Architecture for Agent Programming Languages

Koen Hindriks! and Mark d’Inverno 2 and Michael Luck?

Abstract. eral properties of agents. Equally, it has enabled a consideration of
As the field of agent-based systems continues to expand rapidlyhe needs for a set of building blocks for agent architectures by spec-
one of the most significant problems lies in being able to compare andying schemas and actions for the updates of beliefs, goals (decision
evaluate the relative benefits and disadvantages of different systentsaking), planning and reflection. In this paper we use the formal
In part, this is due to the various different ways in which these sysspecification of 3APL as well as components from AgentSpeak(L)
tems are presented. One solution is to develop a set of architecturahd dMARS specifications to compare and highlight the major dis-
building blocks that can be used as a basis for further constructiotinctions between them.
(to avoid re-inventing wheels), and to ensure a strong and effective, The difficulty in comparing different agent-based approaches in
yet simple and accessible, means of presentation that allows for conpart derives from the fact that there is no clear or formal presenta-
parison and analysis of agent systems. In this paper, we address thien of the language or architecture in question. Even when systems
issue in providing just such an architectural framework by using theare presented by means of formal semantics, the differences in the
3APL agent programming language as a starting point for identificastyles and formalisms used do not readily facilitate such comparison.
tion and specification of more general individual agent componentsln this paper, by contrast, we do not aim to introduce a new system
This provides three additional benefits: it moves the work furtheror means for its description, but instead to use the particular case of
down the road of implementation, contributes to a growing librarythe agent programming language 3APL [5] (pronountieigle-a-
of agent techniques and features, and allows a detailed comparis@nl”) and its architecture [6] to provide a way of understanding and
of different agent-based systems specified in similar ways. specifying systems in a more general and more accessible way, and
to provide a route to system development. This is achieved through
the use of the standard well-known and commonly-used formal spec-
ification language, Z [8], which has also been used to specify several
Among the most significant of the problems that face the dynamidther agent properties, languages and architectures (eg. [2, 3, 4]). As
and rapidly-expanding field of agent-based systems is the drawing consequence, we get a uniform presentatidoottithe 3APL lan-
together of disparate strands of work ostensibly aimed at addressirg/ageandits architecture in a clear and concise way, which enables
the same issues. Indeed, the plethora of different agent theories, lait-to be more easily related to, and compared with, other systems.
guages and architectures that have been proposed and developed/ig believe that our work moves a step closer to a unified account of
recent years highlights this particular problem. The “so what” reacdifferent agent languages and architectures. (Note that we aim for a
tion is one that is undeserved by many of the efforts that receive itynifiedaccountrather than unified languages or systems themselves.)
but is in part understandable. We argue that there are two key related The contribution of this work is thus threefold. First, we present an
reasons for this: first, it can be extremely difficult to compare andoutline operational specification of 3APL that can be used as the ba-
evaluate the relative benefits and disadvantages of different agerfis of a subsequent implementation, so that the transition from what
based systems as a result of the different approaches taken to reali®éght be called theory to practice is facilitated. Second, we allow
them; second, the focus on theories, architectures and languages t#seasy and simple comparison of 3APL anctasnpetitorsystems
obscured a need to consider the fundamental building blocks witisuch as AgentSpeak(L) [7] and dMARS, as we demonstrate through-
which they are built. out the paper. The comparison considers the data structures required
In attempting to avoid the pitfalls associated with this continual de-by each language, the requirements for defining an agent before and
velopment of yet more agent-based languages and architectures wighiring run-time, and the basic operation of agents programmed in
inadequate justification and relation to the broader field, we hav& given language. Third, we provide an accessible resource in the
been working on a more uniform perspective to enable a strongegpecification of techniques for the development of agent systems that
inter-relation and comparison of different systems and approachesnight not otherwise be available in a form relevant both to agent
For example, work on specifying dMARS [2] and AgentSpeak(L) [3] architects and developers. In particular, we provide an intermediate
in a consistent fashion, and on comparing 3APL, AgentSpeak(L) andevel between an agent programming language and a complete archi-
AGENT-0 [6] has attempted to address these concerns and, in so digcture, and provide for a library of building blocks for constructing
ing, has helped to clarify the agent-oriented approach and more ge@gent architectures.

