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Abstract. Word Sense Disambiguation (WSD) is a central task in on-line dictionary definitions.

the area of Natural Language Processing. In the past few years In both cases, the resulting taxonomy, or concept inventory,

several context-based probabilistic and machine learning methodmaintains a considerable degree of “fuzziness”, though it may

for WSD have been presented in literature. However, an importantesult an acceptable convention for the purpose of certain

area of research that has not been given the attention it deservesirgeresting computational tasks.

a formal analysis of the parameters affecting the performance of In the literature (sef8] for a collection of recent results), there

the learning task faced by these systems. Usually performance i a rather vast repertoire of supervised and unsupervised learning

estimated by measuring precision and recall of a specific algorithmalgorithms for WSD, most of which are based on a formal

for specific test sets and environmental conditions. Therefore, aharacterization of the surrounding context of a word or linguistic

comparison among different learning systems and an objectiveconcept, and a functidnto compute the membership of a word to

estimation of the difficulty of the learning task is extremely a category, given its context in running texts.

difficult. A recent large-scale exercise in evaluating WSD programs is
In this paper we propose, in the framework of Computational Senseval7].

Learning theory, a formal analysis of the relations between One of the objectives of this experiment was to identify

accuracy of a context-based WSD system, the complexity of theorrelations between performance of the various systems and the
context representation scheme, and the environmental conditiongarameters of the WSD task.

(e.g. the complexity of language domain and concept inventory). Though the scoring of systems appears sensitive to certain
factors, such as the degree of polysemy and the eRtoisense
1 INTRODUCTION distributions, these correlations could not be consistently

) ) . ) observed. There are words with fewer senses causing troubles to
Word Sense Disambiguation (WSD) is perhaps the most centrajost systems, while there are words with a very high polysemy
and difficult task in the area of Natural Language Processing. Theynq entropy on which all systems obtain good performance.
problem of WSD is one of identifying the semantic category of an  The Senseval experiment highlighted the necessity of a more
ambiguous word in a sentence context, for example, the financiabccyrate analysis of the correlations between performance of

institution sense of bank in:A survey by the Federal Reserve's 12 \ygp systems and the parameters that may affect this task. In
district banks and the latest report by the National Association of absence, a comparison of the various WSD algorithms and an

Purchasing Management blurred that picture of the ecoriomy. estimation of their performance under different environmental
All interesting, large-scale applications of NLP, e.9. onditions is extremely difficult.

Information Retrieval, Filtering and Extraction, Machine | the next sections we briefly present a computational model

Translation and Summarization, efc., suffer performancef earning, called PAC theofd][5][8], and we then show that

limitations originated by their limited ability to discriminate the ;¢ theory may be used to determine the formal relations between

rele\{ant Senses of word occurrences in running te>.(ts. performance of context-based WSD models and environmental
Linguistic concepts are rather vague - the notion that the Wordconditions.

“bank” belongs to such categories heman organizatior{the
financial institution sense) arldcation (the bank-river sense) is
more or less intuitive, but)in no way it(is possible to characu)erize a2 LEARNING APPROXIMATE
linguistic concept in a rigorous way through a mathematical DEFINITIONSOF LINGUISTIC
expression. Linguistic concepts are a convention, and even one on  CONCEPTS
which there is little assent. .
In NLP, linguistic concepts are often defined @ssters of Formally, the problem of example-based learning of WSD models
words sharing some propertiéisat can be systematically observed €an be stated as follows:
in spoken or written language. A property is a regularity related to
the way words are used, or to the internal structure of the entities
they represent. In purely context-based algorithms the idea is thag - ) o
if a group of words share certain properties, this must be reflected Dipartimento di Scienze dell'Informazione, University of Roma ‘La
by some observable regularity in the use we make of these word\;;gr'giggs'i_ur:{r'gmaslﬁt'a”a 113, 1-00198 Roma, ltaly, email:
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word sense. Sense definitions are manually created using som

