
A Practical System for Human-Like Parsing
Christian R. Huyck 1

Abstract. This paper describes a human-like natural language
parser called Plink. It works by parsing left-to-right through a sen-
tence and keeping a complete representation of the partially read
sentence. It does this by combining a sophisticated unification-based
grammar and grammar rule selection heuristics.

Plink also functions in real world applications. To do this, it must
process texts that are not grammatical and does this by combining a
general grammar and taking advantage of preference levels in the rule
selection heuristics. It has been evaluated on two parsing metrics:
Parseval [4] and a dependency based metric [14]. Plink performs well
but below the state of the art.

Like humans, Plink parses in linear time, and generates one in-
terpretation that is both syntactic and semantic. It is psycholinguisti-
cally inspired.

1 Introduction and Background

Example 1. The horse raced past the barn.
The human parsing mechanism is unlike standard computational

parsers. When a human processes a sentence, he has a largely com-
plete representation of the sentence up to the point he is currently
reading [12]. Given Example 1, the reader at some point will fixate
on the word raced. He will have already interpreted The horse as a
noun phrase; while reading raced, he will determine that it is a verb
phrase and that The horse is the actor and subject of raced. 2 Later,
he will attach the prepositional phrase past the barn as the location
of raced.

The correct interpretation of Natural Language (NL) is the inter-
pretation that a human produces. It is possible to generate this in-
terpretation differently than humans do, but in general we have no
system that does this. In parsing, we have no system that performs in
the range of humans for correct parses in an open domain. Therefore,
the human parsing mechanism (as explored by psycholinguists) can
provide evidence to improve our parsers.

Example 2.The horse raced past the barn fell.
Left-to-right parsing with no postponement of attachment can in-

form work in language engineering; it can explain why Example 2
is difficult for a human to understand. It can also explain why center
embedded constructions are difficult to understand.

Virtually all NL parsing systems ignore this constraint, and give
interpretations to sentences which humans do not interpret; all of the
parsers described in [21] fall into this category. The Plink parser,
which is described in this paper, reads left-to-right and keeps a
largely complete representation of the sentence up to the point that is
currently being read.

1 Middlesex University, London, NW4 4BT, UK. email: c.huyck@mdx.ac.uk
2 While the psycholinguistic literature may not agree on when these decisions

are made, this is a valid position with evidence to support it [12].

The Plink parser is a human-like parser. It is linear. It is robust. It
generates exactly one interpretation. Plink is based on deterministic
parsing because near-determinism is an essential feature of human-
like parsers [12]. Furthermore, many parsing decisions have been
based on our understanding of how the human parser works. How-
ever, Plink is not currently a complete model of human parsing.

Additionally, the Plink parser is meant to be used in current Text
Engineering applications. While Plink can be used to parse just
“grammatical” sentences, robust parsing techniques are readily in-
corporated into Plink, making it even more useful; these techniques
are incorporated into the system described in this paper. To evaluate
its effectiveness, Plink has been measured on current parsing metrics
and performs well on these.

This paper first discusses the basic parsing mechanism. The power
of the system comes from the interaction between sophisticated
grammar rules and grammar rule selection heuristics, which are ex-
plained next. Parsing systems should parse robustly, and Plink’s abil-
ity to do this is described next. After this, results on two popular pars-
ing metrics are discussed. The paper concludes with a discussion of
heuristics and the future work on the system, and a discussion of the
ramifications of this system.

2 Plink

Plink is a deterministic parser using a complex grammar. The Plink
parsing mechanism is similar to the Parsifal [15] and Fidditch [9]
parsers. Plink differs from these parsers by using a more sophisti-
cated grammar rule selection mechanism. This mechanism can take
advantage of semantics as well as syntax.

If a parsing decision can be made based on the existing con-
stituents, it is made; if not the decision is delayed. However, the de-
cision is only temporarily delayed, and if an ambiguity exists after
more processing, a parsing decision is forced. This allows it to func-
tion in real-world domains.

While it may give interpretation to only grammatical sentences, it
can easily incorporate robust parsing. The system described in this
paper parses robustly.

