
Languages for Negotiation
Michael Wooldridge and Simon Parsons1

Abstract. This paper considers the use of logic-based languages
for multi-agent negotiation. We begin by motivating the use of such
languages, and introducing a formal model of logic-based negotia-
tion. Using this model, we define two important computational prob-
lems: the success problem (given a particular negotiation history, has
agreement been reached?) and the guaranteed success problem (does
a particular negotiation protocol guarantee that agreement will be
reached?) We then consider a series of progressively more complex
negotiation languages, and consider the complexity of using these
languages. We conclude with a discussion on related work and is-
sues for the future.

1 Introduction

Negotiation has long been recognised as a central topic in multi-agent
systems [7, 5]. Much of this interest has arisen through the possibility
of automated trading settings, in which software agents bargain for
goods and services on behalf of some end-user [6].

One obstacle currently preventing the vision of agents for elec-
tronic commerce from being realised is the lack of standardised agent
communication languages and protocols to support negotiation. To
this end, several initiatives have begun, with the goal of developing
such languages and protocols. Most activity in this area is currently
focused on theFIPA initiative [2]. The FIPA community is develop-
ing a range of agent-related standards, of which the centrepiece is
an agent communication language known as “ACL”. This language
includes a number of performatives explicitly intended to support
negotiation [2, pp17–18].

Our aim in this paper is to consider the use of languages likeFIPA’s
ACL for negotiation. In particular, we focus on the use oflogical lan-
guages for negotiation. The use of logic for negotiation is not an arbi-
trary choice. For example, logic has proved to be powerful tool with
which to study the expressive power and computational complexity
of database query languages [3]. We believe it will have similar ben-
efits for the analysis of negotiation languages.

In the following section, we introduce a general formal framework
for logic-based negotiation. In particular, we define the concept of a
negotiation history, and consider various possible definitions of what
it means for negotiation to succeed on such a history: we refer to
this as thesuccessproblem. In section 4, we defineprotocols for
negotiation, and consider the problem of when a particular protocol
guarantees that agreement between negotiation participants will be
reached: we refer to this as theguaranteed successproblem. In sec-
tion 5, we consider three progressively more complex languages for
negotiation. We begin with propositional logic, and show that, for
this language, the guaranteed success problem is in the second tier of

1 Department of Computer Science, University of Liverpool, Liv-
erpool L69 7ZF, United Kingdom. Email{M.J.Wooldridge,
S.D.Parsons }@csc.liv.ac.uk

the polynomial hierarchy (it isΠp
2-complete, and hence unlikely to be

tractable even if we were given an oracle forNP-complete problems).
We then present two further negotiation languages, which are more
suited to electronic commerce applications; the second of these is in
fact closely based on the negotiation primitives provided in theFIPA

agent communication standard [2]. We show that the success prob-
lem for these languages is provably intractable (they have double
exponential time lower bounds). We conclude by briefly discussing
related work and issues for future work.

2 Preliminaries

We begin by assuming a non-empty setAg = {1, . . . , n} of agents.
These agents are the negotiation participants, and it is assumed they
are negotiating over a finite setΩ = {ω, ω′, . . .} of outcomes. For
now, we will not be concerned with the question of exactly what
outcomes are, or whether they have any internal structure — just
think of outcomes as possible states of affairs.

Each agenti ∈ Ag is assumed to have preferences with respect
to outcomes, given by a partial pre-order�i ⊆ Ω × Ω. Following
convention, we writeω �i ω

′ to mean(ω, ω′) ∈ �i .
Negotiation proceeds in a series of rounds, where at each round,

every agent puts forward a proposal. A proposal is aset of outcomes,
that is, a subset ofΩ. The intuition is that in putting forward such a
proposal, an agent is asserting that any of these outcomes is accept-
able.