formal representation language, or automatically extracted from™ A high entropy indicates an even distribution of sense probabilities in
the analyzed sublanguage




i) Given a class C of concepts @here C is either a hierarchy learnable if there exists an algorithm L with the following
or a “flat” concept inventory), property: For every CIC, for every distribution D on X, and for

ii) Given a context-basegpresentation classl for a concept  all 0<e<1/2 and 08<1/2, if L is given access to EX{(D) and
class C, where HY 0-C and Y is a finite alphabet of inputse andd, then with probability at least @), L outputs a
symbols (e.g. words or word tags), hypothesis h for concept,Gatisfying error(h)s.

iii) Given an input spaceXy Oof encodings of instances in the  The parameters andd have the following meaning: is the
learner’'s world, e.g. feature vectors representing contextsprobability that the learner produces a generalization of the

around words wj, where wj is a member ¢f C sample which does not coincide with the target concept, Whde
iv) Given a training sample S of length m : the probability, given D, that a particularly unrepresentative
S=((x1,b1)...xm,bm))  xj OX,bj D{O,l} training sample is drawn. The objective of PAC theory is to

predict the performance of learning systems by deriving a lower

where b=11f x; is a positive example ofiC bound for m, as a function of the performance parametnslo.

formally characterizea functionh (C)H that assigns a word w to H
a concept ¢ given the sentence context x of w. The hypothesis
may have the form of a Hidden Markov Model with estimated H,.q

transition probabilities, a decision list, a cluster of points in a
representation space, a logic formula, etc.

The complexity of this learning task is related to several aspects,
such as selecting an appropriate representation space H, an
appropriate grain for the concept inventory C, and finally, a
sufficiently representative training sample S. Figure 1.e-sphere around the “true” function C

Firstly, H must be an “adequate” representation space for C.

Quite intuitively, if we represent a linguistic concept as the set of  Figure 1 (from[6]) illustrates the “intuitive” meaning of PAC
possible morphologic tags pairs inta window, we will not be  gefinition. After seeing m examples, the probability thahH
able to predict much, simply because surrounding morphologicincludes consistent hypotheses is:

tags are not sufficient to determine the semantic category of a

word. < —e\ e 1(]—s)™

On the other hand, if we select an overly complex representation P(PbadHeond<| Hoas [(17€) <HI(1¢)
model, including irrelevant features, we run through the so called
overfitting problem. And we want:

Finally, some of the features used in a representation may be
dependent on other features, and again the model would result [H|(1-¢)"<d
unnecessarily complex.

The problem of noise and overfitting are well known in the area  We hence obtain a lower bound for the number of examples we
of Machine Learnind7], therefore we will not discuss the matter need to submit to the learner in order to obtain the required
in detail here. An analysis of this issue as applied to probabilisticaccuracy:
WSD learners may be found|i8].

For the purpose of this paper, we assume that the representation
space H is optimized with respect to the choice of the relevant
model parameters. Our objective will be to determine the size of

the training set S, given H, C, a learning algorithm L and certain  The inequality (1) establishes a sort of worst-case general

performance objectives. , , bound, but unfortunately this bound turns out to have limited
As we said, the aim of a WSD learning process, when mstructeqm“ty in our WSD application.

with a sequence S of examples in X, is to produce an hypothesis h For example, if the hypothesis space for a linguistic concept C

whm%, in some sense, “corresponds” to the concept undefg yo \yidely usedBiag of words model, i.e. a set of at least k
consideration. “typical” context words selected by a probabilistic learner, after

Because S S éinite sequence, only concepts with a f|n|te. observing m samples of the words around wordsWwGC; (e.g. X
number of positive examples can be learned with total success, i.€.

