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Abstract. There are two major approaches to activity coordination The work described in this paper aims at integrating joint planning
in multiagent systems. First, by endowing the agents with the capaand joint learning within a single algorithm that brings together the
bility to jointly plan, that is, to jointly generate hypothetical activity advantages of both approaches while avoiding their disadvantages.
sequences. Second, by endowing the agents with the capability Tthe basic idea behind this work is that the ag€it®intly learn the
jointly learn, that is, to jointly choose the actions to be executed onnformation they need to know in order to evaluate the hypothetical
the basis of what they know from experience about the interdeperactivity paths generated during planning &gl jointly plan in or-
dencies of their actions. This paper describes a new algorithm calleder to reduce the number of uninformed and thus inefficient learning
JPJL (“Joint Planning and Joint Learning”) that combines both apirials. The paper is structured as follows. Section 2 describes a new
proaches. The primary motivation behind this algorithm is to bringalgorithm called JPJL (“Joint Planning and Joint Learning”) for in-
together the advantages of joint planning and joint learning whilgegrated joint planning and joint learning. Section 3 presents initial
avoiding their disadvantages. Experimental results are provided thaxperimental results that indicate the performance features of this al-
illustrate the potential benefits and shortcomings of the JPJL algogorithm. Finally, Section 4 briefly summarizes the paper, provides
rithm. pointers to related work, and critically discusses limitations of the
JPJL algorithm.

1 Motivation

2 TheJPJL Algorithm
Multiagent Systems (MAS)—systems in which several interacting,
intelligent and autonomous entities called agents pursue some set bfe basic working cycle of the JPJL algorithm is conceptually de-
goals or perform some set of tasks—have received steadily growkcribed in the Figure 1. As the figure shows, the overall activity re-
ing interest in both research and application in the past years (elgslylts from the repeated execution of three major activities, namely,
[4, 14, 28]). A key issue to be addressed when dealing with MAS iplanning, action selection, and learning. During planning, the agents
that of activity coordination: How can several agents, each capabli®intly search through the space of possible future environmental
of executing specific actions, decide together what activity sequencdates. During action selection, the agents jointly decide on the next
they should carry out in order to accomplish a common task? On@ction to be carried out based on their planning results. After having
possible answer is that the agents should jointly generate hypothefhosen and executed the selected action, the agents jointly learn by
cal activity sequences and do some kind of lookahead in order to dédating the estimated usefulness (goal relevance) of their actions.
termine the most promising actions, that is, they should jointly planBelow the three activities are described in detail. The description uses
A potential advantage of this approach is that the probability of carthe following simple notation and is based on the following elemen-
rying out unsucessful and perhaps expensive or irreversible activiti@’y assumptions. There is a finite set of agefitseach capable of
sequences is kept low. An inherent difficulty with this approach is,Carrying out some actions;. Ag refers to the set of all agents, and
however, that it is limited by the agents’ knowledge about how rele-Ac: refers to the set of actions that can be carried outipyThe
vant their individual actions are for goal attainment in different state¢nvironment in which the agents act can be described as a feature-
and how to determine which of several possible next states is mo§sed state space, where the set of environmental features that can
appropriate for reaching the goal state. Another possible answer [3 sensed (i.e., identified as being either true or false) by the agents
that the agents should jointly choose the actions to be executed ¢h denoted by = {f,g,...}. 7* C F (for k € N) denotes a
the basis of what they already know from experience about the intef€al or hypothetical environmental state, i.e., the set of environmen-
dependencies among and effects of their actions, that is, they shoui@l features that are known to be true (in the case of a real state)
jointly learn. What makes this approach appealing is that the agen @ssumed to be true by the agents (in the case of a hypothetical
themselves find out which paths of activity are likely to be successstate). Following the traditional STRIPS approach [5], an agknt
ful and which are not, and that the amount of a priori knowledgeassociates three lists with each of its actionsa set7?"* C F of
with which the agents have to be equipped by the system designerﬁgeconditions that contains the environmental features that need to
kept low. An inherent difficulty with this approach is, however, that be fulfilled before this action can be carried out (“precondition set”);

. . . . . del :
the required number of learning trials tend to grow rapidly with the@ S€U7;“" C J of environmental features that become false through
number of possible actions. the execution of this action (“delete set”); and aBgt? C F of en-

vironmental features that become true by executing this action (“add
! Institut fiir Informatik, Technische Universit” Miinchen, D-80290 Set”). An agent is assumed to be able to determine, at each time,
Munchen, Germany, weissg@in.tum.de which of its actions could be carried out in the current (real or hypo-
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1. Initialization:

e States = {current real state
o Actual_Planning-Depth APD =0
2. Planning:
until APD = Maximal_Planning_Depth do
e for eachF € States with F # goal state do

