
Bringing Information Extraction out of the Labs:
the Pinocchio Environment

Fabio Ciravegna1 and Alberto Lavelli 1 and Giorgio Satta2

Abstract. Pinocchio is an environment for developing Information
Extraction applications. New applications and languages can be cov-
ered by just writing declarative resources. Information is represented
uniformly throughout the architecture: all the modules use the same
input structure and the same type of declarative resources. Modules
are implemented via the same basic processors and share a common
environment for resource development and debugging. The result is
an environment easy to use with limited training and skills.

1 INTRODUCTION

The exponential increase in the quantity of information held in dig-
ital archives has fueled growing interest in techniques for Informa-
tion Extraction. Given that the vast majority of available information
is textual (e.g., web pages, electronic newspapers, agency news), the
role of Information Extraction from text (IE) is becoming more and
more central. An IE system extracts pieces of information that are
salient to the user’s needs. The typical output is a set of filled tem-
plates containing the extracted information. This information can be
used for different purposes, e.g. data base population, text indexing,
information highlighting.

IE is one of the few areas of Natural Language Processing (NLP)
where evaluation methodologies have been defined and shared by
a large community. Extensive evaluations have been carried out
in MUC conferences [12]. Applications are beginning to appear,
mainly for IE subtaskswith a high reliability on generic corpora (e.g.,
named entity recognition [11]). Nevertheless there seems to be a dis-
proportion between the effort spent in IE in the last ten years and the
number of real-world applications already implemented. We believe
that one of the reasons for this is the fact that, despite the emphasis
on evaluation, scarce attention has been paid to whether the currently
available technology and systems are suitable to produce real-world
applications. MUCs stressed specific aspects of building applications
(i.e., effectiveness in results and limited development time), but other
important aspectswere left out. As a consequencemany existing sys-
tems do not take them into account. Unfortunately such aspects are
very relevant for industrial applications and in our opinion this is one
of the factors that is currently limiting the market for IE.

The first aspect concerns the cost of new applications. Application
cost was considered in MUC as a by-product of the limited port-
ing time allowed for development, but this is a simplified perspec-
tive. A potential application developer will consider as cost also the
person time needed for building applications and the skills required.

1 ITC-irst Centro per la Ricerca Scientifica e Tecnologica, via Sommarive 18,
38050 Povo (TN), Italy, email:fciravejlavellig@irst.itc.it

2 Dip. di Elettronica e Informatica, Universit`a di Padova, via Gradenigo 6/A,
35131 Padova (PD), Italy, email: satta@dei.unipd.it

Given the current technology, competence in computational linguis-
tics (CL) is required for developing IE applications. Skills in CL are
not very common in industries. Moreover, in research systems many
modules adopt approaches directly derived from basic research ac-
tivities, and hence based on formal methodologies difficult to under-
stand for a layman. It is unlikely that commercial companies would
hire a whole group of experts in specific NLP areas. They would be
more inclined to hire a small group (ideally just one person) with
generic competence in CL. In addition, many IE systems are based
on patchwork architectures composed of modules studied and imple-
mented separately by experts in different areas of NLP (e.g., pars-
ing, discourse processing) and later integrated. There is therefore a
lack of uniformity in the architecture becausesuch modules generally
use different formalisms and development environments. A potential
user will then be forced to cope with a variety of formalisms and en-
vironments. From this point of view most of the current IE systems
do not seem to be ready for applications.

A second aspect for evaluating IE technology is the availability of
development environments that allow the definition of new applica-
tions by people different from the system developers. This requires
the possibility of porting via definition of declarative resources only.

A third critical aspect is easy integrability in two directions:

� external: the final application should be easily integrable into the
user environment;

� internal: the architecture should provide facilities for extensions to
cope with application-specific needs (e.g., the recognition of com-
plex technical terminology). The inclusion of external modules
based on commercial technology (e.g., morphological analyzers)
is an additional interesting feature.

A fourth fundamental aspect in the current application scenario
concerns multilinguality: the more documents are electronically
available in languages other than English, the more the need of cop-
ing with different languages arises. Multilingual interaction can be
realized in two ways:

� extracting information written in different languages (multilin-
guality);

� extracting information written in one language and presenting it
in a different one (cross-linguality).

The problem of defining the same application for the same domain
but in different languages then arises: there is the need of reusing al-
ready developed domain-dependent resources, without starting from
scratch for every new language [7]. Most of the current IE systems
are monolingual and probably not enough attention has been so far
paid to this aspect.