1 Introduction

1 Department of Computer Science, Universiteit Utrecht, P.O. Box 80.089;

s 3508 TB Utrecht, The Netherlands, email: koenh@cs.uu.nl The 3APL Programming Language 3APL is used to focus the
Cavendish School of Computer Science, University of Westminster,comnarison. by presenting its formal specification. and then showin
115 New Cavendish Street, London W1M 8JS, UK, email: din- _ . P Dy p ing P ' ng
verm@wmin.ac.uk points of divergence with other key systems. It supports the design

3 Department of Computer Science, University of Warwick, Coventry Cv4 and construction of intelligent agents for the development of com-

7AL, UK, email: mikeluck@dcs.warwick.ac.uk plex systems through a set of intuitive concepts like beliefs, goals

and plans, which can be used to describe and understand the coma-compare data structures in Z and to build a library of the possible
putational system in a natural way. 3APL supports this style of pro-different representations of beliefs that might be required when de-
gramming by means of an expressive set of primitives to progransigning an agent language.
agents, consisting of such sets of beliefs, goals and practical reason-Agents accomplish tasks by performing actions, represented by
ing rules. Beliefs represent the issues the agent must deal with, whilkection symbols and specified in the same way as atoms, as they are
goals allow the agent both to focus on what it must achieve and tin AgentSpeak(L) and dMARS.
represent the way in which it can achieve it. In 3APL, goals are thus)
used to represent achievement goals anglaiss The practical rea- Action_
soning rules provide the agent with planning capabilities to find an Fname: ActionSym terms: seg-OTerm
appropriate plan to achieve a goal, capabilities to create new goals,
and capabilities to use the rules to revise a plan.

Originally, the operational semantics of 3APL was specified by2-2 Goals

means of Plotkin-style transition semantics [5]. Its re-specificationjn 3ap| goals are used to represémtth the goalsand the plans
however, moves closer to a good implementation, because of thg gchieve these goals of the agent. They are program-like struc-
available Z tools for type-checking, animation, and so on. The reyyres that are built from basic constructs, such as actions, and regular
sulting computational model includes data structures, operations ar]pﬂperative programming constructs, such as sequential composition
architecture, thereby isolating the data-types for an efficient implexzng nondeterministic choice. Goals can be characterisegals-
mentation. Second, it provides an alternative perspective, highlight,_gq mental attitudes corresponding to plans of action to achieve a
ing different aspects of the language and architecture that are n@ate of affairs, ogoals-to-be corresponding to the state of affairs
manifested in a similar way in the transition style semantics. desired by an agent. For example, an agent may have adopted the
In the specification that follows, we assume some familiarity with goal-to-doof finishing a paper, and then sending it to the ECAI pro-

Z. Note that many details of 3APL are not included here due to spacgramme chair. This might be done in pursuit of the ageyds-to-be
constraints, but a more complete specification of 3APL is availablgf gesiring the paper’'s acceptance.

elsewhere [1] (as for the other systems compared [2, 3]).

Contexts Before formally describing goals, we introduce the no-
2 Beliefs, Actions and Goals tion of contexts(distinct from the notion of context that refers to
plan preconditions in terms of beliefs in such systems as AgentS-

Beliefs and goals are the basic components on Wh".:h all of 3API‘peak(L)), which are goals with an extra feature called ‘holes’ that act
dMARS and AgentSpeak(L) are based. In 3APL, beliefs are formu-, o .
s placeholders within the structure of goals. The role of contexts is

Ige from a first order Ianguage that is deflneq in the usual way, an?o enable an elegant presentation of the architecture of 3APL, rather
first order terms are defined by means of given sets of first orde