2.1 Basic Parsing Mechanism

The Plink parsing mechanism is a simple stack based parser. Its
power comes from the manner in which the grammar is written, and
from grammar rule selection heuristics that inspect the partial parse
up to the current word.

The basic mechanism is an LR parsing mechanism [1]. A new
word is pushed onto the stack. Rules are applied to the stack and it
is modified. When appropriate, the next new word is pushed onto
the stack. Pushing a new word onto the stack is akin to a human
focusing on the word. At this stage, work on previous constituents
can be completed and work can be done on the current word.



Plink does occasionally fail to parse a sentence. Some things may
be added to guarantee a complete parse (see section 3), but this does
not guarantee a correct parse. This seems to be a fatal problem until
it is noted that humans sometimes fail to parse sentences. Example 2
is a garden path sentence which people can not normally parse3.

This simple stack based parsing mechanism, when driven by a
good grammar and grammar rule selection heuristics, functions much
like the human parsing mechanism. The key is to keep a small num-
ber of elements on the stack. These elements represent the partial
parse of the sentence up to and including the current word.

2.2 The Stack

Given a sequence of words w1 ... wn, a grammar consisting of a set
of rules and an initially empty stack, parsing proceeds by modify-
ing the stack as follows. If no grammar rule applies, the next word
is pushed on the stack. A grammar rule may be applied to a single
constituent on the stack to create a new constituent, or to combine
a finite number of constituents replacing the old constituents with a
new one. These replaced constituents may be on the top of the stack
or a finite distance from the top.

Example 3. The horse is racing.
The processing of Example 3 will be described. Initially The is

the focus of attention. One rule is selected and successfully applied
which states that The is the start of a simple noun phrase (SNP), so
the stack contains an SNP. 4 A new word horse becomes the focus
of attention, and again one grammar rule is selected and successfully
applied; this is the SNP! SNP common-noun rule. It is possible that
the SNP is not yet complete as in The horse buggy..., so that decision
is delayed.

When the next word is read, a rule is applied to change the SNP
into an NP. Since the next word is a finite verb, the system knows
that the NP is complete and will not be running into a phrase like
The horse buggy... This leaves two elements on the stack, the NP and
the present tense verb is. A simple verb phrase (SVP) is begun by is,
but it cannot be made into a complete VP since a more complex SVP
may be (and in this case is) formed. At the end of processing is, two
elements are left on the stack.

The next word racing is processed. SVP! SVP progressive-verb
is selected and applied. The next word period is added to the stack.
First the SVP is transformed into a VP, then the NP is added as the
actor and subject of the VP. If the next word were today instead of
period, these same rules would be triggered. This is different than the
standard analysis. In the standard analysis, all of the later arguments
are added to the VP before the subject NP is added. This approach
allows the stack to get larger than is necessary. It also seems incon-
sistent with human processing.

Example 4 is a different sentence with the same initial words.
Example 4. The horse is racing today.

When a human is attending to today he knows that The horse is the
actor of is racing. The parsing mechanism does not enforce this con-

3 In other sentences, people do not initially make the correct parsing decision,
but backtrack, correct the mistake, and continue on. Plink does not currently
account for backtracking (see section 6).

4 The standard grammar would wait to apply the rule SNP! det common-
noun, but upon seeing a determiner, it is clear that it is part of an SNP. The
standard grammar rule can be used in Plink, but additional rules like SNP!
det adj common-noun would be needed. These would lead to more grammar
rules and to the stack growing larger. Since it is known that an SNP is
coming, it is best to convert The to an SNP. This is similar to binarized
trees [18].

straint, instead the grammar and selection rules guide the parsing,
and keep the stack small.

The idea of keeping the stack small is based on a processing lim-
itation. When the stack is small, less information needs to be con-
sidered while selecting the next rule. Humans do not have to con-
sider the syntactic structure of earlier unrelated clauses while making
present syntactic decisions. To a great extent syntactic decisions are
local. However, syntactic decisions may be influenced by certain key
larger structures from earlier in the sentence. Information from these
structures may be examined by the grammar selection rules.