the learner can output an hypothesis h=I€ general, and this is — (W-nWen+1,- W,...Wn-1,Wn)) then H is any choice ofks|V|
the case for linguistic concepts, we can only hope that lygod ~ Words over|V| elements, whergV| (=10°) is the size of the
approximationof C,. With our problem at hand, it is worth vocabulary.
noticing that even humans may provide only approximate We then have:
definitions of linguistic concepts!
The theory of Probably Approximately Correct (PAC) learning, H=1+ le\ @Jr +QV\ @< ZM
a relatively recent field on the borderline between Artificial H|= ek /T
Intelligence and Information Theory, states the conditions under
which h reaches this objective, i.e. the conditions under which a The apove expression, used in inequality (1), produces an

computer derived hypothesis h ‘probably’ represents C qyerly high bound for m, that can be hardly pursued especially in
‘approximately’. . case the learning algorithm L is supervised!

Definition 1 (PAC learning). Let C be a concept class over X. In PAC literature, the bound for m is often derived “ad hoc”
Let D be a fixed probability distribution over the instance space X, g, specific algorithms, in order to exploit knowledge on the
and EX(G,D) be a procedure reflecting the probability distribution precise learning conditions.

of the population we whish to learn about. We say that RAE It is also worth noticing that PAC literature has mostly a

1g 1 C
ngangﬂn\H\E (1)



theoretical emphasis, and almost all applications concentrated oinformation measures the strength of a correlation between co-

the field of neural networks and natural learning systgghsTo occurring arguments, and the Plausibi[iy assigns a weight to a

the knowledge of the authors, the utility of this theory in the area offeature vector, depending upon the degree of ambiguity of its

computer learning of natural language has not been explored. arguments and the frequency of its observations in a corpus. We
In the following, we will derive a probabilistic expression for m assume here thagtis adjusted to be a probability, i Ee(i,k)=1.

in the track of (1), for the case of @ontext-based WSD The factorg(i,k) represents hence astimateof the probability

probabilistic learner a learning method that includes a rather wide py,0 C, ).

class of algorithms in the area of WSD. We believe that adapting ynder these hypotheses, a representatiti for a concept ©

our analysis to other example-based WSD systems will not requirqs the following:

a significant effort. This relation allows it to establish, upon an a-

priori analysis of the chosen conceptual model and of the language h(C){f'1..f i}

domain, a more precise relation between performance, complexity fo - h(C ) iff @(i.k) >y )

of the learning algorithm, and environmental conditions (e.g. k '

complexity of the language domain). . . .
Our objective is to show that an a-priori analysis of the learning Eogﬁ}; (ﬁ.) hest?r?llshetsh thaht only fea@ure dvtectors tW'th a

model and language domain may help to tune precisely a wsppropavility igher than a thres oldare assigned to a category

experiment and allows a more uniform comparison betweenmog?\ll'en an unknown word w’ occurring in a context represented
different WSD systems. u g p

by 'y, the WSD algorithm assigns w’ to the category in C which
maximizes the similarity between,fand one of its members.
Again, sed4] and[2] for examples of similarity functions.

Given the above, the probabilistic WSD model for a category

3 A FORMAL ESTIMATE OF ACCURACY FOR
CONTEXT_BASED PROBABILISTIC WSD

MODELS Ci may fail because:
folIoAWF;r:ObabI“Stlc context-based WSD learner may be described as 1 C includes false positives(fp), e.g. feature vectors

erroneously assigned tq C
2 There ardalse negativegn), i.e. feature vectors erroneously
i i i 0oL discarded because of a low vaipek)
f=(f@/=ve, &=z, &=V U", by ), 3 The context f; is true positive for Cbut was never observed
bi(:l if f.is a positive example of,@nder H. aroqnq members gfiCnor wassimilar (in the precise sense
of similarity established by a given algorithm) to any of the
vectors in the contextual models.

Let X be a space of feature vectors:

Each vector describes the context in which a woftd @ is
found, with variable degree qf c.omplexity. For example§, We then havk
arguments of, may be any combination of plain words and their
morphologic, syntactic and semantic attr.ibgtes. P(W' is misclassified on the basis of)

We assume that arguments are stat|§t|awp¢ndentand that P(f\[Ofp)+P(F«Ofn)+P(f\ unseen positive) 3)
a concept is represented as the set of its "typical" context vectors
(in case arguments are assumed independent, the representation of Let:
a concept is more simple, & ).

