions or goals.

These aspects are typically represented logically by

Information — modal logic of belief (KD45) or knowledge (S5);
Dynamism — temporal or dynamic logic;
Motivation — modal logic of intention (KD) or desire (KD).

Thus, the predominant approaches to agent theory use relevant com-
binations, for example

Moore ([10]) — dynamic logic + knowledge (S5)
BDI ([11]) — branching temporal logic (CTL ) + belief (KD45) +

desire (KD) + intention (KD)
KARO ([12]) — dynamic logic (PDL) + belief (KD45) + wishes

(KD)
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Unfortunately, many of these combinations, particularly those using
dynamic logic, become too complex (not only undecidable, but in-
complete) to use in practical situations. Thus, much current research
activity is centred around developing combinations of non-classical
logics that can express many of the same properties as the more com-
plex combinations, yet are simpler to mechanise. For example, some
of our work in this area has involved developing a simpler logical
basis for BDI-like agents [4], while others have developed temporal
logics of knowledge [7].

The aim of this paper is to examine proof methods for one partic-
ular logic that is being developed in this way. This is based on the
KARO framework [12] but, rather than using a complex combina-
tion of logics we, in collaboration with the KARO developers [8],
have identified a logic combining a branching-time temporal aspect
with a modal information aspect and have shown how this can be
used to successfully represent many of the core elements of KARO.
This logic is essentially the branching-time temporal logic, Compu-
tational Tree Logic (CTL), combined with the modal logic KD45.
CTL was first described in [2] and can be distinguished from the va-
riety of branching time temporal logics proposed in the literature,
as every temporal operator, for example ‘ ’ (in the next moment),
must be preceded immediately by a path operator, for example A (on
all paths). Thus an example of a CTL formula is A (where is a
proposition), meaning that is true in all possible next states.

In previous work, a proof method based upon clausal resolution
for CTL [1] has been developed. We here consider the extension of
this approach to the combination of CTL with the KD45 modal logic.
The key elements of the method, namely the normal form, the con-
cept of step resolution and the form of temporal resolution rule, are
introduced and justified with respect to the logic.

This logic thus provides a basis for the KARO-like specification
of rational agents. Our work here shows how (practical) verification
for such logics, and hence such agent specifications, can be achieved.

2 A TEMPORAL LOGIC OF POSSIBLE BELIEF

In this section, we give the syntax and semantics of a logic BBn, a
branching-time temporal logic of belief, in which there are no inter-
action axioms.

2.1 Syntax

Formulae are constructed from a set p q r of primitive
propositions. The language BBn contains the standard propositional
connectives (not), (or), (and) and (implies). For “belief”
we assume a set of agents Ag n and we introduce a set of
unary modal connectives Bi, for i Ag, where a formula Bi is read
as “agent i believes ”. For the temporal dimension we take the path
operators A and E in conjunction with the usual set of future-time



connectives (next), (sometime or eventually), (always),
(until) and (unless or weak until). We interpret these connectives
over a discrete, branching model of time with finite past, and infi-
nite future. The formulae of BBn are constructed using the following
connectives and proposition symbols:

a set of proposition symbols;
the constants false and true;
the propositional connectives , , , ;
the future-time temporal connectives, , , , and ;
the path operators, A, E;
the modal connectives Bi (where i Ag).

The set of well-formed formulae of BBn, WFFB, is defined by the
following rules:

any element of is in WFFB;
false and true are in WFFB;
if F and G are in WFFB then so are

F F G F G F G
P F P F P F G P F G P F BiF

where i Ag and P is either path operator.

We define some particular classes of formulae that will be useful
later.

Definition 1 A literal is either p, or p where p is a proposition.

Definition 2 A modal literal is either Bil or Bil where l is a literal.

2.2 Semantics

We follow closely the presentation of semantics given in [7]. First,
we assume that the world may be in any of a set, S, of states.

Definition 3 A tree is a structure S , where S is the set of states
and S S is a relation between states such that

s S is a unique root node (i.e. si S such that si s );
for each si S there exists sj S such that si sj ;
for all si sj sk S if sj si and sk si then sj sk .

Let T be the set of all trees.

Definition 4 A timeline, t, is an infinitely long, linear, discrete se-
quence of states, indexed by the natural numbers ( ).

