
A Theoretical Analysis of Context-Based Learning
Algorithms for Word Sense Disambiguation

Paola Velardi1 and Alessandro Cucchiarelli2

Abstract. Word Sense Disambiguation (WSD) is a central task in
the area of Natural Language Processing. In the past few years
several context-based probabilistic and machine learning methods
for WSD have been presented in literature. However, an important
area of research that has not been given the attention it deserves is
a formal analysis of the parameters affecting the performance of
the learning task faced by these systems. Usually performance is
estimated by measuring precision and recall of a specific algorithm
for specific test sets and environmental conditions. Therefore, a
comparison among different learning systems and an objective
estimation of the difficulty of the learning task is extremely
difficult.

In this paper we propose, in the framework of Computational
Learning theory, a formal analysis of the relations between
accuracy of a context-based WSD system, the complexity of the
context representation scheme, and the environmental conditions
(e.g. the complexity of language domain and concept inventory).

1 INTRODUCTION

Word Sense Disambiguation (WSD) is perhaps the most central
and difficult task in the area of Natural Language Processing. The
problem of WSD is one of identifying the semantic category of an
ambiguous word in a sentence context, for example, the financial
institution sense of bank in: " A survey by the Federal Reserve's 12
district banks and the latest report by the National Association of
Purchasing Management blurred that picture of the economy."

All interesting, large-scale applications of NLP, e.g.
Information Retrieval, Filtering and Extraction, Machine
Translation and Summarization, etc., suffer performance
limitations originated by their limited ability to discriminate the
relevant senses of word occurrences in running texts.

Linguistic concepts are rather vague - the notion that the word
“bank” belongs to such categories as human organization (the
financial institution sense) and location (the bank-river sense) is
more or less intuitive, but in no way it is possible to characterize a
linguistic concept in a rigorous way through a mathematical
expression. Linguistic concepts are a convention, and even one on
which there is little assent.

In NLP, linguistic concepts are often defined as clusters of
words sharing some properties that can be systematically observed
in spoken or written language. A property is a regularity related to
the way words are used, or to the internal structure of the entities
they represent. In purely context-based algorithms the idea is that,
if a group of words share certain properties, this must be reflected
by some observable regularity in the use we make of these words
in texts.

More semantically oriented approaches use a “deeper” notion of
word sense. Sense definitions are manually created using some
formal representation language, or automatically extracted from

on-line dictionary definitions.
In both cases, the resulting taxonomy, or concept inventory,

maintains a considerable degree of “fuzziness”, though it may
result an acceptable convention for the purpose of certain
interesting computational tasks.

In the literature (see [3] for a collection of recent results), there
is a rather vast repertoire of supervised and unsupervised learning
algorithms for WSD, most of which are based on a formal
characterization of the surrounding context of a word or linguistic
concept, and a function f to compute the membership of a word to
a category, given its context in running texts.

A recent large-scale exercise in evaluating WSD programs is
Senseval [7].

One of the objectives of this experiment was to identify
correlations between performance of the various systems and the
parameters of the WSD task.

Though the scoring of systems appears sensitive to certain
factors, such as the degree of polysemy and the entropy3 of sense
distributions, these correlations could not be consistently
observed. There are words with fewer senses causing troubles to
most systems, while there are words with a very high polysemy
and entropy on which all systems obtain good performance.

The Senseval experiment highlighted the necessity of a more
accurate analysis of the correlations between performance of
WSD systems and the parameters that may affect this task. In
absence, a comparison of the various WSD algorithms and an
estimation of their performance under different environmental
conditions is extremely difficult.

In the next sections we briefly present a computational model
of learning, called PAC theory [1][5][8], and we then show that
this theory may be used to determine the formal relations between
performance of context-based WSD models and environmental
conditions.