— the agents determine their applicable actions and the corresponding hypothetical
successor states that would result from applying these actions

— States = States U {hypothetical successor stajes{F}
— the agents jointly estimate the usefulness of these actions

e APD = APD +1
3. Action Selection:

o the agents determine the overall usefulness of the action sequences generated during
planning based on the individual actions’ estimated usefulness

o the agents select the most promising sequence with highest probability
o the first action of the selected sequence is carried out

4. Learning:

the agents update the estimated usefulness of their actions based on the observable
effects of action execution

5. Goto 1

Figurel. Conceptual description of the basic working cycle of the JPJL algorithm. Each of the three basic activities—planning, action selection, and
learning—is jointly realized by the involved agents.

thetical) environmental state. This implies that in any given environ- curent real state
mental state an aged; at least knows which of the featurgsn the
Set]_-lglwa’r‘e — Uaj EACi f;”‘e are tl’ue F|na”y, |t IS assumed that an DEPTH=1 potential awc}“irfluliﬂw“h potential action a’ wi " potential acllzg;‘:‘ne_{:w

agent maintains for each of its actionsa set;"“* that contains hypotnetical siae  hypothetical sate oas  hypothetical sate

the environmental features € F;'“"° that were true at execution /\
a” with Y " with U™

time (FP"° C Fim e for all a;).
J =Y J
hypothetical state hypothetical state

DEPTH=2

Planning. The basic idea behind the JPJL algorithm is that an agent
A; maintains an estimatgf]; for each f € F#“*" and each

a; € Ac;. These estimates are adjusted by the agents (as described Figure2. lllustration of the hypothetical search space of the JPJL
below) such that they indicate what features should be true before algorithm (planning depth = 2).

certain actions are executed. An agdntnterprets an estimafg];

as follows: the higher (lower) itis, the more (less) likely it is that Ul is called Ay’s evaluation function w.r.ta; anda,. After having
a; should be only executed ff (and perhaps other features) is true. cajculated the usefulness values, informs A; about these values.
The values[f] thus indicate under what environmental conditions 4. in turn, adds all usefulness values about which it was informed

the actions should be carried out. This approach reflects that diffeky other agents, resulting in an estimated overall usefulbiesé a;
ent features can be of different relevance for different actions, ne, giater*:

matter what agents could carry out these actions.Eebe a real

or hypothetical state that is currently considered by the agents (i.e., « def 1 -

F* é%’tates as denoted in the Figur)é ifach agent)r:\nnour?ces th(e Ui(F7) = max{0, r Z Ui (7} )
actions it could carry out to the other agents (assuming a blackboard !

communication structure). After the potential actions are announcedvherer is the number of agents that respondeddtoand! ranges
each agent checks the influence of the announced actions w.rt. igger these agentgl; can be interpreted as a joint evaluation func-
own actions and informs the announcing agents. More specificallytion that is represented and calculated in a distributed way by several
assume thatl; announced:; together with the corresponding lists agents. The result of starting with the current real state (see “Initial-
F4h and F°! (which allows for determining the potential succes- ization” in Figure 1) and expanding this state up to a certain planning
sor state). Then each;, calculates the usefulneg of this action  depth can be viewed as a jointly generated tree of potential future

w.r.t. eachn; € Ac;, as follows: states in which the arcs represent potential actions together with their
estimated overall usefulness. The Figure 2 illustrates this interpreta-
o, Oef :
Uj(F) = > - D> I @ tion.
e Fpddngpware feFgeingiware Action Selection. Let F° denote the current real state, and assume
that
2 The order in which the agents consider the statetirtes may be arbitrary
(as in the current version of the JPJL algorithm), adaptive, or predefined by def
the system designer. (F°5) =
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jointly 3 Experimental Results

estimated usefulnegs

actions that madie
features trug

For the purpose of a careful experimental analysis we used a series
of synthetic scenarios that capture the characteristics of multiagent
learning and planning and allow to efficiently obtain indicative re-
sults. This section presents the results for the scenarios summarized
in the Tables 1 and 2In the case of scenario 1 the environment con-
- sists of 20 features. The task to be solved by the agents is to transform
§ influence on estimated overall an environmental start state into a goal state. There are four agents
~wurd usefuiness of subsequent actions capable of carrying out different actions. Agent 1 can carry out just
Figure3. lllustration of the JPJL update rule. one action, agents 2 and 3 can each carry out two actions, and agent
4 can carry out three actions. What makes the task additionally com-
plicated is that an agent can execute each of its actions in several