Note that timelines correspond to the runs of Halpern and Vardi [7].
Given a set of trees T , the set of timelines can be extracted by taking
the union of the infinite branches that start at the root node of each
tree in T . Let TLines be the set of all timelines in T .

Definition 5 A point, q, is a pair q t u , where t TLines is a
timeline and u is a temporal index into t.

Let Points be the set of all points.

Definition 6 Given T, a set of trees, let TLines be the set of timelines
constructed from T. We say that two timelines t and t coincide up to
point t n if, and only if, t n t n for all n n. A timeline
t extends t n if, and only if, t and t coincide up to t n .

Definition 7 A valuation, , is a function Points T F .

Definition 8 A model, M, for BBn is a structure M
T R Rn , where:

T is a set of trees, with a distinguished tree r ;
Ri, for all i Ag is the agent accessibility relation over Points,
i.e., Ri Points Points where each Ri is transitive, serial ( i
Ag q Points q Points s.t. q q Ri) and Euclidean
( i Ag q q q Points if q q Ri and q q Ri then
q q Ri);
is a valuation function, as above.

As usual, we define the semantics of the language via the satisfaction
relation ‘ ’. For BBn this relation holds between pairs of the form
M q (where M is a model and q Points) and BBn-formulae. The

rules defining the satisfaction relation are given below (we omit the
definitions for some classical operators).

M t u true
M t u p iff t u p T (where p )

M t u F iff M t u F

M t u F G iff M t u F or M t u G

M t u AF iff M t u F for all timelines t
extending t u

M t u EF iff M t u F for some timeline t
extending t u

M t u F iff M t u F

M t u F iff u if u u then
M t u F

M t u F iff u if u u then
M t u F

M t u F G iff u such that u u and
M t u G and u if
u u u then M t u F

M t u F G iff M t u F G or
M t u F

M t u BiF iff t TLines u
if t u t u Ri

then M t u F

Satisfiability and validity in BBn are defined in the usual way.

As agent accessibility relations in BBn models are transitive, serial
and Euclidean, the axioms of the normal modal system KD45 are
valid in BBn models. They are

K Bi F G BiF BiG
D BiF Bi F

BiF BiBiF
Bi F Bi Bi F

In the following, l are literals, m are literals or modal literals and D
are disjunctions of literals or modal literals.

3 A NORMAL FORM FOR BBn

The normal form we use is known as SNFB . For the purposes of the
normal form we introduce a symbol such that M t

for any timeline t extracted from the distinguished tree r .
Formulae in SNFB are of the general form

A
i

Li



where each Li is known as a rule and must be one of the following
forms and A is the universal relation. Rules are of the following
form.

r

b

lb (an initial rule)

g

a

ka A
r

b

lb (an A global rule)

g

a

ka E
r

b

lb (a E global rule)

g

a

ka A l (an A sometime rule)

g

a

ka E l (a E sometime rule)

true
r

b

mb (a belief rule)

Here ka, lb, and l are literals, mb are either literals or modal literals
and is a path label that is present on E global and sometime rules.
This label indicates a particular path and arises from the translation
of formulae such as E F G . During the translation to the normal
form such formulae are translated into several E global rules and a E
sometime rule (which ensures that G must actually hold). To indicate
that all these rules refer to the same path they are annotated with an
index.

The outer ‘A ’ operator that surrounds the conjunction of rules
is usually omitted. Similarly, for convenience the conjunction is
dropped and we consider just the set of rules Li. In the following dis-
cussion we further split the belief rules into two types, literal rules
and modal rules. Literal rules are belief rules where the right hand
side consists of a disjunction of literals. Modal rules are belief rules
where at least one of the disjuncts on the right-hand side is a modal
literal.

Translation to the normal form involves the replacement of com-
plex subformula by new propositions and rules that remove all but a
core set of temporal operators by using their fixpoint definitions (see
for example [1, 3]).

4 RESOLUTION FOR BBn

Here we consider the resolution rules for the temporal logic of belief
BB . To simplify notation we shall write the single modal operator
B as B. The extension of this system into its multi-modal version is
not considered in this document.