. . . ; han in the 3APL | itself. M isel is eith
variables and function symbols. Since the 3APL programming Ian-{ aninthe 3 anguage itse ore precisely;antextis either

N . . . a basic action, a query goal, an achieve goal, the sequential compo-
guage distinguishes between first order variables and variables thart. query 9 ceve 9 . q P

. o . Sition of two contexts, the nondeterministic choice of two contexts, a
range over goals, we can define a partition of the set of variales

.) | variable, or 1", which represen | within ntext th
and useFOVar to denote the set of first order variables a@uar ?nc:aht ?:oi?a?n 0another ccontggt e;snetkt:a e:jgfia;::igon tbelo%vcc\)/véeu;tte ?k:e
to denote the set of goal variables (such th@varn GVar = &, g : !

FOVar U GVar = Var). With the set of all function symbols denoted f:;;;g:il variablesVar, to allow a process callegoal revisionto
as[FuncSyr a first ordertermis then either a first order variable '

or a function symbol with a (possibly empty) sequence of terms as a Context::= bag{Action) | query(Belief)) | achievg{Atom) |
parameter. gvar{(GVar) | comg(Contextx Contexj}) |

choice(Contextx Contex}y) | O
FOTerm::= var{{(FOVar)) | functor{(FuncSymx segFOTermn})

The[, which denotes the placeholder asle within a context, is
distinct from a goal variable. Although both are placeholdelss a
Beliefs can now be defined by building types from the above primi-facility used forspecifying3BAPL, whereas goal variables are part of
tives; a beliefatomis a predicate symbol (the set of all such symbols 3APL itself.
denoted byPredSyr) with a (possibly empty) sequence oftermsas We can now define a goal as a context without any occur-
its argument. Beliefs are then either an atom, its negation, the comences ofl. The formal definition below uses an auxiliary function
junction or implication of two beliefs, true or false. sguarecounto count the occurrences bf in a context.

2.1 Beliefs and Actions

Atom Goal == {g: Context| squarecount g= 0}
Fhead: PredSym terms: segFOTerm

The data structures used in both AgentSpeak(L) and dMARS are
very different. In AgentSpeak(L) a goal is either an achieve atom, a
query atom (as opposed to a query belief in 3APL) or an action.

Belief ::= pog(Aton)) | not{(Aton)) | and{(Belief x Belief))
| imply(Belief x Belief)) | false| true ASGoal::= achievé{Atom}) | query(Atom)) | actior{(Action))

The definition of terms is identical for 3APL, AgentSpeak(L) and In AgentSpeak(L), therefore, goals do not contain procedural
dMARS. However, AgentSpeak(L) is the most limited in that it only knowledge as they do in 3APL by virtue of being the fundamental
allows the conjunction of beliefs, whilst AIMARS allows for the dis- data structure essentially describing all possibilities for action, in-
junction in addition to the features of 3APL. It is a very simple matter cluding an agent'Tourseof action which, in AgentSpeak(L) and

dMARS, is distinct and represented plans In AgentSpeak(L), actions (as described above). Thus both AgentSpeak(L) plans and
these plans comprise sequencef basic actions, query goals and 3APL practical reasoning rules contain a pre-condition (defined as

achieve goals (known as tiwedyof the plan). a belief), a trigger and a body. However, the AgentSpeak(L) trigger
is anevent whereas in 3APL it is an optional goal. Moreover, prac-
ASBody== segASGoal tical reasoning rules in 3APL can be used to deal with reactive be-

haviour, goal creation, plan failure and plan optimisation in addition

In dMARS, the body of a plan is a tree where the branches arg, ,2nning partly through the inclusion gbal variables(as we see
goals (whether they be internal or external actions, query or aCh'eVSelow).

goals). For a plan to be successful, a path from the root to any leaf
node must be found.