) U (FO) U (FY . . . . . . . .
O a1 i Fl @jo iz F2 o c_ontexts_, differing in their _precondmor_1 lists as Well'as their e_ffects
wi J U (F1) (i.e., their add and delete lists). In particular, executing an action un-
B Fm der different preconditions results in different effects. For instance,

consider action 2 of agent 2. The execution of this action always re-
rrJ]Uires that the feature§o and f2o are true; additionally, one of the
. 1 e 1e featuresfs (context 1),f7 (context 2), orfy (context 3) has to be true.
k—1 ) k—1
action that transfer$ ™ into the successor stafé', U, (F* ') is Through the execution of this action the featygealways becomes

; ind i k—1
_th::'hestlmgted IO vlerall_ uszfulr;?ﬁ; afthEdt'.n sttat;?-' f’ ?ndm fthtrue and the featurg, always becomes false. Additionally,fi§ (f7,
IS (e maximal planning depin. Then the estimated Usetuiness ot thi ) is true at the time of execution, thef (f15, —) becomes true and

zittir;fsi?g:gectih?s;gfh'sum of the usefulness values of the individu s (f7, fo) becomes false. Things are analogously in the scenario 2.

is one of the jointly generated planning paths (i.e., one path fro
the root to a leaf in the search tree), wheyfg is an agent’s potential

m

def b1 Feature Sef {fi, -, [0}
Ugpoyy = Z Up (F*77) . ®) Start State {fi. f5. fo, f13, 15, F1o}
P Goal State {f1, J5, fs, [18, f19}
Among all potential paths, patfy°, j) is selected with the proba- Agent | Action Context 1 Context 2 Context 3
bility pre I, fs I2, f5 ENE
(viro.s) 1 1| del fi f2 f3
e\ add f4, f10 fa, f15 f4, f20
— < (4) pre [ f2, f5, f20 f3, f5, f20 fa, f5, f20
Su 1| del f2; f1o f3, f1o fa, fio
- (F0.k) 2 add fi,f5 f1, f20 fi
e pre | fe, fio,f20 | F7,f10,f20 | fo, f10, 20
wherek ranges over all potential paths generated during planning 2 gg('j 1}6’1;20 ;7’?0 f9}f20
This means that a path’s probability of being selected increases with 2 /8 B2/15 g
. . N ) pre | fs, fir,f20 | f5,f18,f20 | f5,f19,f20
its estimated usefulness. Once a péftf, j) is selected, the first 1| del f5, fir f5, f1g f5, fio
action (i.e.,a;, ) of this path is executed. 3 add J10, f16 f15, f16 f16
: Lo . - I . pre | fis,fi6,f20 | fis,f17,f20 | fis, /19, 20
Learning. Learning is realized by jointly adjusting the action- 2 | del fis, f16 fis, f17 f15, f19
specific estimates of the environmental features. The adjustment is add s, f18 f10, f18 18
done in a distributed manner by the agents that carried out actions. pre 1 fu1, fis, foo | f12, 15, fao | f14, f15, fa0
dl 1| del fi1, f20 f12, f20 f14, f20
More specifically, assume thaj proposed by4; has been selected add s, Fis Fio, f13 13
for execution in the real staté®. The A; updates its estimatég]; pre T, f15 J12, f15 J13, /15
forall f € F;"** as follows: 4 | 2] del 11 12 13
o Y o TR o oy TR R W o
- ) . LT (FO — ) pre 5, )7, /10 5,8, J10 5, /9, /10
[l =1l +a (B-U;(F)=[fli +R) ., () 3| g | TR e o
add fe, f15 fe, f20 fe

wherea andg are constants called learning rates @i the actual
external reward thatl; received after the execution af. (In the Tablel.  Specification of scenario 1. Top: range of features, start
case of delayed reward®, may be equal to zero.) This update rule, and goal state. Bottom: agents and their context-specific actions.
which is in the spirit of Q-learning [24, 25] and temporal difference