The resolution rules presented are split into four groups, initial
resolution, modal resolution, step resolution and temporal resolution.
The first three types of resolution are variants of classical resolution.
Temporal resolution, however, is an extension allowing the resolution
between formulae such as p with p on the same path. The step
and temporal resolution rules for CTL were presented in [1].

4.1 Initial Resolution

A literal rule may be resolved with an initial rule (IR1) or two initial
rules may be resolved together (IR2) as follows

true F l
G l
F G

F l
G l
F G

where F and G are disjunctions of literals.

4.2 Modal Resolution

During modal resolution we apply the following rules which are
based on the modal resolution system introduced by Mints [9]. Firstly
we are allowed to resolve a literal or modal literal and its negation.

[MR1]
true D m
true D m
true D D

Secondly we can resolve the formulae Bl and B l as we cannot be-
lieve something and believe its negation.

[MR2]
true D Bl
true D B l
true D D

Finally, we have the following rules which involve pushing the ex-
ternal B operator into one of the rules to allow us to resolve, for
example, Bl with l

[MR4a]
true D Bl
true D l
true D D

[MR4b]
true D Bl
true D l
true D D

where D is defined below. Informally “ ” collapses liter-
als prefixed by two B or B operators into equivalent modal literals,
keeping formulae in their simplest form.

Definition 9 The function D , defined on disjunctions of liter-
als or modal literals D, is given as follows.

F G F G
Bl Bl
Bl Bl

l B l

These last three resolution operations require explanation. Take
MR4a and push in the external B operator from the surrounding
A operator into the second premise obtaining true B D
Bl where D is a disjunction of literals or modal literals. Since, in
KD45, from axioms 4, 5 and D we have BBp Bp and

B B p B p so we can delete B from any of the dis-
juncts in D that are modal literals and obtain the required resolvent.
The justification for MR4b is similar.

4.3 Step Resolution

‘Step’ resolution consists of the application of standard classical res-
olution to formulae representing constraints at a particular moment
in time, together with simplification rules for transferring contradic-
tions within states to constraints on previous states. Simplification
and subsumption rules are also applied.

Pairs of global rules may be resolved using the following (step
resolution) rules.



[SR1]
P A F l
Q A G l

P Q A F G

[SR2]
P E F l
Q A G l

P Q E F G

[SR3]
P E F l
Q E G l

P Q E F G

A global rule may be resolved with a literal rule (where G is a dis-
junction of literals) and any index is carried to the resolvent to give
resolution rule SR4.

P A F l
true G l

P A F G

P E F l
true G l

P E F G

Once a contradiction within a state is found, the following rule can
be used to generate extra global constraints.

[SR5]
Q P false

true Q

where P is either path operator. This rule states that if, by satisfy-
ing P in the last moment in time a contradiction is produced, then P
must never be satisfied in any moment in time. The new constraint
therefore represents A Q.

4.4 Termination

Each cycle of initial, modal or step resolution terminates when ei-
ther no new resolvents are derived, or a contradiction is obtained by
deriving false.

4.5 Temporal Resolution

During temporal resolution the aim is to resolve one of the sometime
rules, Q P l, with a set of rules that together imply l along
the same path as the sometime rule, for example a set of rules that
together have the effect of F l. However the interaction
between the ‘ ’ and ‘ ’ operators in BBn makes the definition of
such a rule non-trivial and further the translation from BBn to SNFB

will have removed all but the outer level of –operators. So, resolu-
tion will be between a sometime rule and a set of rules that together
imply an –formula that occurs on the same path (as the sometime
rule), which will contradict the –rule.

[TR1]
P A A l
Q A l
Q A P l

[TR2]
P A A l
Q E l
Q E P l

[TR3]
P E E l
Q A l
Q A P l

[TR4]
P E E l
Q E l
Q E P l

In each case the resolvent ensures that once Q has been satisfied,
meaning that the eventuality l must be satisfied on some or all
paths, the conditions for triggering a -formula are not allowed
to occur, i.e., P must be false, until the eventuality ( l) has been
satisfied. It may be surprising that resolving a A-formula with a E-
formula in TR3 results in a A-formula. This is because the eventu-
ality l must appear on all paths so similarly the resolvent will also
hold on all paths.