3 Agents
DMBody::= End((Goal)) | Fork((P, (Statex Goal x Body)))
In this section we show how agents are constructed based on these

The data structure used clearly has ramifications for the operatiohasic components. While focusing on 3APL, we contrast in particular
of agents in the different systems. Both AgentSpeak(L) and dMARSwith AgentSpeak(L); dMARS is similar to AgentSpeak(L). Indeed,
require the use adventgo trigger the placement of plan subgoals in from this point onwards, the divergence between systems is more
a queue for further planning. The new plan generated for a subgogironounced, and dMARS is largely omitted from the discussion due
is then added onto an existing stack of plansif®ention) for ex- to space constraints.
ecution. However, in 3APL, events are unnecessary since goals are

thgms_elves_modified in the process of planning and_ acting; instead ofzgents and Mental State In 3APL, agents are characterised in

using intentions, 3APL simply attempts to execute its current goals.teyms of their beliefs, goals, practical reasoning rules and expertise;
beliefs and goals are dynamically updated while rules and expertise

2.3 Practical Reasoning Rules are fixed and do not change. A 3APL agent can thus be defined as an

)] o entity with staticexpertiseandrulebasei.e. a set of practical reason-
The components described above come together in 3APtaitical ing rules.

reasoning ruleswhich are used both for traditional planning and for

the less commoreflectionon goals. This latter aspect allows plans 3APLAgent
to be re-considered if they will fail with respect to the goal they are expertise P Action, rulebase: P PRrule
trying to achieve, if they have already failed, or it is possible to pur-
sue a more optimal strategy. There are four kinds of such rules [6]:

reactive rules to respond to the curre_nt situation a_nd to create new This is equivalent to AgentSpeak(L) agents, which have a set of ca-
goals; plan-rules to find plans to achieve goals; failure-rules to re-

| tailure: and optimisati les t | | frocti | %abilities and a plan library. In 3APL, an agent’s beliefs are recorded
plan on failure; and opimisation-rules to replace |ess elieclive plang, s pejiefbaseand its goals in itgoalbase together making up the
with more optimal ones.

mental statef an agent that is updated during execution.

PRType:= reactive| failure | plan | optimisation 3APLAgentState

3APLAgent belbase: P Belief, gbase: P Goal

In more detail, a practical reasoning rule consists of an (optional)
head which is a goal, an (optional) body which is a goal, a guard
which is a belief, and a type to define its purpose. Informally, a rule |n contrast, the state of AgentSpeak(L) agents includes beliefs,
with headg, bodyp and guard, states that if an agent tries to achieve executing intentions, events to be processed, and actions to be per-
goal g and in a situatiorb, then it might considereplacing gby a formed.
planp as a means to achieve it. If it isphan-rule g is of the form
achieve svheresis a simple formula, and the rule states that gdan ASAgentState
may offer a way to achiewg If it is a failure-rule andg fails, it states ASAgent beliefs: P Belief; intentions: P Intention
thatp may replacey. A reactive-rulehas an empty head (and can be events PEvent actions: Action
applied whenever the guard is true).

—PRrule
head body: opfGoal|; guard: Belief; type: PRType

All of the systems we have mentioned in this paper have a similar
initial state in that all state variables not part of the agent are set to
head= @ < type= reactiveA some value (whether empty or defined by the user). In addition, only
the heade (ranachievg A body# @ < type= plan the mental state of agents may change during their operation, but not
information contained in the Agent definition such as the expertise
or the rulebase in 3APL.

Guards serve two purposes: they specify situations in which rules
might be considered, and they enable some parameters to be retrieveient Operation Two semantic notions are used to parameterise
from the agent’s beliefs. the operation of a 3APL agent. First, the semantics of basic actions
This is quite similar to the definition of plans in AgentSpeak(L), is defined by a global functiorexecutewhich specifies that an ac-
which is defined by a triggering event (the addition or removal oftion is anupdate operatoon the beliefs of the agent. Sinegecute
a belief or goal), a set of pre-conditions and the body containings a global function, any two agents capable of performing an ac-
the procedural knowledge of the agent as a sequence of goals atidn are guaranteed to do the same thing when executing it. This is

particularly important to prevent confusion when specifying and pro- | Insert: (Goal x FrontContexj — Goal
gramming agents.