In practice, the number of possible outcomes will be prohibitively
large. To see this, consider that in a domain where agents are nego-
tiating overn attributes, each of which may take one ofm values,
there will bemn possible outcomes. This means it will be impracti-
cal for agents to negotiate by explicitly enumerating outcomes in the
proposals they make. Instead, we assume that agents make propos-
als by putting forward a formula of alogical negotiation language
— a language for describing deals. In much of this paper, we will
be examining the implications of choosing different negotiation lan-
guages, and in order to compare them, we must make certain general
assumptions. The first is that a negotiation languageL is associated
with a setwff(L) of well-formed formulae— syntactically accept-
able constructions ofL. Next, we assume thatL really is a logical
language, containing the usual connectives of classical logic: “∧”
(and), “∨” (or), “¬” (not), “⇒” (implies), and“⇔” (iff) [1, p32].
In addition,L is assumed to have a Tarskian satisfaction relation
“ |=L ”, which holds between outcomesΩ and members ofwff(L).
We write ω |=L ϕ to indicate that outcomeω ∈ Ω satisfies for-
mulaϕ ∈ wff(L). The classical connectives ofL are assumed to
have standard semantics, so that, for example,ω |=L ϕ ∧ ψ iff both
ω |=L ϕ andω |=L ψ. If ϕ ∈ wff(L), then we denote by[[ϕ]]L the
set of outcomes that satisfyϕ, that is,[[ϕ]]L = {ω | ω |=L ϕ}.

As we noted above, negotiation proceeds in a series of rounds,

where at each round, every agent puts forward a formula ofL rep-
resenting the proposal it is making. A single round is thus charac-
terised by a tuple〈ϕ1, . . . , ϕn〉, where for eachi ∈ Ag, the formula
ϕi ∈ wff(L) is agenti’s proposal. LetR be the set of all possible
rounds. We user, r ′, . . . to stand for members ofR, and denote agent
i’s proposal in roundr by r(i).

A negotiation history is a finite sequence of rounds
(r0, r1, . . . , rk). Let H = R∗ be the set of all possible negotia-
tion histories. We useh, h′, . . . to stand for members ofH. If u ∈ IN,
then we denote theu’th round in historyh by h(u). Thush(0) is the
first round inh, h(1) is the second, and so on.

3 Types of Agreement

Given a particular negotiation history, an important question to ask is
whether or not agreement has been reached with respect to this his-
tory. For many negotiation scenarios, this problem is far from trivial:
it may well not be obvious to the negotiation participants that they
have in fact made mutually acceptable proposals.

In fact, we can identify several different types of agreement con-
dition, which may be used in different negotiation scenarios. It is as-
sumed that the negotiation participants will settle on the agreement
condition to be used before the actual negotiation process proper
begins. The selection of an agreement condition is thus ameta-
negotiationissue, which falls outside the scope of our work.

To understand what agreement means in our framework, it is help-
ful to view a negotiation history as a matrix ofL-formulae, as fol-
lows.

ϕ0
1 ϕ1

1 · · · ϕk
1

...
...

. . .
...

ϕ0
n ϕ1

n · · · ϕk
n

In this matrix,ϕu
i is the proposal made by agenti in roundu ∈ IN.

The simplest type of agreement is where “all deals are still valid” —
once an agent has made a proposal, then this proposal remains valid
throughout negotiation. (One important implication of such agree-
ment is that since all previous offers are still valid, it makes no sense
for agents to make more restrictive proposals later in negotiation: we
emphasise that our formal approach does not depend on this assump-
tion — other types of agreement are possible, as we demonstrate
below.)

In this case, determining whether agreement has been reached
means finding at least one outcomeω ∈ Ω such that every agenti
has made a proposalϕui

i whereω |=L ϕui
i . In other words, agree-

ment will have been reached if every agenti has made a proposalϕui
i

such that[[ϕu1
1]]L ∩ · · · ∩ [[ϕun

n]]L 6= ∅. This will be the case if the
formulaϕu1

1 ∧ · · · ∧ ϕ
un
n is satisfiable. Given a historyh, expressed

as a matrix as above, agreement has been reached iff the following
formula is satisfiable:

∧
i∈Ag

 ∨
ui∈{0,...,k}

ϕui
i

 (1)

Given a historyh ∈ H, we denote the formula (1) forh by ϕh.
We refer to the problem of determining whether agreement has been
reached in some historyh as thesuccess problem. Note that the suc-
cess problem can trivially be reduced to the satisfiability problem for
the negotiation language using only polynomial time.

An obvious variant of this definition is where prior negotiation
history is disregarded: the only proposals that matter are the most re-
cent. Agreement will be reached in such a history iff the conjunction

of proposals made on the final round of negotiation is satisfiable. The
success condition is thus: ∧

i∈Ag

ϕ
|h−1|
i (2)

A third possible definition of agreement is that agents must converge
on “equivalent” proposals. Such agreement is captured by the follow-
ing condition.

