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Abstract. A preferential entailment is defined by a binary relation,
or “preference relation”. This relation can be either among interpreta-
tions or among sets of interpretations. The relation can be also among
“states” which are “copies of interpretations”, or “copies of sets of in-
terpretations”. This provides four kinds of preferential entailments.
The paper deals mainly with propositional logic, however this work
applies also to the first order case and indications are given in or-
der to describe the situation in first order logic. What we do here is
to provide a characterization result for the most general version de-
scribed above, and to compare with the known characterizations of
the “simplest” versions. It appears that the apparently most compli-
cated notion possesses by far the simplest characterization result. A
by-product of our results is that the definition can be simplified with-
out loss of generality: we can define directly the relation among sets
of interpretations, eliminating the need for “states” in this case. Thus
only three kinds of “preferential entailment” remain.

1 Introduction

The notion of preferential entailment has shown to be very useful in
knowledge representation, when dealing with some aspects of com-
mon sense reasoning such as implicit knowledge or rules with ex-
ceptions. Preferential entailments are particular cases of inference
operations, and various kinds exist in the literature. The general idea
is as follows: we are given some amount of certain knowledge, rep-
resented as a set of logical formulas. This set, equivalent to a logi-
cal theory, can be associated with various kinds of objects. For in-
stance, it can be associated with its set of models, or equivalently in
the propositional case with the set of the complete theories which
entail the given formulas. More generally, it can also be associated
with the set of theories (not necessarily complete) which entail the
given formulas. Then we are given a binary relation among these ob-
jects associated with our knowledge, and we keep only the objects
which are “preferred” for this relation, meaning the objects which
are minimal for this relation, among the objects associated with our
certain knowledge. We get a stronger set of formulas, which are con-
sidered as deduced “by default”, meaning that in the absence of other
information, we conclude that we get also all the formulas associ-
ated with this reduced set of objects. This allows to reason in a non
monotonic way, as augmenting the certain knowledge may invalidate
some conclusions previously made by defaults, because some new
objects which were not minimal may be minimal in the smaller set
associated with the new certain knowledge. We can even allow more
flexibility by considering copies of models, or copies of theories, in-
stead of just models or theories, defining the relation among these
sets of “copies”. We get then four kinds of preferential entailments.
We show that no real additional flexibility is obtained by replacing

1 IRISA, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE, tel.: (33)
2 99 84 73 13, e-mail: moinard@irisa.fr

the theories by copies of theories, which leaves three kinds only. We
provide also a characterization result, in terms of a very simple syn-
tactical property, for the “most complicated” version. To our knowl-
edge, these results are new: they were known for particular cases, but
not for the general case.

In section 2 we introduce the notations used in the text. We work
in propositional logic, which is rich enough for studying the prob-
lems addressed here. In sections 3 and 4, we give a few reminders
about the simplest kinds of preferential entailments. Section 5 gives
our results for the most general version of preferential entailment,
with examples, hints for the first order case, and a comparison with
the already known results about the simplest kinds of preferential
entailment.

2 Notations and framework

� L; V; '; T : We work in a propositional language L. As usual, L
also denotes the set of all the formulas. V (L), the vocabulary of L,
denotes a set of propositional symbols. Letters ';  denote formulas
in L. A formula will be assimilated to its equivalence class. Letters
such as T or C denote sets of formulas.

� M; �; P(E); � j= � � �: Letters �; � denote interpretations for
L. An interpretation is identified with the subset of V (L) that it sat-
isfies. The writings � j= ' and � j= T are defined classically. As
usual, for any set E, P(E) denotes the set of all the subsets of E.
The set P(V (L)) of all the interpretations for L is denoted by M. A
model of T is an interpretation � such that � j= T . The sets of the
models of T and ' are denoted by M(T ) and M(') respectively.

� T j= � � � ; Th(T );T: T j= ' and T j= T 1 are defined classically.
A theory is a subset of L closed for deduction, and we denote by T
the set fT � L = T = Th(T )g of the theories of L.

� >;?; t: Two logical constants > and ? denote respectively
the true and the false formulas. If T 1; T 2 are subsets of L, and
' is a formula in L, we write T 1 t T 2 for Th(T 1 [ T 2) and
T t ' for Th(T [ f'g). Thus M(T 1 t T 2) = M(T 1 [ T 2) =
M(T 1) \M(T 2).