| execute Action x P Belief + P Belief uG: (opt[Goaq X FrontContexl — Opt[Goa“
Vg : opfGoall; fc: FrontContext g : Goale UG (g,0) = g
Second, a logical consequence relatid®on determines the in- non— empty UG(g, fc) =
ferences an agent can derive from its beliefs, and is also global. It en- (UG (g, comgfc, d')) = {comgthe (UG (g, fc)),d')}
sures that all agents draw conclusions from their beliefs in the same A UG (g, choicéfc, g')) = UG (g, fc) A
way, guaranteeing a “minimal amount of global consistency”. UG (g, choiced’, fc)) = UG (g, fc)) A
)) empty UG(g, fc) =
| LCon: P(PBelief x P'Belief) (UG (g, comptfc, @) = {g'} A
UG (g, choicefc,g')) = @ A
UG (g, choiced', fc)) = @)

In relation to the semantic notions of beliefs and expertise, 3APL
and AgentSpeak(L) are similar. The way in which a set of beliefs
follows as a logical consequence of another set of beliefs is equiva- Note that if the front context is of the fornehoice (O, g)
lent since in both systems they are not specified. In terms of perforfor some goalg, and a goalg’ is inserted ford, UG vyields
mance of actions in the environment, however, AgentSpeak(L) doe¥/G(d', choice(d, g)) = {g'}. This reflects the fact that if an agent
not specify any impact on the state of the agent. 3APL is more gendpdates a choice goal, it requires the agent to commit to one of the
eral and uses a global function definition that determines how aitwo subgoals. The square is used to indicate which selection is made.
agent’s beliefs change in response to performing an action (i.e. aln contrast, thénsertfunction simply substitutes a goal for a square,
update semantics on the agent’s state is provided). and we havénsert(d', choice(d, g)) = {choic€d’, g)}.

The particular constructs introduced so far, while derived from A -rule isapplicableif the head unifies with a (sub)goal of the agent
3APL, can be viewed as a set of more general architectural buildandthe guard of the rule follows from the agent’s beliefs. Formally,
ing blocks that can be used to contribute to the linking and unifyinga rule,r, is applicable withe respect to a gogand set of beliefsb,
of work on agent programs and architectures. The value of this lie§f and only if:
in reducing the overhead of re-invgnting the wheel, whic_h occurs §o (36,~ : Substitution subg: Goal; fc : FrontContexte
frequently in both theory_and practice. The next two sections specif- Insert(subg fc) = g A mgu((the r.head, subg = 6 A
ically address the operation of 3APL. (dom~y) C (beliefvars rguard) A

LCon(bb, {SubsBelieff } ~)r.guard})))

4 The Application of Practical Reasoning Rules

The definition below uses the auxiliary functiobsliefvarswhich
returns the set of first order variables contained in a belief, and
SubsBelief which applies a substitution to a belief. If the rule has
o head, it is applicable simply if the guard follows from the belief-
ase.

Thus, if the head of the rule is not empty, applying the rule
amounts to replacing a subgoal by the body of the rule. (If itis empty,
ﬁwe body is simply added to the goalbase but we do not specify that
here). Care must be taken here to avoid interference of variables oc-
curring in rules and those variables occurring in goals (cf. [5]). For
this reason, all variables in the rule applied are renamed to variables
not occurring in the target goal, using the functualeRename, V)

Rot defined here, which renames the variables inratethat no vari-
able from the seV occurs in the renamed rule. The auxiliary func-
tions areSubsGoalwhich is analogous to the functiddubsBelief
andgoalvarswhich returns the set of first order variables in a goal.

Practical reasoning rules can be used to plan, revise, and create goals
The application of a rule to a goalg results in the replacement of a
subgoaly’, which matches the head of rulgby the body of rule. If
the body of the rule is empty, however, the subgoal is simply dropped,
This yields a substitution that is applied to the entire resulting goal.
When the head is empty, only the guard needs to be derivable from
the beliefs of the agent, and a new goal (the body) is added to tha
goalbase of the agent.