2 LEARNING APPROXIMATE
DEFINITIONS OF LINGUISTIC
CONCEPTS

Formally, the problem of example-based learning of WSD models
can be stated as follows:

                                                       
1 Dipartimento di Scienze dell’Informazione, University of Roma ‘La
Sapienza’, Via Salaria 113, I-00198 Roma, Italy, email:
velardi@dsi.uniroma1.it
2 Istituto di Informatica, University of Ancona, Via Brecce Bianche, I-
60131 Ancona, Italy, email:alex@inform.unian.it
3 A high entropy indicates an even distribution of sense probabilities in
the analyzed sublanguage



i) Given a class C of concepts Ci (where C is either a hierarchy
or a “flat” concept inventory),

ii)  Given a context-based representation class H for a concept
class C, where H: ∑ ∗→C and ∑  is a finite alphabet of
symbols (e.g. words or word tags),

iii)  Given an input space X⊆∑∗ of encodings of instances in the
learner’s world, e.g. feature vectors representing contexts
around words wj, where wj is a member of Ci,

iv) Given a training sample S of length m :

S x b xm bm xi X bi= ∈ ∈ }{(( , )...( , )) , ,1 1 0 1

where bi=1 if xi is a positive example of Ci,

formally characterize a function h (Ci)∈H that assigns a word w to
a concept Ci, given the sentence context x of w. The hypothesis
may have the form of a Hidden Markov Model with estimated
transition probabilities, a decision list, a cluster of points in a
representation space, a logic formula, etc.

The complexity of this learning task is related to several aspects,
such as selecting an appropriate representation space H, an
appropriate grain for the concept inventory C, and finally, a
sufficiently representative training sample S.

Firstly, H must be an “adequate” representation space for C.
Quite intuitively, if we represent a linguistic concept as the set of
possible morphologic tags pairs in a ±1 window, we will not be
able to predict much, simply because surrounding morphologic
tags are not sufficient to determine the semantic category of a
word.

On the other hand, if we select an overly complex representation
model, including irrelevant features, we run through the so called
overfitting  problem.

Finally, some of the features used in a representation may be
dependent on other features, and again the model would result
unnecessarily complex.

The problem of noise and overfitting are well known in the area
of Machine Learning [7], therefore we will not discuss the matter
in detail here. An analysis of this issue as applied to probabilistic
WSD learners may be found in [2].

For the purpose of this paper, we assume that the representation
space H is optimized with respect to the choice of the relevant
model parameters. Our objective will be to determine the size of
the training set S, given H, C, a learning algorithm L and certain
performance objectives.

As we said, the aim of a WSD learning process, when instructed
with a sequence S of examples in X, is to produce an hypothesis h
which, in some sense, “corresponds” to the concept under
consideration.

Because S is a finite sequence, only concepts with a finite
number of positive examples can be learned with total success, i.e.
the learner can output an hypothesis h= Ci. In general, and this is
the case for linguistic concepts, we can only hope that h is a good
approximation of Ci.. With our problem at hand, it is worth
noticing that even humans may provide only approximate
definitions of linguistic concepts!

The theory of Probably Approximately Correct (PAC) learning,
a relatively recent field on the borderline between Artificial
Intelligence and Information Theory, states the conditions under
which h reaches this objective, i.e. the conditions under which a
computer derived hypothesis h ‘probably’ represents Ci

‘approximately’.
Definition 1 (PAC learning). Let C be a concept class over X.

Let D be a fixed probability distribution over the instance space X,
and EX(Ci,D) be a procedure reflecting the probability distribution
of the population we whish to learn about. We say that C is PAC

learnable if there exists an algorithm L with the following
property: For every Ci∈C, for every distribution D on X, and for
all 0<ε<1/2 and 0<δ<1/2, if L is given access to EX(Ci,D) and
inputs ε and δ, then with probability at least (1-δ), L outputs a
hypothesis h for concept Ci, satisfying error(h)<ε.

The parameters ε and δ have the following meaning: ε is the
probability that the learner produces a generalization of the
sample which does not coincide with the target concept, while δ is
the probability, given D, that a particularly unrepresentative
training sample is drawn. The objective of PAC theory is to
predict the performance of learning systems by deriving a lower
bound for m, as a function of the performance parameters ε and δ.