ϕ
|h−1|
1 ⇔ · · · ⇔ ϕ|h−1|

n (3)

4 Protocols

Multi-agent interactions do not generally take place in a vac-
uum: they are governed byprotocols that define the “rules of en-
counter” [7]. Put simply, a protocol specifies the proposals that each
agent is allowed to make, as a function of prior negotiation history.
Formally, a protocolπ is a functionπ : H → ℘(R) from histories
to sets of possible rounds. One important requirement of protocols is
that the number of rounds they allow on any given history should be
at most polynomial in the size of the negotiation scenario. The intu-
ition behind this requirement is that otherwise, a protocol could allow
an exponential number of rounds — since an exponential number of
rounds could not be enumerated in practice, such protocols could
never be implemented in any realistic domain.

We will say a history iscompatiblewith a protocol if the rounds
at each step in the history are permitted by the protocol. Formally,
historyh is compatible withπ if the following conditions hold:

1. h(0) ∈ π(ε) (whereε is the empty history); and
2. h(u) ∈ π((h(0), . . . , h(u− 1))) for 1 ≤ u< |h|.

Now, what happens ifπ(h) = ∅? In this case, protocolπ says that
there are no allowable rounds, and we say that negotiation hasended.
The end of negotiation does not imply that the process has succeeded,
but rather simply that the protocol will not permit it to continue fur-
ther.

Notice that negotiation histories can in principle be unrealistically
long. To see this, suppose that the setΩ of outcomes is finite. Then
every agent has2|Ω| possible proposals, meaning that even if an agent
never makes the same proposal twice, negotiation histories can be
exponentially long. We say protocolπ is efficientif it guarantees that
negotiation will end with a history whose length is polynomial in
the size ofΩ andAg. Efficiency seems a reasonable requirement for
protocols, as exponentially long negotiation histories could never be
practical.

When we create an agent interaction protocol, we attempt toengi-
neerthe protocol so that it has certain desirable properties [7, pp20-
22]. For example, we might aim to engineer the protocol so that it
ensures any agreement is socially efficient (Pareto optimal), that the
protocol is computationally simple, and so on.

In this paper, we will be concerned with just one property of pro-
tocols: whether or not theyguarantee success. We will say a protocol
π guarantees success if every negotiation history compatible withπ
ends with agreement being reached. Protocols that guarantee success
are frequently desirable, for obvious reasons.

Before proceeding, we need to say something about how protocols
arerepresentedor encoded. (This is a technical matter that is impor-
tant when we come to consider some decision problems later in the
paper.) We will assume that (efficient) protocols are represented as a
two-tape Turing machine: the machine takes as input a representation

of prior negotiation history on its first tape, and writes as output the
set of possible subsequent rounds on the second tape. We will further
assume that the Turing machine requires time polynomial in the size
of |Ag× Ω| in order to carry out this computation.

5 Example Negotiation Languages

Example 1: Classical Propositional Logic. For the first example,
we will assume that agents are negotiating over a domain that may be
characterised in terms of a finite set of attributes, each of which may
be either true (>) or false (⊥). An outcome is thus an assignment
of true or false to every attribute. The proposals possible in this kind
of language are exactly the kind of outcomes typically considered in
decision theory. For example, in the classic “oil wildcatter” problem
agents might be involved in a negotiation about which of two oil
fields to drill in, and proposals might be of the form:

• drillFieldA ∧ ¬drillFieldB

• ¬drillFieldA ∧ drillFieldB

The obvious language with which to express the properties of such
domains is classical propositional logic, which we will callL0. The
setwff(L0) contains formulae constructed from a finite set of propo-
sition symbolsΦ = {p, q, r, . . .} combined into formulae using the
classical connectives “¬” (not), “∧” (and), “∨” (or), and so on. It
is easy to see that the success problem forL0 histories will beNP-
complete. More interesting is the fact that we can establish the com-
plexity of the guaranteed success problem forL0. (In what follows,
we assume some familiarity with complexity theory [4].)

Theorem 1 The guaranteed success problem for efficientL0 proto-
cols is complete forΠp

2.