The stack is kept small by combining elements of the stack using
grammar rules. Therefore, whenever it is possible, a grammar rule is
applied. However, in some cases a decision can not be made and must
be delayed (eg. Example 6 below). Even after delay, some decisions
can not be made; in this case the goal of keeping the stack small takes
precedence and a decision is made. This balance between making
a correct decision and minimizing the information considered is a
limitation with which humans must also contend as is evidenced by
human problems with interpreting multiple center embeddings.

2.3 Grammar Rules

Plink makes use of a unification-based grammar [20]. A UBG is
slightly more powerful than a context-free grammar and facilitates
the integration of semantics and syntax. Each constituent may be a
sophisticated Directed Acyclic Graph (DAG) representing the entire
semantics of the string it covers. The element may also contain syn-
tactic and parsing information.

Example 5.
((1) = NP
(2) = VP
(2 head syn voice) = active
(head) = (2 head)
(head sem actor) = (1 head sem)
(pref name) = active-vp-adds-actor)

Example 5 shows a sample rule for combining the NP actor to an
active VP. It is applied by unifying (combining) two DAGs, into a
third DAG. The initial DAGs represent the NP and the initial VP, and
the rule application results in a third VP DAG that includes the NP.

The resulting VP is not complete after the application of this rule.
Extra arguments may still be added. In Example 4 this rule would be
applied before today had been integrated into the VP. Grammar rules
can combine elements before one element, as traditionally defined,
is complete. This has the advantage of keeping the stack size small.

The full semantics of the processing of Example 3 would reside in
the head sem feature. The semantics take advantage of case frames
[7]. They would be (action (race, progressive) (actor horse)). If Ex-
ample 4 were parsed the slot (time today) would be added.

2.4 Grammar Selection Rules

The basic form of the parsing algorithm is simple, but sophisticated
processing is facilitated by the grammar selection rules. The Plink
grammar selection rules are unlike general parsing principles [13] but
instead are quite specific. This specificity is needed to deal with the
complexity of parsing natural language. The grammar selection rules
inspect the contents of the top of the stack, and based on the contents,
select and order several grammar rules. These rules are then applied
until one is successful and the stack is modified. When no rules are
successful the next word is pushed on the stack.



Grammar selection rules are inspecting very complex structures.
Thus they have a great deal of information to bring to any rule selec-
tion and thus to the next parsing decision.

The basic form of a grammar selection rules is a UBG equation
just like a grammar rule. The difference is that the selection rules
are not applied to modify the stack; only the grammar rules, when
successfully applied, modify the stack.

A grammar selection rule can be described by 1: the grammar rule
selected, 2: the preference level, and 3: the contents of the top of the
stack. The grammar rule selected is the name of the grammar rule
that is selected by this selection rule. The name is specified in the
(pref name) feature of the grammar rule; in Example 5, the name of
the rule is active-vp-adds-actor.

Preference level is a value indicating how “good” the grammar rule
is in the current context. All of the selection rules are compared to
the stack, so several grammar rules may be selected. These grammar
rules are ordered by the preference mechanism.

In the current system there are six preference levels. The prefer-
ence level may be hard-coded in the selection rule, or this value can
be determined at runtime based on values of stack components; see
[10] for more information This preference mechanism adds a great
deal of power to the system. It allows the use of specific and general
rules to aid in grammar development. It also enables robust parsing
(see section 3).

The selection rule describes the contents of the top of the stack by
a UBG equation. This equation is unified with the top of the stack.
If it is successful, the grammar rule is selected with the appropriate
preference value. If the equation does not unify, the grammar rule is
not selected.

This equation may contain extra constituents that the grammar rule
does not use. These extra constituents are the context for the selection
rule. This is how a grammar rule can be applied a finite distance into
the stack. While selection is context sensitive, this does not adversely
affect the efficiency of the parsing algorithm.

Example 6. VP NP PP
Example 6. shows a prepositional phrase attachment ambiguity.

Does the PP attach to the NP or the VP? This decision may be based
on one of the PP’s features, the (pref attach) feature. If the (pref at-
tach) feature has the value to-vp, the PP will be attached to the VP;
if the value is to-np it will attach to the NP. Assuming that it is set
correctly, the appropriate attachment can be implemented by the fol-
lowing selection rules.