Figure 1. ε-sphere around the “true” function Ci

Figure 1 (from [6]) illustrates the “intuitive” meaning of PAC
definition. After seeing m examples, the probability that Hbad

includes consistent hypotheses is:

P(Hbad⊇Hcons)≤| Hbad |(1−ε)m≤|Η|(1−ε)m

And we want:

|Η|(1−ε)m≤δ

We hence obtain a lower bound for the number of examples we
need to submit to the learner in order to obtain the required
accuracy:

m ln ln H≥ +





1 1

ε δ
(1)

The inequality (1) establishes a sort of worst-case general
bound, but unfortunately this bound turns out to have limited
utility in our WSD application.

For example, if the hypothesis space for a linguistic concept Ci

is the widely used “bag of words” model, i.e. a set of at least k
“typical” context words selected by a probabilistic learner, after
observing m samples of the ±n words around words w∈ Ci (e.g. x
= (w-n,w-n+1,.. w,…wn-1,wn)) then H is any choice of ≤k≤|V|
words over |V| elements, where |V | (≈105) is the size of the
vocabulary.

We then have:

H
V

k
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
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The above expression, used in inequality (1), produces an
overly high bound for m, that can be hardly pursued especially in
case the learning algorithm L is supervised!

In PAC literature, the bound for m is often derived “ad hoc”
for specific algorithms, in order to exploit knowledge on the
precise learning conditions.

It is also worth noticing that PAC literature has mostly a

Hbad
Ci ε

H



theoretical emphasis, and almost all applications concentrated on
the field of neural networks and natural learning systems [9]. To
the knowledge of the authors, the utility of this theory in the area of
computer learning of natural language has not been explored.

In the following, we will derive a probabilistic expression for m
in the track of (1), for the case of a context-based WSD
probabilistic learner, a learning method that includes a rather wide
class of algorithms in the area of WSD. We believe that adapting
our analysis to other example-based WSD systems will not require
a significant effort. This relation allows it to establish, upon an a-
priori analysis of the chosen conceptual model and of the language
domain, a more precise relation between performance, complexity
of the learning algorithm, and environmental conditions (e.g.
complexity of the language domain).

Our objective is to show that an a-priori analysis of the learning
model and language domain may help to tune precisely a WSD
experiment and allows a more uniform comparison between
different WSD systems.

3 A FORMAL ESTIMATE OF ACCURACY FOR
CONTEXT_BASED PROBABILISTIC WSD
MODELS

A probabilistic context-based WSD learner may be described as
follows:

Let X be a space of feature vectors:

fk=( f(a1
i=v1,a2

i=v2,…an
i=vn)∈ℜn, bk

i )),

bk
i =1 if fk is a positive example of Ci under H.

Each vector describes the context in which a word w∈ Ci is
found, with variable degree of complexity. For examples,
arguments of fk may be any combination of plain words and their
morphologic, syntactic and semantic attributes.

We assume that arguments are statistically dependent, and that
a concept is represented as the set of its "typical" context vectors
(in case arguments are assumed independent, the representation of
a concept is more simple, see [2] ).

An example [4] is the case in which fk is tuple representing a
syntactic relation between a word w and another word wn in its
context:

fk : ((synt_rel_type, wn, w) is_a(Ci,w))

For example, given the compound district banks the following
feature is generated as an example of the category organization:
((N_N district bank), is_a(organization, bank)).

We further assume that observations of contexts are noisy, and
the noise may be originated by several factors, such as tags
ambiguity, and semantic ambiguity of the word whose context is
observed.

In the above feature vector, the syntactic tag (first argument)
could be wrong because of syntactic ambiguity and limited
coverage of available parsers, and the ambiguous word bank could
not be, in a specific context, an instance of the category
organization, though it is in the example above.

Probabilistic learners usually associate to uncertain information
a measure of the confidence the system has in that information.
Therefore, we assume that each feature fk is associated to a concept
Ci with confidence φ(i,k).