In this paper we presentPinocchio, a tool for the quick delivery
of multilingual and cross-lingual IE applications whose design takes



into account the needs mentioned above. In this respect we believe
thatPinocchio is a step in the direction of bringing IE into real world-
applications. In the paper we present the architecture and discusshow
its organization meets application needs.

2 Pinocchio

Pinocchio is an environment that provides a uniform and powerful
set of tools for IE applications. Its design aims to supply a single
environment taking into account both the current trends in IE (eval-
uation methodology, reduced porting time) and the needs mentioned
above (reduced cost, usability, integrability and multilinguality).

New applications can be developed and new languages can be
covered by only modifying declarative resources. The declarative
resources used by all the modules in the system employ the same
formalism: all the modules operate on the same input structure and
use the same type of rules (processed by the same basic machinery).
The environment for developing and debugging resources is uniform
across the whole architecture. This uniformity simplifies the applica-
tion development process and reduces the need of manpower and the
required skills, i.e. the cost of the application. A single person with a
generic knowledge in CL can eventually do the entire work.

Pinocchio is available in two configurations: the development en-
vironment and the delivery configuration. The development environ-
ment provides a set of tools that support application development
(e.g., editors, compilers, debugger, tracers). At the end of the de-
velopment process, a delivery configuration is produced that can be
inserted as a black-box into the user environment through an API.
Pinocchio provides an open architecture. In case of applications with
specific requirements, it is possible either to define and integrate new
modules (using the internal processors) or to include pre-existing
modules (e.g., commercial technologies).

Domain-dependent and language-dependent resources are sharply
separated. For this reason, when building new applications in the
same language, most of the language-dependent resources can be
reused. Conversely, when porting the same application from one lan-
guage to another, most domain-dependent resources may be reused.

The system output is compatible with the current IE evaluation
methodologies, in particular with the MUC standards and tools [6].

Pinocchio has been used to develop applications and demonstra-
tors, mainly in the financial domain. The system has been mainly
used for Italian, but demonstrators exist for English and (partially)
Russian. Coverage of English and Russian and their trial applications
were defined by people different from the system developers.

In the next section the formalism used for information represen-
tation is introduced. In Section 4 the open architecture and the basic
processors are described and the default application is presented. In
Section 5 development and delivery configurations are outlined. Fi-
nally applications and experimental results are discussed.

3 INFORMATION REPRESENTATION

Before describing thePinocchio architecture we introduce the for-
malism for representing information shared by all the modules.

Every lexical elementa in a text t is abstractly represented by
means of elementary objects, calledtokens. A tokenT is associated
with three structures:

� [T ]dep: a tree representing syntactic dependencies betweena and
other tokens int.

� [T ]feat : a feature structure representing syntactic and semantic in-
formation needed to combinea with other tokens.

Figure 1. Relations in[Tn]dep and[Tn]lf for the sentence ’John starts
eating an apple’

� [T ]lf : a Quasi Logical Form providing a semantic interpretation
for the combination ofa with other tokens.

Tokens are organized in a basic data structure, calledtoken chart.
This is a directed graph whose vertices are tokens and whose arcs
represent binary relations in either[T ]dep, [T ]feat or [T ]lf . Initially,
the arcs in the token chart represent lexical adjacency between to-
kens. During text processing such structure is processed and dynam-
ically modified.

All Pinocchio’s modules operate on the token chart by means of
rules organized in sequences of cascades (see [2] for a description
of the rule formalism). These rules perform deterministic analysis
and are implemented as Finite-State Transducers. Rules can access,
incrementally build and update the token chart, i.e., they can access
and modify all the three token structures mentioned above. Lexical,
syntactic and semantic constraints can therefore be used in rules at
any level [2]. An example will clarify how the token chart allows a
rule to test semantic and syntactic constraints in a uniform way. In
Figure 1 the token chart for “John starts eating an apple” is shown
(only relations in[T ]dep and[T ]lf are displayed). A rule could easily
test whether the “patient” of eating is a definite or an indefinite NP by
starting fromT3, traversing the arc labeled “patient” (which is part
of [T3]lf ), reachingT5 and then moving toT4 by traversing the arc
labeled “art” (in [T5]dep). [T4]feat will then provide the information
about the definiteness of the article (not shown).

4 ARCHITECTURE

An architecture inPinocchio is composed of three main parts:

� The architecture manager that controls the information flow. It ac-
tivates the other modules in order to perform IE.