Example 7.
rule-name VP-from-VP-Object
preference-value best
stack ((1) = VP

(2) = NP
(3) = PP
(3 Pref Attach) = to-vp)

Example 8.
rule-name NP-from-NP-PP
preference-value best
stack ((1) = NP

(2) = PP
(2 Pref Attach) = to-np)

Example 7 shows the selection rule that attaches the NP as the object
of the VP. This is done when the next PP will attach to the VP. Note
that the grammar rule VP-from-VP-Object does not use the PP, it is

only used during selection. It is context sensitive. Example 8 shows
the heuristic that attaches the PP to the NP; this only occurs if the
PP’s (pref attach) feature is to-np.

The context sensitivity of rule selection allows finitely delayed de-
cisions. If a decision involving adjacent constituents ci and cj can not
be made immediately, the next constituent, ck may lend some disam-
biguating information. In Example 7 the extra PP shows the com-
pletion of the NP and licenses its attachment to the VP. Additional
constituents may be used to delay decisions; in the current system
the largest number of extra constituents considered is 4.

If a decision had not been made by the time these extra con-
stituents are added, then something is wrong with the selection rules,
and the stack will grow too large. While developing the rules, if the
stack grows too large, the developer knows an attachment has not
been made when it should have been. Thus his efforts are concen-
trated on solving this attachment problem (see section 5).

Full-fledged unification is used on selection rules so specific or
general semantic categories can be checked. A very specific selec-
tion rule could check if the top of the stack was a PP with the seman-
tic head *telescope* using the preposition with, the second element
of the stack was an NP with the semantic feature *human* and the
third element was the verb *see*. A more general rule could use the
verb *attend*. In specific semantic contexts, specific selection rules
override default assumptions. These specific rules in turn could be
overriden by more specific semantic context and higher preference
selection rules.

Plink is similar to left-corner parsing [18] in that it uses look
ahead; while Roark’s system has a look ahead of one, Plink’s varies
depending on the need of the grammar, and selection criterion.
Roark’s system also keeps a variable size beam of possible inter-
pretations while Plink has only one. Roark’s system is probabilistic.
Plink could take advantage of probabilities to automatically derive
grammar selection rules (see section 6).

Plink uses incremental interpretation and is similar to [17]. Mil-
ward suggests that each time a word is processed, it is completely
incorporated into the sentence. Plink could do this but would need to
keep a stack size of two (the word being processed, and the part of
the sentence already processed). Plink needs the larger stack size to
resolve ambiguity. Gapping could be handled by preference features
that are used solely for parsing.

3 Robustness and Grammar Rule Levels

Humans can interpret a wide range of texts including those that are
not “grammatical”. In many natural language applications, all texts,
even those that are ungrammatical need to be interpreted. That is,
each sentence needs to be parsed even if it is not traditionally gram-
matical. The parser should give the correct result for a grammati-
cal sentence and a reasonable result for an ungrammatical sentence.
Through the use of preference levels and a general grammar, the
Plink system can give a reasonable interpretation to even ungram-
matical sentences. Furthermore, this mechanism eases grammar de-
velopment by accounting for grammatical constructs that are not yet
handled by the normal grammar.

The current Plink grammar and selection rules have a subset that
accounts for most common grammatical structures. These selection
rules only use the four highest preference values. By automatically
generating grammar rules and selection rules with a lower preference
the system can give an interpretation to any sentence. When the sen-
tence is accounted for by the original subset of the grammar, then
the sentence will be interpreted as it would without the automatically



generated grammar. Moreover, where a portion of the ungrammat-
ical sentence is grammatical, it will be correctly interpreted by the
original grammar.

Example 9. Sentence! word+
It is quite simple to generate a grammar that interprets all sen-

tences. One simple grammar would be Example 9. Here word might
refer to all of the lexical categories which a system can expect. This
could easily be translated into a UBG that had two rules for each
lexical category. Clearly, this is not a very useful grammar. However,
this basic idea can be folded into an existing grammar, by the use of
levels of grammatical constructs.