The confidence may be calculated in several ways, depending
upon the type of selected features for fk. For example, the Mutual

Information measures the strength of a correlation between co-
occurring arguments, and the Plausibility [4] assigns a weight to a
feature vector, depending upon the degree of ambiguity of its
arguments and the frequency of its observations in a corpus. We
assume here that φ is adjusted to be a probability, i.e. ∑iφ(i,k)=1.
The factor φ(i,k) represents hence an estimate of the probability
Pr(fk∈ Ci ).

Under these hypotheses, a representation h∈Η for a concept Ci
is the following:

h(Ci):{f i
1..f

i
mi}

fk→h(Ci ) iff φ(i,k) > γ (2)

Policy (2) establishes that only feature vectors with a
probability higher than a threshold γ are assigned to a category
model.

Given an unknown word w’ occurring in a context represented
by f’ k, the WSD algorithm assigns w’ to the category in C which
maximizes the similarity between f’k and one of its members.
Again, see [4] and [2] for examples of similarity functions.

Given the above, the probabilistic WSD model for a category
Ci may fail because:

1  Ci includes false positives (fp), e.g. feature vectors
erroneously assigned to Ci

2 There are false negatives (fn), i.e. feature vectors erroneously
discarded because of a low value φ(i,k)

3 The context f’k is true positive for Ci, but was never observed
around members of Ci, nor was similar (in the precise sense
of similarity established by a given algorithm) to any of the
vectors in the contextual models.

We then have4:

P(w’ is misclassified on the basis of f’k)=
P(f’k∈fp)+P(f’k∈fn)+P(f’k unseen positive) (3)

Let:
m be the total number of feature vectors extracted from a

corpus

m
k
 the total number of occurrences of a feature fk

mi
k the number of times the context fk occurred with a word

w’ member of Ci

Notice that mi
k

i mk∑ ≠ , since, because of ambiguity, a

context may be assigned to more than one concept (or to none).
We can then estimate the three probabilities in expression (3)

as follows:

  ̂P(fp)= 
mi

k

mi k
i k

φ γ
φ

( , )
( , )

>
∑ −( )1 (3.1)

  ̂P(fn)= 
mi

k

mi k
i k

φ γ
φ

( , )
( , )

≤
∑ (3.2)

  ̂P(uns. and pos.)=( ) ( ( , )
( , )

)
1

1

1

m
mk

mk m
mi

k i k
i k∀ =

∑ ⋅
>

∑ φ
φ γ

(3.3)

The third probability estimate is expressed as the joint
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probability of extracting a previously unseen context5, and of
extracting positive examples of Ci. Since in (3.1) (1-φ(i,k))<(1-γ),
in (3.2) φ(i,k)<γ, and in (3.3) γ<φ(i,k))≤1, we obtain the upper
bound:

P(w’ is misclassified on the basis of f’k)

≤ − −( ) + +Mi Ni
m

Ni
m m

Mi
m

1 γ γ β (4)

where (Mi-Ni) is the number of vectors in h(Ci).
We can then impose that (4) <ε, and determine the bound for m.

Notice that (4) does not depend on δ. In a noisy learning model the
probability of unrepresentative examples is replaced by the
probability of noisy examples. In our model we assume that fk is a
positive example for Ci if φ(i,k) > γ, therefore we can estimate the
noise rate by evaluating the conditional probability on sample data.

P(fk is fp / φ(i,k) > γ) (5)

Classic methods such as Chernoff bounds [5] may be applied to
obtain good approximations for the probabilities (3), (4) and (5)
above. Notice however that in order to obtain a given accuracy of
estimate, Chernoff bounds (and other methods) impose again
bounds on the number of tagged examples needed to compute
sufficiently accurate estimates.

Therefore, even in the case of untrained probabilistic learning
models, there is the need of a certain amount of tagged examples to
verify the validity of certain hypothesis.

4 PRELIMINARY EXPERIMENTAL
ANALYSIS

A convincing experimental evaluation of the probabilistic models
derived so far is rather demanding, since it requires the preparation
of manually tagged test sets for different semantic categories,
different language domains, and different contextual and category
representation models. Such an evaluation represents our long-term
objective and is already in progress.