� A set of modules, each devoted to a specific task (e.g., parsing).
This set is open in principle.

� The kernel that provides the basic machinery used by the task-
specific modules above.

Different architectures can be defined, given the set of task-
specific modules available and the directions provided to the archi-
tecture manager.

In the rest of this section we focus on the kernel and the task-
specific (internal and external) modules. Then we move to the de-
scription of the default architecture provided inPinocchio.



4.1 The Kernel

The kernel is the set of basic processors and resources on which the
task-specific modules rely (Figure 3). Its internal processors are:

� aRule Enginethat applies rules on the token chart;
� a Knowledge Base Management System(KBMS) that provides

the formalism for defining the knowledge base and the basic ma-
chinery for testing consistency in[T ]lf ;

� aFeature Structure Management System(FSMS) that provides
the formalism for the typed feature system and the machinery for
unification in[T ]feat.

Declarative resources available to the kernel are:

� Knowledge Base(KB): it defines the ontology for the application
domain. Definitions and restrictions in the KB are used by the
KBMS for computing consistency in[T ]lf .

� Typed Feature System: it is the basis for the (language-
dependent) syntactic description. It provides the information used
in the[T ]feat and unified by the FSMS [4].

� Lexicon: it is divided into:

– Foreground Lexicon (FL): for each word it provides the map-
ping with the ontology and a description of syntactic and se-
mantic features (e.g., subcategorization frame). This informa-
tion is copied into[T ]lf and[T ]feat during lexical lookup. The
FL contains terms tightly bound to the domain and generally
consists of few hundred words.

– Background Lexicon (BL): it is a generic dictionary providing
default generic information for words outside the FL.

4.2 Task-specific Modules

The architecture manager activates a specific set of modules in or-
der to carry out IE tasks. Each module is devoted to a certain task.
Modules are divided into internal and external.External modules
are processors integrated inPinocchio via an API. In general the role
of such modules is limited to the connections with the application
environment in which the final IE system will run, or to integrate
commercially available software (e.g., morphological analyzers).In-
ternal modules, on the other hand, are native and rely on the kernel
for processing. They are composed of:

� a declarative resource representing cascades of rules;
� a processor (wrapper) whose aim is to:

– accept the control from the main module;

– select the token path, i.e. the portion of the token chart on which
the module operates (for example, the token path for a parser is
an ordered list of tokens representing a sentence);

– ask the rule engine to apply the rules on the token path;

– provide post-processing of results (if necessary);

– return the control to the main module.

Each internal module operates on the token chart and eventually
modifies it. It is important to stress that all the internal modules rely
on the kernel for processing rules. They use the same rule engine, the
same rule formalism and primitives and operate on the same token
chart. This uniformity is of great help in building applications.

The definition of new internal modules requires the definition of
both the sequence of the rule cascades and the wrapper. In our expe-
rience a module of average complexity can be defined in few hours.

Figure 3. Communication between a task-specific module and the kernel

4.3 Default Architecture

In Pinocchio a default architecture is provided following the model
presented in [9]. Such default architecture allows to define new ap-
plications or to cover new languages by just modifying declarative
resources (lexicon, knowledge base, typed feature system and finite-
state grammars). For applications with specific needs, new architec-
tures can be defined and the set of task-specific modules can be ex-
tended. The current default architecture consists of internal modules
implementing the following tasks:

� Named entity recognition: identification and classification of
proper names, numbers, percentages, monetary quantities, etc.

� Preparsing: identification of sentence and clause boundaries.
� Parsing: production of a sufficient IE approximation (SIEA) of

a complete parse tree for each sentence. A SIEA is a complete
parse tree where all the relations relevant for template filling are
explicitly represented, while other relations are underspecified or
even left implicit. In other words, a SIEA is the minimal approx-
imation of a complete parse tree providing all the relations useful
for IE. Hence, differently from many current systems that perform
just partial parsing [10, 8], the parser performs a kind of full text
parsing [2]. Since parsing is deterministic, just one structure is
produced for[Tsent]dep, [Tsent]feat and[Tsent]lf .

� Inference: derivation of additional information in[T ]lf not explic-
itly mentioned in the text, that can be derived by reasoning on
[T ]lf itself (e.g., if a person working for company X is hired by
company Y, s/he is no longer employee of X).

� Discourse processing: (pro)nominal references are resolved and
implicit relations captured (e.g., “The Bank of Japan decided
. . . The president said. . . ”). The result of discourse processing is
[Text]lf , a logical form associated to the whole text.