An example[4] is the case in whick, is tuple representing a
syntactic relation between a word w and another waydn its

m be the total number of feature vectors extracted from a
corpus

k
m  the total number of occurrences of a featyre f

context:
mikthe number of times the contextdccurred with a word
fi.: ((synt_rel_type, w w) is_aC;i,w)) W' member of G
For example, given the compoudistrict banksthe following Notice that Zimik #mK, since, because of ambiguity, a
feature is generated as an example of the categganization context may be assigned to more than one concept (or to none).
((N_N districtbank, is_a(organizatiorhank). We can then estimate the three probabilities in expression (3)
We further assume that observations of contextsaigy, and as follows:
the noise may be originated by several factors, such as tags
ambiguity, and semantic ambiguity of the word whose context is mK
observed. . . Po)= 5 —{1-qi.k) (3.1)
In the above feature vector, the syntactic tag (first argument) o k)>y m
could be wrong because of syntactic ambiguity and limited ' K
coverage of available parsers, and the ambiguous bamkcould 5 e my
not be, in a specific context, an instance of the category P(fn)= . E< m ik 3-2)
organization though it is in the example above. A wi.k)=y
Probabilistic learners usually associate to uncertain information P(uns. and pos.)(zi mk)mi zmk(p(i,k)) (3.3)
a measure of the confidence the system has in that information. m I]mfk -1 mqo(i,k)>)|/

Therefore, we assume that each feafyie associated to a concept
C; with confidencep(i,k).

The confidence may be calculated in several ways, depending
upon the type of selected features fiorFor example, the Mutual

The third probability estimate is expressed as the joint

41n the expression (3) the three events are clearly mutually exclusive.



probability of extracting a previously unseen comgxnd of Using the one million word Wall Street Journal corpus, we

extracting positive examples of.Gince in (3.1) (kp(i,k))<(1-y), computed the following probabilities of unseen feature vectors:
in (3.2) g(i,k)<y, and in (3.3)y<q(i,k))<1, we obtain the upper
bound: P(unseen imrtifact)=0.7692
P(unseen iperson= 0.7161
P(w’ is misclassified on the basis off P(unseen ipsychological featus0.8598
Mi - N;i Nj M
ST(l‘ V)"FVJ'ﬁm? 4) The linguistic conceptartifact, personandpsychological
featureare three hyperonyms of the on-line WordNet taxonomy, a
where (M-N)) is the number of vectors in hjC widely used linguistic resource. The above figures show that the

We can then impose that (43,<and determine the bound for m. “vaguer” conceppsychollogi.cal .featureoccurs in rathgr sparce
Notice that (4) does not depend &nin a noisy learning model the context§, t.hough the distribution of word senses in the three
probability of unrepresentative examples is replaced by thecategones is approximately even.
probability of noisy examples. In our model we assume thiat & .
positive example for af ¢(i,k) >y, therefore we can estimate the 4.2 Dependency on therepresentation model
noise rate by evaluating the conditional probability on sample data. The representation model for H also affects the estimates of

erroneous classifications. For example, if we modify the
P(f is fp /¢(i.k) >Y) (5) contextual model by removing the information on(that is to
say, the feature vectors in the contextual model now only includes

Classic methods such as Chernoff boufsnay be applied to  the syntactic relation type and the co-occurring worl, we
obtain good approximations for the probabilities (3), (4) and (5) obtain the following:
above. Notice however that in order to obtain a given accuracy of

estimate, Chernoff bounds (and other methods) impose again P(unseen imrtifact)=0.1778
bounds on the number of tagged examples needed to compute P(unseen iperson= 0.1714
sufficiently accurate estimates. P(unseen ipsychological featune0.2139

Therefore, even in the case of untrained probabilistic learning

models, there is the need of a certain amount of tagged examples Eoogggeg&bigwg (C\)A];e ?;;2323 alnn ai?rlizuf Imn?qI:tr ar:soudrﬁtlasls
verify the validity of certain hypothesis. Y &

values over V), but clearly, the probability of false positives and

false negatives increases.