Many current parsing systems function as a cascade of grammars
(eg. [6]). For instance, a system might function by first transforming
lexemes into simple noun and verb phrases. Next it parses by com-
bining these simple noun and verb phrases into clauses, and finishes
with a pass that combines clauses into sentences. The system just de-
scribed has three levels of grammar rules. Standard X-Bar [11] gram-
mars can be thought to have the first two levels of grammar rules. A
cascade of grammars can be readily folded into one Plink grammar
due to the stack based parsing mechanism, and the preference levels
used in grammar rule selection.

If Example 9 can be applied at each level, then the number of rules
generated, and their associated heuristics can be kept to a minimum.
The current system uses three levels of grammar rules as described
above. At the lowest level, constituents are divided into two groups:
constituents that are part of a simple noun phrase and constituents
that are part of a simple verb phrase (adjective phrases and prepo-
sitional phrases are combined with simple noun phrases). Selection
rules and grammar rules are generated to account for all possible
combinations. This guarantees that no lexemes (terminals) will be
left in the final output. A similar set of rules guarantees that no sim-
ple phrases will be left in the output, and another set of rules guar-
antee that no clauses will be left in the output. Thus only complete
sentences are produced.

These agrammatical 5 selection rules are given a low preference
value so they only apply when a “grammatical” rule does not apply.
When processing a grammatical sentence, the higher preference rules
apply and the agrammatical rules are never applied. Only when the
original grammar is insufficient will this new grammar be applied.
Additionally, as soon as the agrammatical construct is accounted for,
the system will return to normal grammatical interpretation.

4 Results

Plink has been thoroughly tested in practical systems, having been
used in the fifth and seventh Message Understanding Competitions
[2], [3], an Arabic Text Extraction System, and as part of the NL
front end for a process modelling system. The results of a particular
set of grammar and selection rules on two existing parsing measure-
ments are presented. Plink is evaluated using the Parseval [4] evalu-
ation on the development corpus, and on a blind portion of the Wall
Street Journal portion of the Penn Tree Bank (PTB) [16]. Plink is
then evaluated on a dependency based evaluation [14] on a portion
of the Susanne Corpus [19].

The grammar was developed by using the first nine PTB texts, that
consist of 69 sentences, as the development corpus. The goal was to
maximize the brackets that Parseval used and to minimize any extra
structure that Parseval does not use.

5 Agrammatical refers to rules that are not in the standard grammar. The
construct may be truly ungrammatical, or it just may not be accounted for
by the standard grammar.

Table 1. System Comparison
Training PTB Test PTB Susanne

Plink 99.0/94.9 70.8/74.1 61.5/66.4
Collins 88.1/88.6
Lin 71.8/79.9

Table 1 describes the results on the two metrics. Each cell shows
recall/precision measurements. The first column shows the result of
the training data on Parseval. The recall is near optimal. The preci-
sion is quite high, though not as high as the recall; this is a result
of extra structure generated that Parseval does not accept. This extra
structure raises the score on the dependency-based evaluation. This
indicates that Plink may perform at human levels of parsing when its
rule set is complete.

The second column shows the results of Parseval on unseen texts.
Collins’ parser [5] has the best results on this metric. Though they
are lower, Plink’s results compare well with Collins’ results.

The third column shows the results on the dependency-based eval-
uation. This evaluation is different than the Parseval evaluations.
Firstly, it uses a different corpus, the Susanne corpus. Secondly, in-
stead of being based on bracketing, the parse tree is described by a
dependency structure. [14] explains more thoroughly how a depen-
dency structure can be converted into a tree. Plink uses the same
grammar as in the Parseval evaluation and compares relatively well
with Lin’s result using his own parser. Plink suffers in the Susanne
evaluation by not building extra internal structure that is needed by
the evaluation.

Both Lin’s and Collins’ parsers would not have performed as well
on the other’s metric, since the annotation system is different. For in-
stance, the Susanne corpus tends to give more structure inside simple
noun phrases.