Proof: We need to prove that: (i) the problem is inΠp
2, and (ii) the

problem isΠp
2 hard. To establish membership ofΠp

2, we define a
Πp

2 alternating Turing machineM that accepts efficientL0 protocols
which guarantee success, and rejects all others. The input toM will
be an efficientL0 protocolπ. The machineM runs the following
algorithm:

1. universally select all historiesh compatible withπ;
2. existentially select an outcomeω;
3. accept ifω |=L0 ϕh, otherwise reject.

Step (1) uses universal alternation to generate each history compat-
ible with π; step (2) uses existential alternation to establish whether
or not that history is successful; step (3) forces the machine to accept
if every history compatible with the protocol is successful, and reject
otherwise. At step (1), the histories selected will be at most polyno-
mial in the size ofΩ andAc. Observe that the machine has just two
alternations, a universal followed by an existential, and henceM is
indeed aΠp

2 alternating Turing machine.
To show that the problem isΠp

2 hard, we reduce theQBF2,∀ prob-
lem — this is the quintessentialΠp

2 complete problem [4, p96]. An
instance ofQBF2,∀ is given by a quantified boolean formula with the
following structure:

∀x1, . . . , xk ∃y1, . . . , yl ϕ(x1, . . . , xk, y1, . . . , yl)

Such a formula is true if for all assignments that we can give to
boolean variablesx1, . . . , xk, there is some assignment we can give
to boolean variablesy1, . . . , yl such thatϕ(x1, . . . , xk, y1, . . . , yl) is
true. Here is an example of such a formula.

∀x1∃x2[(x1 ∨ x2) ∧ (x1 ∨ ¬x2)] (4)

Formula (4) in fact evaluates to false. (Ifx1 is false, there is no value
we can give tox2 that will make the body of the formula true.)

To reduce an instance (1) ofQBF2,∀ to the L0 guaranteed
success problem, we create an agent for each∃-variable and∀-
variable in theQBF formula, and an additional agent for the body
ϕ(x1, . . . , xk, y1, . . . , yl). We then construct a protocolπ so that:

• the agent corresponding to the body initially proposes
ϕ(x1, . . . , xk, y1, . . . , yl), and proposes “false” thereafter;

• each∃-variable agent corresponding toyi initially proposesyi ⇔
>, thenyi ⇔ ⊥, and “⊥” thereafter;

• thenth∀-variable agent proposes “⊥” until roundn, then on round
n is allowed to make two proposals,yn ⇔ > andyn ⇔ ⊥, and
proposes “⊥” thereafter.

The set of negotiation histories allowed by this protocol for exam-
ple (4) can be described as follows.

agent for body: (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ⊥
agent for∃-variablex2: x2 ⇔ > x2 ⇔ ⊥
agent for∀-variablex1: {x1 ⇔ >, x1 ⇔ ⊥} ⊥

The set notation in the third row denotes the proposals this agent is al-
lowed to make at that step. The input formula will be true just in case
every negotiation history compatible with this protocol is successful.
Further, any negotiation history generated in this way will be poly-
nomial in the number of clauses and the number of boolean variables
in the originalQBF2,∀ formula, and the reduction can clearly be done
in polynomial time. Hence any instance ofQBF2,∀ can be reduced
in polynomial time to the problem of determining whether or not an
efficientL0 protocol guarantees success, and we are done. 2

Note thatΠp
2-complete problems are generally reckoned to be worse

than, say, co-NP-complete orNP-complete problems, although the
precise status of such problems in the relation to these classes is not
currently known for sure [4]. Theorem 1 should therefore be regarded
as an extremely negative result.

An obvious question to ask is whether the complexity of the guar-
anteed success problem can be reduced in some way. There are two
main factors that lead to the overall complexity of the problem: the
complexity of the underlying negotiation language, and the “branch-
ing factor” of the protocol. It is possible to prove that if we chose a
negotiation language whose satisfiability problem was inP, then the
complexity of the corresponding guaranteed success problem would
be reduced one level in the polynomial hierarchy — in fact it would
be co-NP-complete (i.e.,Πp

1-complete).
With respect to the branching factor of the protocol, suppose we

have adeterministicL0 protocolπ — one in which|π(h)| ≤ 1 for
all h ∈ H. Since such protocols generate only one history, then it is
not hard to see that the corresponding guaranteed success problem
will be NP-complete. Of course, determinism is a far too restrictive
property to require of realistic protocols.