In order to explain rule application, we introduce the notion of
front contextswhich are contexts (see above) with precisaigoc-
currence of at the frontof the context. Informally, an elemeatthe
front of a context means that an agent could choose to perform this
element first, so that if &l at the front of a context was replaced by
a goal, then that goalould be performed firsbefore the remainder
of the overall goal.

Essentially, the task of rule application is to find a front confext

such that if the subgoa/ is insertedfor O (at the front offc), the —_ApplyRule
resulting goal is identical tg. Applying r then amounts taipdat- AAgentState
ing fc with the body of the rule. There is a crucial difference here g? : Goal, r? : PRrule rr : PRrule

between inserting and updating. Inserting a goal in a front context
simply means substituting the goal for théin the front context;
while updating a front context with a goal means repladihgvith

that goaland also committingo the choices made (pursuing a sub-
goal in a choice goal means committing to the branch in which the
subgoal appears in the choice goal). To formalise this, we can define
two similar functions tdnserta goal into the square of a front con-
text and toupdatea front context with a goal. we present the latter
here adJG but, due to space constraints, we only give the signature
of the former; details can be found in [1].

rr = RuleRename?, goalvars{g’})
r?.type+# reactive=
(Ifc: FrontContexi subg: Goal e Insertsubg fc) = g? A
(36, ~ : Substitution| (dom~) C (beliefvars rrguard)
mgu'the rr.head subg = 6 A
LCon(belbase{SubsBelief(f { v)rr.guard}) A
belbasé = belbasen
gbasé = gbase\ {g?}U
SubsGoal# { v) {(Insert(the(rr.body), fc))}))

necessary, and then executing intentions. The control structure based
on 3APL’s classification of rules allows for much richer descriptions
5 The Execution of Goals of agent operation. Indeed, many alternative control structures can
be provided in this way for a 3APL agent. In essence, 3APL substan-
. . ﬂally simplifies AgentSpeak(L) whilst retaining all its functionality.
e_lgent can perform on a goal, which correspon_d to the simple ac- Lastly, we note that the concept otantext used in the specifica-
tions of_elther a pasm_actlo_n or a query on beliefs. _Recall that theEion of 3APL to represent the operation of an agent, does not have a
semantics of basic actions is given by a global funcéaacuteand clear equivalent in the AgentSpeak(L) specification, in which execu-

the ste_mantllcs Icl)f be(ljletfs IS spetmfleg b)_/ ﬂt\@?n relation. N?r\:v,tan tion and planning are specified simply by using several schemas and
agent is only allowed to execute a basic action or query that occurs simple functions to manipulate lists.

at the front of a goal, i.e. it is one of the first things the agent shoul
consider doing. The notion of front context is useful to find an action .
or query that the agent might execute. If there is a front context in6 Conclusions

which a basic action or query can be inserted(frand which re- The criticism levelled against much recent agent research is that the
sults in a goal of the agent, the agent might consider executing thgdarticular contribution in relation to similar work and the broader
basic action or query. After executing the goal, the goal needs to belq is unclear. This is due to an inability to identify the links be-
updated, and this updating is the same as updating the front conteteen systems and compare them easily, and can lead to a profu-
by removing[l. sion and proliferation of yet more agent theories, architectures and
The execution of a basic action amounts to changing the beliefbaggnguages. The solution to this problem is to develop a set of archi-
of the agent in accordance with the functierecute The condition tectural building blocks that can be used as a basis for further con-
(a,belbas¢ € (domexecutg expresses that the basic actiaris struction, and to ensure a strong and effective means of presentation
enabled, and thus can be executed. that allows the differences and similarities to be easily identified and

ExecuteBasicAction consequently compared and analysed.