4 PRELIMINARY EXPERIMENTAL The motivation is that we now assume that a context for a
ANALYSIS word belonging (also t0);@s a valid context foanyword in that

A convincing experimental evaluation of the probabilistic models ¢at€gory. Regardless of the specific adopted formulapick),

derived so far is rather demanding, since it requires the preparatiow|e confidencep(i,k) in such a generalization depends on the

of manually tagged test sets for different semantic categoriesNUmPer of different words win occurring in a given contextff
y 1agg v his number is low, or is just 1, then the valuep@ifk) must be

different language domains, and different contextual and categor>kR . .
representation models. Such an evaluation represents our long-tert™"* accordmgly..The selected t.h.reshcydhen determlpes the
different contribution of false positives and false negatives to the

objective and is already in progress. total model accurac
In [10] we present a preliminary analysis to evaluate the Y.
effectiveness of bound (4) to predict the performance of the WSD
method[4].
In this section we briefly discuss the dependencies between the
accuracy of a context-based probabilistic WSD model and certain =
"environmental" conditions.

4.1 Dependency upon the corpus and linguistic o
concepts:

In a complex language domain (e.g. newspaper articles) linguistic .
phenomena are far less repetitive than in a restricted language (e.g.
airline reservations). However, even in a relatively unrestricted rob—o-
domain certain categories are used in a more narrow sense.

Let us consider the probabilistic context-based algorith{d]in Figure2. (1-P(fp in G)) for the Wnet category artifact
where a feature is defined by:

% (syntactic_relation, w1, yv(e.g.(N_N districtbank)

f - C; if w; reaches the hyperonym i@ the WordNet on-line
taxonomy, andi,k) >y

A preliminary experiment is illustrated in Figure 2. The figure
plots (1-P(fp in @) for the WordNet categorwartifact, as a
function of m andp(i,k), evaluated on a test set of 100 words.

The experimental setting is that in which the information pn w
is removed from the contextual model.

5 We assume here for simplicity that the similarity function is an identity. The f'g“re shows that whenp ',s 20.5 Fh.e number of false
A multinomial or a more complex function must be used in case contextspos't'ves is rather low, after obsgrvmg sufficient examples.

are considered similar if, for example, co-occurring words have some On the other hand, P(fn outsidg (hot shown here for sake of
common hyperonym. See [4] for examples. space) has a specular behavior. ¥0.9, the probability of false




negative is as low as 0.6. As expected, with such a high threshold,
the contextual model faartifact is highly precise, but has a very
low recall.

5 CONCLUSIONS

By no means does the work presented in this paper need more
investigation, above all on the experimental side. However, we
believe that learnability analysis of WSD models has strong
practical implications

The preliminary results of Sections 3 and 4 put in evidence that:

« In order to acquire statistically stable contextual models of
linguistic concepts in an untrained setting, the dimension of the
analyzed corpora must be considerably high. Paradoxically,
untrained probabilistic systems are in better shape in this
regard: large repositories of language samples can be now
obtained from the WWW.

Even in untrained systems, a certain amount of samples must
be manually tagged to test the system and to accurately
estimate the rate of noise during learning

The experimental setting (i.e. size of the training set) must be
tuned for each category and language domain, because the
variability of contextual behavior may be significantly
different, depending upon the type and grain of the selected
category, and on the language domain

it is possible and indeed advisable, for a given WSD algorithm,
to determine in a formal way the relation between expected
accuracy of the WSD model and the environmental and
experimental settings. This would allow a better comparison
among systems, and an a-priori tuning of the parameters of the
disambiguation model.
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