Example 2: A Language for Electronic Commerce. Proposi-
tional logic is a simple and convenient language to analyse, but is
unlikely to be useful for many realistic negotiation domains. In this
example, we focus on somewhat more realistice-commercescenar-
ios, in which agents negotiate to reach agreement with respect to
some financial transaction [6]. We present a negotiation languageL1

for use in such scenarios.

We begin by defining the outcomes that agents are negotiating
over. The idea is that agents are trying to reach agreement on the
values of a finite setV = {v1, . . . , vm} of negotiation issues[8,
pp181–182], where each issue has a natural number value. An out-
comeω ∈ Ω for such a scenario is thus a functionω : V → IN,
which assigns a natural number to each issue.

In order to represent the proposals that agents make in such a sce-
nario, we use a subset of first-order logic. We begin by giving some
examples of formulae in this subset.

• (price = 20) ∧ (warranty= 12)
“the price is $20 and the warranty is 12 months”

• (15 ≤ price≤ 20) ∧ (warranty= 12)
“the price is between $15 and $20 and the warranty is 12 months”

• (price+ warrantyCost≤ 2000)
“price plus warranty is less than $2000”

Formally,L1 is the subset of first-order logic containing: a finite set
V of variables, (with at least one variable for each negotiation issue);
a setC of constants, one for each natural number; the binary addition
function “+”; the equality relation “=”; and the less-than relation
“<”.

There is both good news and bad news aboutL1: the good news
is that it is decidable; the bad news is that it isprovablyintractable.
In fact, we can prove thatL1 has a double exponential time lower
bound. In what follows,TA[t(n), a(n)] is used to denote the class
of problems that may be solved by an alternating Turing machine
using at mostt(n) time anda(n) alternations on inputs of lengthn [4,
p104].

Theorem 2 The success problem forL1 is complete for⋃
k>0

TA[22nk

, n].

Proof: Follows from the fact thatL1 formulae may be reduced in
linear time to formulae of Presburger arithmetic andvice versa[1,
p250]. Presburger arithmetic is a subset of first-order logic containing
equality, the successor functionS : IN → IN and constant0, the less
than relation “<”, and the addition function “+”. Formulae of Pres-
burger arithmetic are interpreted over a structure〈IN, 0,S, <,+〉,
where the components of this structure have the obvious meaning.
Since the problem of deciding whether a formula of Presburger arith-

metic is true is complete for
⋃

k>0
TA[22nk

, n], (see e.g., [4, p105]),
and this complexity class is closed under polynomial time reductions,
the result follows easily. 2

The details of the classTA[t(n), a(n)] are perhaps not very important
for the purposes of this example. The crucial point is that any algo-
rithm we care to write that will solve the generalL1 success problem
will haveat leastdouble exponential time complexity. It follows that
such an algorithm is highly unlikely to be of any practical value. With
respect to the guaranteed success problem forL1, we note that since
the success problem gives a lower bound to the corresponding guar-
anteed success problem, theL1 guaranteed success problem will be

at least
⋃

k>0
TA[22nk

, n] hard.

Example 3: A negotiation meta-language. The language used in
the previous example is suitable for stating deals, and is thus suffi-
cient for use in scenarios in which agents negotiate by just trading
such deals. However, as discussed in [8], the negotiation process is
more complex for many scenarios, and agents must engage in per-
suasion to get the best deal. Persuasion requires more sophisticated

dialogues, and, as a result, richer negotiation languages. One such
language, based on the negotiation primitives provided by theFIPA

ACL [2], and related to [8], includes the illocutions shown in Ta-
ble 12. In this table,ϕ is a formula of a language such asL0 or L1.
In this sense, the language which includes the illocutions is ameta-
languagefor negotiation — a language for talking about proposals.
For the rest of this example, we will consider a languageL2 which
consists of exactly those illocutions in Table 1, whereϕ is a formula
in L1.

Illocution Meaning
request(i, j, ϕ) a request fromi to j for a proposal based onϕ
offer(i, j, ϕ) a proposal ofϕ from i to j
accept(i, j, ϕ) i accepts proposalϕ made by agentj
reject(i, j, ϕ) i rejects proposal ofϕ made by agentj
withdraw(i, j) i withdraws from negotiation withj

Table 1. Illocutions for the negotiation languageL2.