|earning [23]’ aims at increasing (decreasi[}g)s chance to carry The Figures 4 and 5 show the performance prOfileS for the scenar-
outa; in the future, if the usefulness of this action is jointly estimatedios 1 and 2, respectively, for the planning depths 1 (curve “JPJL1"),
as being high (low) and/or if this action results (does not result) in2 (“JPJL2"), and 3 (*JPJL3"). For all shown results the experimental
an external reward. The Figure 3 illustrates the update rule. Not&etting was as followsy = 0.2, 3 = 0.9, andR = 1000 iff the

that increasing the usefulness of the features that were true at tig@al state was reached. The initial values of the estinfdiesere

time of executingz; (including the preconditions af;) increases all zero (which means that the initial behavior is random). Learning
the execution probability of the actions that made these features truBroceeds by the repeated execution of trials, where a trial is defined
this in turn increases the execution probability:pf

4 The results we obtained for other scenarios (differing in the number of en-
3 This selection process could be iterated such that not only one but severavironmental features, the number of agents, and the number of actions) are
(compatible) actions are selected for execution within the current cycle.  qualitatively identical to those presented here.

Multi-Agent Systems 390 G. Weil3



Feature Sef {f1,f2,.- -, f30}
Start State {[5.J7, J14, J18, J23, J28, J30
Goal State {f1, fs, fis, fo2, foa, foo}
Agent Action Context1 Context 2 Context3 Context4
pre F2, fe, F12 I3, f6, f12 Ja, fo, F12 f5, Js, f12
1| del 2, f12 3, f12 4, f12 5, f12
add f1, f1s f1, foa f1, f30 fi
pre Ji, 7 J2, Je FENE Ja, T
1 2 | del f1 f2 I3 fa
add f5, f12 f5, f1s f5, foa f5, fao
pre [ f7, Ji2, fis fo, F12, Fis Jro, Fi2, Fis | Ji1, Ji2, Fis
3 | del f7, f18 fo, f1s 10, f18 11, f1s
add fo, fs I8, foa fs, f30 s
pre | fz, fi2, foa fs, f12, foa Fio, f12, faa | Fi1, f12, foa
2 1| del 7, foa s, f24 10, f24 11, f2a
add fe, fo fo, f1s fo, f30 fo
pre | fis, fis, foa | fia, fis, foa | fie, fis, foa | fi7, fis, foa
1| del f13, foa f14, foa f16, foa J17, foa
add f6, 15 f12, f15 f15, f30 15
pre Jf13, fis JFia, f1s JFis, fis Jfie, 18
2 del f13 f1a f1s 16
add fe, fi7 fi2, fir fi7, foa fi7, fao
pre | Jis, fio, Foa | Jis, J20, Joa | Jis, J22,f2a | Jis, Jo3, J2a
3 3 | del 18, f19 18, f20 18, f22 18, f23
add 6, f21 12, f21 21, f30 21
pre | Jfio, J2a, f30 | F2o0, Foa, Fao | J21, F2a, f30 | F23, foa, fa0
4 | del f10, f30 f20, f30 f21, f30 fe3, f30
add fo, f22 f12, foo fis, foo 22
pre | Jfiz, J2s, fao | Jiz, Fer, Jeo | Jiz, F2s, fao | Jiz2, feo, fa0
5 | del f12, fos f12, far f12, f2s 12, f29
add fs, f26 18, f26 24, fo6 26
pre | fis, fos, fao | Jis, f26, fao | fis, J2s, fs0 | Jis, fa9, f30
1| del 18, f25 18, f26 18, f2s 18, f29
4 add 6, fa7 f12, for 24, f27 27
pre J25, fao J26, F30 27, fao Jas, F30
2 | del f25 26 27 28
add fo, f20 f12, fa9 f18, f20 foa, foo
Table2. Specification of scenario 2.

as any sequence of at most 10 basic working cycles that transforms [, -
the start state into the goal state or any other state. Whenever the goal 1
state is reached, the next trial starts (with the start state as the initial | 80
state). Each data point shows the mean reward achieved in the previ- | _ |
ous 25 cycles, averaged over 5 independent runs. As the curves show, J
the JPJL algorithm resulted in a clear performance improvement over
time. The maximum reward was closely approached (above 95 per-
cent) for different planning depths after about 280 cycles in the case
of the scenario 1 and after about 370 cycles in the case of the sce- :
nario 2. The results also show that the choice of the planning depth 50 w00 %0
is crucial to the overall system performance. Our major observations Figure4. JPJL performance curves for scenario 1.
concerning the effects of the planning depth, as they are also indi-
cated by the performance curves shown in the Figures 4 and 5, can average reward

be summarized as follows: A B
800

average reward

400

200

cycles

T
300 350

250

200

1
400

1000 7

e Smaller planning depths tend to result in smoother, but slower in-
creasing performance curves.