In [10] we present a preliminary analysis to evaluate the
effectiveness of bound (4) to predict the performance of the WSD
method [4].

In this section we briefly discuss the dependencies between the
accuracy of a context-based probabilistic WSD model and certain
"environmental" conditions.

4.1 Dependency upon the corpus and linguistic
concepts:

In a complex language domain (e.g. newspaper articles) linguistic
phenomena are far less repetitive than in a restricted language (e.g.
airline reservations). However, even in a relatively unrestricted
domain certain categories are used in a more narrow sense.

Let us consider the probabilistic context-based algorithm in [4],
where a feature is defined by:

fk: (syntactic_relation, w1, wi) (e.g. (N_N district bank))
fk →Ci if w i reaches the hyperonym Ci in the WordNet on-line

taxonomy, and φ(i,k) > γ
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Using the one million word Wall Street Journal corpus, we
computed the following probabilities of unseen feature vectors:

P(unseen in artifact)=0.7692
P(unseen in person)= 0.7161

P(unseen in psychological feature)=0.8598

The linguistic concepts artifact, person and psychological
feature are three hyperonyms of the on-line WordNet taxonomy, a
widely used linguistic resource. The above figures show that the
“vaguer” concept psychological feature occurs in rather sparce
contexts, though the distribution of word senses in the three
categories is approximately even.

4.2 Dependency on the representation model

The representation model for H also affects the estimates of
erroneous classifications. For example, if we modify the
contextual model by removing the information on wi (that is to
say, the feature vectors in the contextual model now only includes
the syntactic relation type and the co-occurring word w1), we
obtain the following:

P(unseen in artifact)=0.1778
P(unseen in person)= 0.1714

P(unseen in psychological feature)=0.2139

The probability of “unseens” in this simpler model is
considerably lower (we removed an attribute, wi, that assumes
values over V), but clearly, the probability of false positives and
false negatives increases.

The motivation is that we now assume that a context for a
word belonging (also to) Ci is a valid context for any word in that
category. Regardless of the specific adopted formula for φ(i,k),
the confidence φ(i,k) in such a generalization depends on the
number of different words wi in occurring in a given context fk. If
this number is low, or is just 1, then the value of φ(i,k) must be
low, accordingly. The selected threshold γ then determines the
different contribution of false positives and false negatives to the
total model accuracy.

Figure 2.  (1-P(fp in Ci)) for the Wnet category artifact

A preliminary experiment is illustrated in Figure 2. The figure
plots (1-P(fp in Ci)) for the WordNet category artifact, as a
function of m and φ(i,k), evaluated on a test set of 100 words.

The experimental setting is that in which the information on wi

is removed from the contextual model.
The figure shows that when γ is ≥0.5 the number of false

positives is rather low, after observing sufficient examples.
On the other hand, P(fn outside Ci) (not shown here for sake of

space) has a specular behavior. For γ=0.9, the probability of false
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negative is as low as 0.6. As expected, with such a high threshold,
the contextual model for artifact is highly precise, but has a very
low recall.

5 CONCLUSIONS

By no means does the work presented in this paper need more
investigation, above all on the experimental side. However, we
believe that learnability analysis of WSD models has strong
practical implications.
The preliminary results of Sections 3 and 4 put in evidence that:

•  In order to acquire statistically stable contextual models of
linguistic concepts in an untrained setting, the dimension of the
analyzed corpora must be considerably high. Paradoxically,
untrained probabilistic systems are in better shape in this
regard: large repositories of language samples can be now
obtained from the WWW.

•  Even in untrained systems, a certain amount of samples must
be manually tagged to test the system and to accurately
estimate the rate of noise during learning

• The experimental setting (i.e. size of the training set) must be
tuned for each category and language domain, because the
variability of contextual behavior may be significantly
different, depending upon the type and grain of the selected
category, and on the language domain

• it is possible and indeed advisable, for a given WSD algorithm,
to determine in a formal way the relation between expected
accuracy of the WSD model and the environmental and
experimental settings. This would allow a better comparison
among systems, and an a-priori tuning of the parameters of the
disambiguation model.
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