These illocutions work as follows. There are two ways in which
a negotiation can begin, either when one agent makes anoffer to
another, or when one makes arequestto another. A request is a semi-
instantiated offer. For example, the following illocution

request(i, j, (price =?) ∧ (warranty= 12))

is interpreted as “If I want a 12 month warranty, what is the price?”.
Proposals are then traded in the usual way, with the difference that

an agent can reply to a proposal with areject, explicitly saying that a
given proposal is unacceptable, rather than with a new proposal. Ne-
gotiation ceases when one agentaccepts an offer orwithdraws from
negotiation. Note that this protocol assumes two agents are engaged
in the negotiation. (Many-many negotiations are handled in [8] by
many simultaneous two-way negotiations.)

To further illustrate the use ofL2, consider the following short
negotiation history between two agents negotiating over the purchase
of a used car:

1. request(a, b, (price≤ 4000) ∧ (model=?) ∧ (age=?))
2. offer(b, a, (price = 3500) ∧ (model= Escort) ∧ (age= 8))
3. reject(a, b, (price = 3500) ∧ (model= Escort) ∧ (age= 8))
4. offer(b, a, (price = 3900) ∧ (model= Golf) ∧ (age= 6))
5. offer(a, b, (price = 3200) ∧ (model= Golf) ∧ (age= 6))
6. offer(b, a, (price = 3400) ∧ (model= Golf) ∧ (age= 6))
7. accept(a, b, (price = 3400) ∧ (model= Golf) ∧ (age= 6))

Broadly speaking, the illocutions inL2 are syntactic sugar for the
kinds of proposal that we have discussed above: we can map them
into L1 and hence into the framework introduced in section 2. To
do this we first need to extend the condition for agreement. In the
case where we have two agents,a andb negotiating, the agreement
condition we use is a combination of (2) and (3):

(ϕ|h−1|
a ∧ ϕ|h−1|

b) ∧ (ϕ|h−1|
a ⇔ ϕ

|h−1|
b) (5)

Thus the agents must not only make mutually satisfiable proposals
on the final round, they must make equivalent proposals. Given this,
we can prove the following result.

2 Note that the language proposed in [8] also includes illocutions which in-
clude the reason for an offer. We omit discussion of this facility here. We
also omit the timestamp from the illocutions.

Theorem 3 The augmented success problem forL2 is complete for⋃
k>0

TA[22nk

, n].

Proof: The result follows from Theorem 2 and the fact that we can
define a linear time transformation betweenL2 andL1 histories,
which preserves the conditions of success. We will in fact define a
mapping which translates fromL2 illocutions toL1 formulae — the
mapping can be easily be extended to histories. ThreeL2 illocutions
can be re-written directly:

• offer(i, j, ϕ) becomes a proposalϕ;
• accept(i, j, ϕ) becomes a proposalϕ which matches the last pro-

posal;
• reject(i, j, ϕ) becomes a proposal¬ϕ.

These illocutions then fit precisely into the framework defined above,
and success occurs in precisely the same situation — when (5) is sat-
isfiable — once the last proposal, the one which makes (5) satisfiable,
is echoed by the second agent. The remaining two illocutions can be
captured by:

• request(i, j, ϕ) becomes a proposalϕ in which some attributes are
of the form(valuemin ≤ attribute≤ valuemax);

• withdraw(i, j) becomes “⊥”.

A proposal “⊥” immediately makes (5) unsatisfiable, and the ne-
gotiation terminates, exactly as one would expect of awithdraw. A
proposal in which some attributesAi are of the form(valuemin ≤
attribute≤ valuemax) and othersAj have more restricted values leads
immediately to the satisfiability of (5) if the response is a proposal
which agrees on theAj and has any value for theAi (since these will
agree with the intervals[valuemin, valuemax]). Since the transforma-
tion will clearly be linear in the size of the history, the result follows.
2

There is also the question of whether success can be guaranteed when
negotiating inL2, and this, of course, depends upon the protocol
used. Table 2 gives the protocol used in [8]. We will call thisπL2 .