� Template filling and merging:[Text]lf is mapped into application-
specific templates. Template merging and recovery actions cope
with missing information. Templates are internally represented us-
ing the language for knowledge representation.

External modules in the default architecture are:

� a text zoner for recognizing text parts (e.g., title, body). This is an
application-dependent module to be defined for each application;

� a preprocessor that provides tokenization, morphological analysis
and PoS tagging.Pinocchio does not include any direct facilities



Figure 2. A snapshot of the browsers for system results showing a[T ]dep (center right), a[T ]lf (bottom left), a[T ]feat (middle left). The template browser is
shown at the right bottom. The panel for controlling the architecture is shown at the top. It is used for tracing, inspecting partial results, etc.

for preprocessing. The API allows to interface existing preproces-
sors. A built-in interface is currently provided for the LinguistX
tools produced by InXightTM .

� a postprocessor translating the filled templates from the internal
format into a user-defined format.Pinocchio provides a default
module producing a format fully compatible with the MUC evalu-
ation methodology to be used during development for comparing
system results against user-tagged corpora.

5 DEVELOPMENT ENVIRONMENT AND
DELIVERY CONFIGURATION

Pinocchio provides an environment for supporting the users in devel-
oping applications. It includes facilities for the following tasks:

� resource development:

– editors, compilers and graphers for kernel resources (KB, lexi-
con and type hierarchy);

– editor and compiler for rule cascades;

� resource test:

– a panel for running the system on texts and/or corpora;

– a set of tracers to monitor:

� the effect of each rule on the token chart;

� the rule cascade application;

� the KBMS and FSMS consistency checks;

– a browser for the token chart;

– specialized browsers for[T ]dep, [T ]feat , [T ]lf , and IE templates
(Figure 2);

� application test: comparison of system results with the templates
provided by a human being for user-defined corpora via the MUC
scorer [6].

The uniformity of the editing and debugging environment is im-
portant in the application development process. It allows to avoid the
problem of many current IE systems that are composed of different
modules, each based on its own formalism and with its own debug-
ging environment. In our experience, using our framework a single
person is able to build a whole application.

The possibility of automatically comparing system results with
user-provided results allows to continuously monitor resource devel-
opment. It also provides the customer with an objective evaluation of
the quality of results in the final IE application.

At the end of the application development process, a delivery con-
figuration is produced with reduced hardware and software require-
ments. Such configuration does not contain the editing, compiling
and debugging facilities or the graphical interface. Resources are
compiled into Lisp code and no longer require the rule engine. The
architecture is frozen. The final application can then be inserted into
the user environment as a black-box.

6 APPLICATIONS AND EXPERIMENTAL
RESULTS

Applications and demonstrators in different languages have been de-
veloped usingPinocchio, mainly in the financial domain [3]. For the



Italian language, one application about bond issues has been fully
developed and two others have reached the level of demonstration
(management successionand company financial results). Demonstra-
tors were developed for English (economic indicators) and partially
for Russian (bond issues). Concerning the Italian application to bond
issues, the system reached P=80, R=72, F(1)=76 on 95 texts used for
development (33 ANSA agency news, 20 “Il Sole 24 ore” newspa-
per articles, 42 Radiocor agency news; 10,472 words in all). Figure 4
shows the adopted template. Effectiveness was automatically calcu-
lated by comparing the system results against user-provided results
via the MUC scorer. The development cycle of the template applica-
tion was organized as follows: resources were developed by inspect-
ing the first 33 texts of the corpus. Then the system was compared
against the whole corpus (95 texts), reaching R=51, P=74, F(1)=60.
Finally resourceswere tuned on the whole corpus mainly by focusing
on the texts that did not reach sufficient results in terms of R&P. The
system analyzed 1,125 word/minute on a Sparc Ultra 5, 128M RAM.
The Italian Named Entity Recogniser was also tested as a stand alone
module on generic corpora in the financial domain. It reached P=86
R=92 in a blind test on a 5,700 word corpus after training on a 9,200
word corpus.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presentedPinocchio, an environment for de-
veloping and running IE applications. The most appealing facilities
of this environment are:

� It can be adapted to new languagesand applications with a limited
manpower by developing declarative resources only.

� The architecture is open to the insertion of new internal and exter-
nal modules.

� It provides a uniform architecture where all the internal modules
are implemented using the same basic processors (the kernel). Im-
provements in efficiency can then be obtained by modifying the
implementation of the kernel. Last year the rule engine was reim-
plemented in two weeks and the system performances doubled.