AAgentState By prov_idin_g_a z s_pecificatio_n of_ 3APL we are able to _ad_dress
97 : Goal exactly this difficulty in comparing it with other systems similarly
specified in Z, such as AgentSpeak(L) and dMARS. By specifying
(3fc: FrontContext a : Action| a € expertisen both the language and the architecture in one unified framework, we
Insert((bac g, fc) = g? A (a, belbasg¢ € (domexecutg o are able to present a specification that reduces the complexity of the
belbasé = executéa, belbasg A semantics of language and architecture considerably. One of the ad-
gbaseé = (gbase\ {g?}) U UG ({}, fc)) vantages is that we do not have to build two different systems, but

only one. Our work illustrates that formal specification both enables

the key building blocks for agent architectures to be identified, and
Queries are goals to check if some condition follows from the pe-allows for a comparison of the benefits_ and weaknesses of different

liefbase of the agent. Any free variables in the condition of the query'jlgent framewo.rks, and of the EXpressive power of agent 'anglﬂages-

can be used to retrieve data from the beliefbase. The values retrievéd"Ner yvork aims to perform exactly this function on the basis of

are recorded in a substitutieh A query can only be executed if itis the architectural framework presented here.

a consequence of the beliefbase (otherwise, nothing happens).

REFERENCES
—_ExecuteQueryGoal
AA tSQt) t y [1] M. d'Inverno, K. Hindriks, and M. Luck, ‘A formal architecture for the
gentotate 3APL programming language’, iRroceedings of the first International
g? : Goal Conference of B and Z UseiSpringer, (to appear 2000).
. o [2] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge, ‘A formal
(3fc: FrontContext b : Belief e Insertquery hfc) = g7 A specification of dMARS’, inintelligent Agents IV: Proceedings of the
(36 : Substitutione LCon (belbase{SubsBelie® b}) A Fourth International Workshop on Agent Theories, Architectures and
belbasé = belbaseA a I’_Aarcljgluages, LNdAI'\/IlCiG@E. :IL5557176._ Sp}r;\nger,élQQE()D A |
— o .d’Inverno and M. Luck, ‘Engineering AgentSpeal : Aformal com-
gbasé (gbase\ {g7}) U (SubsGoab (UG ({}, fc))))) putational model’ Journal of Logic and Computatior8(3), 233—-260,
(1998).

.) [4] R. Goodwin, ‘A formal specification of agent propertiesgurnal of
Comparison In AgentSpeak(L) there are two aspects to its opera- = Logic and Computatiarb(6), 763—781, (1995).

tion: processing events and executing intentions. Processing an evegdt K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer,
involves selecting a plan triggered by the event and adding it as an Formal Semantics for an Abstract Agent Programming Language’, in
intention to an intention stack. Executing intentions comprises se- Lnr:eﬂgg:ttﬁhg:;tises'YAféﬁﬁgggrg::rf]éhfai‘;%r;gégﬂ'&'f;;égg‘ﬂ‘fhOp
lecting an intention, locating its topmost plan, and performing the 229 Springer, (1998).

plan’s next component (either an action, a query goal or an achievig] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer,
goal that posts a new event). If the intention finishes executing at this ~ ‘Control structures of rule-based agent languagesinielligent Agents
point (in the case of actions or queries), it can be removed. In 3API;%] V. LNAI 1555 Springer, (1999).

b h ith i | hich . laci A. S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
y contrast, the agent either applies rules, which requiress replaci putable language’, idgents Breaking Away: Proceedings of the Seventh

the front context of a current goal with the body of the plan, or exe- European Workshop on Modelling Autonomous Agents in a Multi-Agent
cuting goals, in turn amounting to executing either a basic action or World, LNAI 1038 eds., W. Van de Velde and J. W. Perram, pp. 42-55.

query goal at the front of a goal. o ?p&inge_r, (lgT%G)'ZN tion: A Ref ManuBrentice Hall. Hemel
The control structure of AgentSpeak(L) thus involves the process[-] Hem p s‘ig’aeg’ 5 ned R dr? al'gg'z elerence Manuirentice Hafl, Heme
ing of all events by selecting the best plan, updating intentions as ' B '