Agent i says Agentj replies
request(i, j, ϕu

i) offer(j, i, ϕu
j)

offer(i, j, ϕu
i) offer(j, i, ϕu

j), or accept(j, i, ϕu
j), or

reject(j, i, ϕu
i), or withdraw(j, i)

reject(i, j, ϕ) offer(j, i, ϕu
j) or withdraw(j, i)

accept(i, j, ϕu−1
j) end of negotiation

withdraw(i, j) end of negotiation

Table 2. The protocolπL2 for L2 at theuth step of the negotiation.

Clearly this protocol can lead to negotiations which never termi-
nate (since it is possible for agents to trade the same pair of unac-
ceptable offers for ever). However, it is not unreasonable to insist
that conditions are placed upon the protocol in order to ensure that
this does not happen and that negotiations eventually terminate. One
such condition is that agents make concessions at each stage, that
is, that each offer made by an agent is less preferable to that agent
than any of its predecessors. Under this condition, and assuming that
agents withdraw onceϕ drops below some threshold, we have:

Theorem 4 ProtocolπL2 guarantees success.

Proof: Consider an ongoing negotiation. If we can show that the ne-
gotiation terminates, then success is guaranteed. Now, ifi generates
the illocutionwithdraw(i, j) oraccept(i, j, ϕ), negotiation terminates.
If i generatesreject(i, j, ϕ), then eitherj withdraws and the negotia-
tion terminates after the next step, orj responds with an offer. Sim-
ilarly, if i generatesoffer(i, j, ϕ), either the negotiation terminates
after the next step, orj issues an offer or a reject. A reject will, of
course, generate a withdrawal or an offer. Thus the only way that the
negotiation can continue is through the exchange of offers, albeit of-
fers interspersed withrejects. Since both agents always concede, any
offer an agent makes will be less acceptable to it than the previous
offer it made, and so, after making a number of offers, the value of
the deal being offered will fall beneath the threshold. At this point
the agent will withdraw, and the negotiation will terminate. 2

One simple scenario which is captured byπL2 is that in which one
agent,i say, rejects every offer made by the other,j, until suitable
concessions have been gained. Of course, provided that the end-point
is acceptable forj, there is nothing wrong with this — and if the
concessionj is looking for are too severe, thenj will withdraw before
making an acceptable offer.

6 Discussion

This paper has identified two important computational problems in
the use of logic-based languages for negotiation — the problem of
determining if agreement has been reached in a negotiation, and the
problem of determining if a particular negotiation protocol will lead
to an agreement. Both these problems are computationally hard. In
particular the paper showed the extent of the problems for some lan-
guages that could realistically be used for negotiations in electronic
commerce. This effort is thus complementary to work on defining
such languages. Obvious future lines of work are to consider the im-
pact of these results on the design of negotiation languages and pro-
tocols, and to extend the work to cover more complex languages. In
particular, we are interested in extending the analysis to consider the
use of argumentation in negotiation [8].

Acknowledgements: This work was supported by theEPSRCun-
der grantGR/M07076.

REFERENCES
[1] H. B. Enderton.A Mathematical Introduction to Logic. Academic Press,

1972.
[2] FIPA. Specification part 2 — Agent communication language, 1999. The

text refers to the specification dated 16 April 1999.
[3] N. Immerman. Descriptive Complexity. Springer-Verlag: Berlin, Ger-

many, 1999.
[4] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science Volume A: Algorithms
and Complexity, pages 67–161. Elsevier Science Publishers B.V.: Ams-
terdam, The Netherlands, 1990.

[5] S. Kraus. Negotiation and cooperation in multi-agent environments.Ar-
tificial Intelligence, 94(1-2):79–98, July 1997.

[6] P. Noriega and C. Sierra, editors.Agent Mediated Electronic Commerce
(LNAI Volume 1571). Springer-Verlag: Berlin, Germany, 1999.

[7] J. S. Rosenschein and G. Zlotkin.Rules of Encounter: Designing Con-
ventions for Automated Negotiation among Computers. The MIT Press:
Cambridge, MA, 1994.

[8] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework
for argumentation-based negotiation. In M. P. Singh, A. Rao, and M. J.
Wooldridge, editors,Intelligent Agents IV (LNAI Volume 1365), pages
177–192. Springer-Verlag: Berlin, Germany, 1998.