Plink performs well on the Susanne and Parseval evaluation. The
grammar, heuristics and lexicon are relatively new and it is hoped
that further work will lead to even better results. It is hoped that
automated heuristic generation (see section 6) will increase Plink’s
results beyond Colins’ and Lin’s. The initial results are promising.
It is hoped that scores can approach those generated by Plink on the
training data. Plink is not currently as effective but unlike the other
two, it parses ungrammatical sentences, is linear and human-like.

5 Discussion of Selection Rules

The rules described in this paper were generated by using a three
tier path. 1: Adhering to levels, build a (roughly) regular grammar. 2:
Handle NP boundary problems. 3: Fix phrase combining problems
using semantics.

The current set of selection and grammar rules was largely built by
building a regular grammar parser while adhering to levels. Combine
strings of lower level constituents to form higher level constituents.
A rule that was largely followed was to avoid having lower level
constituents on the stack below higher level constituents. The lowest
level consisted of conversion from raw lexemes into simple noun and
verb phrases. Parsing like a regular grammar incorporates the right
association heuristic [13].

When a simple phrase is created it is combined with existing
phrases whenever possible. Similarly, complex phrases can be com-
bined into sentences. This tier uses the second, third and fourth high-
est preference levels in this process. This leaves the highest level for
the exceptions handled in the lower tiers of generation, and the lowest
preference levels for robust parsing.

The first tier works well with one look ahead, and the remaining
tiers are to fix the exceptions to the first tier. As more sentences are



added to the test corpus, modification of the rules to account for these
sentences forces the developer to focus on difficult attachments. The
lower two tiers are where these difficult constructs are handled using
semantics and look ahead.

The second tier accounts for problems with simple phrase
boundaries. Tier one combines all noun-like things into one sim-
ple NP. Unfortunately, this sometimes fails as in Example 12.

Example 12. The boy John...
Example 12 is a simple NP when it is in The boy John fell. but it
is two simple NPs in The boy John hit fell. In most cases the first
tier approach works, but delaying decisions and using semantics is
necessary to fix this and other problems. Other problems occur with
adverbs and particles. The highest preference levels are used here to
override normal processing.

The third tier accounts for phrase combination. Experience has
shown that semantic decisions are rarely needed for simple phrase
creation, but it is much more commonly needed for simple phrase
combination. When a syntactically identical string is parsed two dif-
ferent ways, then it is time for semantics. Broad semantic categories
can be used to influence parsing decisions. For instance, if the NP is
*human* and the VP is *ingest*, then choose active-vp-adds-actor.
These rules are validated by the psychological work done by [8].

The above explanation explains how this particular grammar and
selection rule set works, but the selection rule mechanism should
work for a general grammar. The general mechanism works by giving
general selection rules a lower priority than more specific rules. The
agrammatical selection rules are very general and apply in virtually
any circumstance, thus they have the lowest preference. Syntactic
rules that do not refer to semantic features have a higher preference
value. Semantically specific rules would have higher preference val-
ues; since there is a possibility for semantic inheritance (a semantic
net is built into Plink) there may be even more specific rules with
even higher preference values.

Within this scheme some grammars are more suitable to this pars-
ing mechanism than others. Combining partial analyses as quickly as
possible keeps the stack size small; a grammar which waits to com-
bine the subject-actor of an active VP until after the VP is delaying a
decision it already knows. A grammar that allowed this combination
would be more suitable.

6 Future Work and Conclusion

Work to date on Plink suggests several areas of future work. These
include: automatic grammar and heuristic rule acquisition based on
large corpora, and modifying Plink to use back-tracking.

The rule set described in this paper is rather small. Plink should
avoid problems of scalability encountered by [15] because of its use
of UBG, its preference scheme, and its use of semantics. A larger
grammar to handle useful phenomenon (such as wh-gapping) should
not affect existing grammar rules as extra features can be used to
handle these new phenomenon. The current system has six prefer-
ence levels, but as the semantics get more complex, extra preference
levels could be used to resolve conflicts.

There has been work in automatic grammar acquisition and this
work can be applied to Plink. Automatic heuristic generation is of
particular interest. Many parsing decisions (such as PP attachment)
are based on semantics. Heuristics can be automatically generated
based on the semantic content of the constituents involved in the at-
tachments. These heuristics can be derived by looking at the attach-
ment decisions that are made in large corpora and the semantics of
the components involved.