� It provides a uniform common environment for resource develop-
ment and debugging. The user is required to learn just the formal-
ism for rules, feature structures and knowledge representation.

� Rules are organized in sequences of cascades. Cascades are easy
to control and debug. A methodology is suggested for sequence
and cascadeorganization that maximizes the separation of linguis-
tic knowledge from domain knowledge and simplifies porting [5].

� It is possible to use the environment with only a limited knowledge
of computational linguistics; a first-year PhD student was able to
define the resources covering a reasonable subset of English and
to develop a demonstrator for an application.

Pinocchio has already demonstrated its capabilities in coping with
different languages. Although we have not yet tested it in a cross-
lingual application, the underlying approach is compatible with [7].

Some applications and demonstrators have been developed so far
and others are under study. In our experience new applications re-
quired from two to four person/months, while porting to new lan-
guages required four to six person/months. We are currently dis-
cussing a pilot project with a big American corporate for applications
in the field of pharmacology on English texts. We are also continuing
the work in the financial domain.

Future work onPinocchio will concern the application of machine
learning techniques to IE, in order to simplify rule writing and lex-
icon development [1]. The current application development cycle

Figure 4. The template to be filled for bond issues.

requires some months of person time; we intend to reduce it to some
weeks.

REFERENCES
[1] Fabio Ciravegna, ‘Learning to tag for information extraction’, inProc.

of the ECAI workshop on Machine Learning for Information Extrac-
tion, eds., F. Ciravegna, R. Basili, and R. Gaizauskas, Berlin, (2000).

[2] Fabio Ciravegna and Alberto Lavelli, ‘Full text parsing using cascades
of rules: An information extraction perspective’, inProceedings of the
9th Conference of the European Chapter of the Association for Compu-
tational Linguistics, Bergen, Norway, (1999).

[3] Fabio Ciravegna, Alberto Lavelli, Nadia Mana, Luca Gilardoni, Silvia
Mazza, Massimo Ferraro, Johannes Matiasek, William J. Black, Fabio
Rinaldi, and David Mowatt, ‘FACILE: Classifying texts integrating pat-
tern matching and information extraction’, inProceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, Stock-
holm, Sweden, (1999).

[4] Fabio Ciravegna, Alberto Lavelli, Daniela Petrelli, and Fabio Pianesi,
‘Developing language resources and applications withGEPPETTO’, in
Proceedings of First International Conference on Language Resources
& Evaluation, Granada, Spain, (1998).

[5] Fabio Ciravegna, Alberto Lavelli, and Giorgio Satta, ‘Full parsing ap-
proximation, finite-state cascades and grammar organization for in-
formation extraction’, Technical Report 9911-02, ITC-irst, (November
1999).

[6] Aaron Douthat, ‘The message understanding conference scoring soft-
ware user’s manual’, inProceedings of MUC-7, http://www.muc.
saic.com/, (1998).

[7] Robert Gaizauskas, Kevin Humpreys, Saliha Azzam, and Yorick Wilks,
‘Concepticons vs. lexicons: An architecture for multilingual informa-
tion extraction’, in Information Extraction: A multidisciplinary ap-
proach to an emerging information technology, ed., Maria Teresa
Pazienza, 28–43, Springer Verlag, (1997).

[8] Ralph Grishman, ‘Information extraction: Techniques and challenges’,
in Information Extraction: a multidisciplinary approachto an emerging
technology, ed., M. T. Pazienza, Springer Verlag, (1997).

[9] Jerry R. Hobbs, ‘The generic information extraction system’, inFifth
Message UnderstandingConference (MUC-5), ed., B. Sundheim. Mor-
gan Kaufmann Publishers, (August 1993).

[10] Jerry R. Hobbs, Douglas E. Appelt, John Bear, David Israel, Megumi
Kameyama, Mark Stickel, and Mabry Tison, ‘FASTUS a cascaded
finite-state transducer for extracting information from natural language
text’, in Finite State Language Processing, eds., Emmanuel Roche and
Yves Schabes, MIT Press, (1997).

[11] G. R. Krupka and K. Hausman, ‘IsoQuest Inc.: Description of the Ne-
tOwl extractor system as used for MUC-7’, inProceedings of the Sev-
enth Message Understanding Conference (MUC-7), http://www.
muc.saic.com/, (1998).

[12] MUC7, Proceedings of the Seventh Message Understanding Confer-
ence (MUC-7), SAIC,http://www.muc.saic.com/, 1998.