e Larger planning depths tend to result in performance curves that 200
are less smooth (particularly in early stages), but increase faster. 1

e There is a risk of choosing a planning depth that is too large, re- 200 |
sulting in relatively large and undesirable “performance jumps.”

cycles

T T
50 100 150

T T T T 1
200 250 300 350 400

These observations indicate that the planning depth is a very criti-
cal parameter that has to be chosen extremely carefully. According
to our experience it is not feasible to try to compensate the negative

effects of a badly chosen planning depth through modifying othegng planning within a single algorithm such tigtlearning helps
parameters like the learning ratesgnd3)—this just results in con- {5 evaluate the results of planning aifj planning helps to reduce
siderable experimental efforts that are not guaranteed to eventualje number of required learning trials. Instead of “pure learning” or
succeed. “pure planning,” the JPJL algorithm realizes a kind of “planning-
based learning” or “learning-based planning.” The primary charac-
teristic of this algorithm is that both learning and planning are jointly

) ) . . . and distributedly realized by multiple agents.
The JPJL algorithm aims at enabling multiple agents to achieve co-

ordinated activity through combining their learning and planning ef- In the area of multiagent systems a lot of work is available on
forts. The primary idea behind this algorithm is to interwine learningboth activity coordination through joint learning (e.g., [1, 12, 15,

Figure5. JPJL performance curves for scenario 2.

4 Conclusions
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16, 18, 19, 26, 27]) and activity coordination through joint plan- [5]
ning (e.g., [2, 3, 6, 8, 10, 11, 17, 20]). However, there are only
very little approaches that combine joint learning and joint plan- (6]
ning. There are two exceptions that are related to the JPJL algo-
rithm. The first is the work by Sugawara and Lesser described in
e.g. [21, 22]. The basic idea behind this approach is to enable agent]
to learn situation-specific rules that capture relevant non-local infor-
mation in order to improve local planning and reasoning. This idea
has been investigated within the context of LODES, a distributed|g)
diagnosis system for computer communications networks. The sec-
ond is the approach by Nagendra Prasad and Lesser described in e.g.
[13]. Here the central idea is to endow agents with the capability to 9
learn to choose appropriate, situation-specific coordination strategies
from a set of available strategies. This idea has been implemented
in a system called COLLAGE. The primary difference between thd10]
LODES/COLLAGE approaches and the JPJL algorithm is that the
former are very knowledge-intensive whereas the latter is not. Iy ;.
particular, in the case of LODES the agents are required to a pri-
ori possess deep domain knowledge and in the case of COLLAGE
the agents are required to a priori possess sophisticated coordinatidg]
knowledge in order to be able to appropriately coordinate their ac[-ls]
tivities. Against that, in the case of JPJL coordination “evolves from
the scratch,” without requiring that particular domain or coordination
knowledge is a priori available to the agents. [14]

In its current form the JPJL algorithm is limited in two specific 15
respects. The first limitation is that the JPJL algorithm assumes that
the planning depth is fixed and predefined. As the experimental re-
sults indicated, it is desirable that this is handled more flexible. OnF16]
way to cope with this limitation is to use a time-varying planning
depth (e.g., starting with a low depth which is then increased prop 7
portionally to the overall performance). Another, even more flexi-
ble way is that the agents on their own learn to adopt the depth of
their planning activities. The second limitation is that in general it ]
can not be assumed that an agent is always aware of all the effects
of its actions, that is, that an agent’s world model is perfect. In do-
mains where every effect of an action can be sensed by at least olé]
agent (not necessarily the one carrying out this action), it is possible
to solve this problem through communicating these effects. Against
that, the JPJL algorithm runs into coordination problems in domains
in which significant effects of actions are not so easy to detect. A waf20]
to cope with this limitation is to extend the JPJL algorithm toward
distributed modeling and diagnosis (e.g., [7, 9]). Despite these Iimi-21]
tations we think that the encouraging results available so far clearlg/
justify to continue research in the directions indicated above and to
take the JPJL algorithm as a starting point for further exploring thé22]
possibilities of combining joint learning and joint planning. Our cur-
rent work concentrates on the “fixed planning-depth limitation” and,
explores how planned-based and reactive behavior can be efficiently
and effectively combined in multiagent settings. [24]
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