5 EXAMPLES

We consider two simple examples that can be represented within this
logic. The first one shows how actions, plans and goals can be rep-
resented, while the second exhibits a refutation derived for a specific
scenario.

5.1 Representing Aspects of Rational Agency

The key aspects of agent theories, such as KARO [12] are to be able
to represent an agent’s beliefs and its actions. Representing beliefs in
our framework is simple; representing actions is also relatively easy.
For example, if a particular action, , has a certain pre-requisite, pre,
and an effect post, then we can represent the action by

pre A done post

Thus, if pre is satisfied in a state, then in all successor states where
has been done, then post is satisfied. Similarly, we can represent

the fact that an action can not be undertaken if its precondition is not
satisfied:

pre A done

In order to simply state the planning problem, we could use

E goal

or, more realistically, use the following which states that the goal can
be reached by undertaking a sequence of actions (taken from a finite
set).

E a done a goal

In addition, we can represent the fact that an agent has beliefs about
the actions it can perform, for example

BiE done

Many further examples of this form can be given, and properties of
specifications of rational agents can be given (see, for example [6]).

5.2 Belief about Possibilities

Consider the formula (partially translated into the normal form).

A

safe A explode
BE oxygen

BA hydrogen
hydrodgen oxygen explode

characterising the statement

“If something is safe then it will never explode, I believe that
in some possible future there will always be oxygen, I believe
that in all possible futures, hydrogen will occur sometime, and
if hydrogen and oxygen occur together then they will explode.”



Now, we characterise this as a set of SNFB rules, letting h stand
for “hydrogen”, o for “oxygen”, s for “safe” and e for “explode”
and show that these contradict the statement that safety is believed
i.e. B s The set of SNFB rules generated is given below where
b c w x z are new propositions.

c
true c Bs
true s e
true s x

x A e
x A x

true c Bz

true z o
true z w

w E o
w E w

true c Bb
b A h

true h o e

The refutation now proceeds as follows

w x E h
b A w x h

Rewriting into SNFB , one of the rules we obtain is

true b h w x B

from which the refutation continues as follows.

true b o e w x
true s b o w x
true s b o w
true s z b w
true s z b
true c Bs Bz
true c Bs
true c

false

Space precludes further examples, however other examples will be
given in the full paper.

6 CORRECTNESS

Firstly we can show that the transformation into SNFB preserves sat-
isfiability.

Theorem 1 A BBn formula A is satisfiable if, and only if, A is
satisfiable (where is the translation into SNFB).

Proofs analogous to those in [3, 5, 1] will suffice.

Theorem 2 (Soundness) Let S be a satisfiable set of SNFB rules and
T be the set of rules obtained from S by an application of one of the
resolution rules. Then T is also satisfiable.

This can be shown by showing that an application of each resolution
rule preserves satisfiability.

Theorem 3 (Completeness) If a set of SNFB rules is unsatisfiable
then it has a refutation by the temporal resolution procedure given in
this paper.

Completeness is shown by constructing a graph to represent all pos-
sible models for the set of rules. Some edges are labelled to capture
the indexed E rules. Deletions in the graph represent the application
of the temporal resolution rules. An empty graph corresponds to the
generation of false. A similar proof is given in [3]2

Proofs are omitted due to lack of space; these will be given in the full paper.

7 CONCLUDING REMARKS

The logical representation of rational agents is currently a very active
area of research. However, few of the people involved in this research
have considered proof methods for these logics. The closest work
is probably that of [7] who consider axiomatizations and complex-
ity results for linear and branching-time temporal logics combined
with the multi-modal logic S5. The main reason for this is the com-
plexity associated with combining multi-modal and temporal logics.
In our work with KARO, we have identified a simpler logic which,
while still comprising a combination of temporal and modal logics,
is amenable to mechanisation. Thus, in this paper we have presented
a clausal resolution method for this particular logic. In the future we
will apply this to larger logical specifications derived from the KARO
agent theory. In addition, we intend to investigate whether this sim-
pler form of logic can be used as the basis for other agent theories. A
detailed analysis of the complexity of the procedure needs to be car-
ried out also. Finally we hope to extend CLATTER, a theorem prover
for the linear-time temporal logics currently under development, to
deal with CTL and belief dimensions.
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