Backtracking should also be considered. When should a system
backtrack and to where should it backtrack? In grammatical sen-
tences people do occasionally make the incorrect parsing decision
and must backtrack. To what degree can Plink duplicate this behav-
ior? How is this related to preference levels and the size of the stack?
Another issue is the relationship between grammatical backtracking,
and accounting for ungrammatical sentences.

Some sentences are grammatical but humans still can not process
them. This gives us extra evidence on how to correctly parse, evi-
dence to which Plink adheres.

Plink has elucidated and extended the work on deterministic
parsers. From a Text Engineering standpoint, it is efficient, effective,
and can account for ungrammatical phenomena. From a psycholin-
guistic standpoint Plink largely adheres to current linguistic theory,
and parses roughly like humans.

REFERENCES
[1] Alfred Aho, V. R. Sethi, and J. Ullman, Compilers: Principles, Tech-

niques and Tools, Addison-Wesley Publishing, 1986.
[2] ARPA, Proceedings of the Fifth Message Understanding Conference

(MUC-5), Morgan Kaufmann Publishers, 1993.
[3] ARPA, Proceedings of the Seventh Message Understanding Conference

(MUC-7), Morgan Kaufmann Publishers, 1998.
[4] E. Black, S. Abney, D. Flickinger, and et al., ‘A procedure for quantita-

tively comparing the syntactic coverage of english grammars’, DARPA
Speech and Natural Language Workshop, 306–311, (1991).

[5] Michael Collins, ‘Three generative, lexicalised models for statistical
parsing’, In Proceedings of the Association of Computational Linguis-
tics, (1997).

[6] Jerry Hobbs et al., ‘Sri international fastus system muc-r test results
and analysis’, Proceedings of the Fourth Message Understanding Con-
ference, (1992).

[7] Charles Filmore, ‘The case for case’, in In Universals in Linguistic The-
ory, eds., Emmon Bach and Robert Harns, Holt, Rinehart and Winston
Inc., (1968).

[8] M. Ford, J. Bresnan, and R. Kaplan, ‘A competence-based theory of
syntactic closure’, in The mental representation of grammatical rela-
tions, ed., J. Bresnan, MIT Press, (1982).

[9] D. Hindle and M. Rooth, ‘Structural ambiguity and lexical relations’,
Computational Linguistics, 19(1), (1993).

[10] C. Huyck, PLINK: An Intelligent Natural Language Parser, University
of Michigan technical report CSE-TR-218-94, 1994.

[11] R. Jackendoff, X-bar Syntax: A Study of Phrase Structure, MIT Press,
1977.

[12] M. Just and P. Carpenter, ‘A theory of reading: From eye fixations to
comprehension’, Psychological Review, 87(4), 123–154, (1980).

[13] J. P. Kimball, ‘Seven principles of surface structure parsing in natural
language’, Cognition, 2(1), 15–47, (1973).

[14] Dekang Lin, ‘A dependency-based method for evaluating broad-
coverage parsers’, The Fourteenth International Joint Conference on
Artificial Intelligence, 1420–1425, (1996).

[15] M. Marcus, A Theory of Syntactic Recognition for Natural Language,
MIT Press, 1980.

[16] M. Marcus, B. Santorini, and M. Marcinkiewicz, ‘Building a large an-
notated corpus of english: The penn treebank’, Computational Linguis-
tics, 19(2), 313–330, (1993).

[17] O. Milward and R. Cooper, ‘Incremental interpretation: Applications,
theory and relationships to dynamic semantics’, 15th International
Conference of Computational Linguistics, 748–54, (1994).

[18] B. Roark and M. Johnson, ‘Efficient probabilistic top-down and left-
corner parsing’, 37th Meeting of the ACL, 421–8, (1999).

[19] Geoffrey Sampson, English for the Computer, Oxford U. Press, 1995.
[20] Stuart M. Shieber, An Introduction to Unification-Based Approaches to

Grammar, Center for the Study of Language an Information, 1986.
[21] M. Tomita, Current Issues in Parsing Technology, Norwell, 1991.