� C; Th(�); Th(M1): A theory C 2 T is complete if 8' 2 L, ' 2 C
iff :' =2 C. We denote by C the set of all the complete theories of
L. Th(�) denotes the set of the formulas satisfied by �. For any sub-
set M1 of M, Th(M1) = f' 2 L = � j= ' for any � 2 M1g =T

�2M1

Th(�). This ambiguous use of Th and of j= (applied to sets
of formulas or to interpretations) is usual. For any T 2 T, we get
T =
T
C2C; Cj=T

C. C can be assimilated to M: For any � 2 M we
have Th(�) 2 C and for any C 2 C, M(C) is a singleton f�g � M.

� TC: TC denotes the topological closure: TC(M1) =
M(Th(M1)) for M1 � M. If V (L) is finite, any subset of M is
trivially closed and open.



3 The two simplest preferential entailments

As different kinds of “preferential entailment” exist (see e.g. [3]
about this issue) we will make the definitions precise. For didacti-
cal reasons, we begin by the simplest definition. Any “preferential
entailment” is a particular case of an inference operation that we call
a pre-circumscription:

Definition 3.1 A pre-circumscription f (in L) is an extensive (i.e.,
f(T ) � T for any T ) mapping from T to T. For any subset T
of L, we use the abbreviation f(T ) = f(Th(T )), assimilating a
pre-circumscription to a particular extensive mapping from P(L) to
itself2. We write f(') for f(f'g) = f(Th(')). 2

Definitions 3.2 1. A preference relation in L is a binary relation �
over M. M�(T ) denotes the set of the models of T minimal for
�: M�(T ) = f� 2 M(T ) = for no � 2 M(T ) we have � � �g.

2. The (ordinary) preferential entailment f = f� is the pre-
circumscription in L defined by

f�(T ) = Th(M�(T )): 2

A well known kind of preferential entailment is circumscription
[7, 11]. Definition 3.2 is the classical definition of preferential en-
tailments originating in [13], applied to the propositional case. In the
predicate calculus, any complete theory has as many models as we
want which makes the notion of preferential entailment more pow-
erful. We can simulate in the propositional case the main aspects of
the preferential entailments in the predicate calculus case, thanks to
a notion introduced in [5, Definition 5.6]:

Definitions 3.3 1. S is some set of copies of elements of M, called
states: there exists a mapping l from S to M, and for any � 2 M
we call the set l�1(�) = f�1; �2; � � �g the set (possibly empty)
of the copies of the interpretation � in S. S(T ) is the subset of S
defined by S(T ) = l�1(M(T )).

2. A multi preference relation in L is a binary relation �m over such
a set S. For any T 2 T, we define the sets S�m(T ) = f�i 2
S(T )= for no �j 2 S(T ), we have �j �m �ig and M�m(T ) =
l(S�m(T )).

3. A multi preferential entailment is a pre-circumscription defined
by:

f�m(T ) = Th(M�m(T )) 2

Remarks 3.4 1. Any preferential entailment is a multi-preferential
entailment: choose S = M and l = identity.

2. f�m(T ) j= ' iff � j= ' for any � 2 M�m(T ).

3. M(f�m(T )) = TC(M�m(T )); f�m(T ) =
\

�2M�m (T )

Th(�):

30. Thus, if V (L) is finite, M(f�m(T )) = M�m(T ). 2

4 A menagerie of properties

Definitions 4.1 Here are various properties a pre-circumscription
may possess. ' is a formula in L, T ; T 00 are sets of formulas in L,
while T 1; T 2 are in T:

Idempotence: f(f(T )) = f(T ). (Idem)

2 Thus, for a reader familiar with the terminology used in [5], a pre-
circumscription is an inference operation satisfying the full (or theory) ver-
sions of “reflexivity”, “left logical equivalence LLE”, “right weakening RW”
and “AND”.

Reverse monotony: f(T [ T 00) � f(T ) t T 00. (RM)

Case reasoning: f(T 1) \ f(T 2) � f(T 1 \ T 2). (CR)

Disjunctive coherence: f(T 1 \ T 2) � f(T 1) t f(T 2). (DC)

Monotony: f(T ) � f(T [ T 00). (MON)

Cumulative transitivity: If T 00�f(T ); f(T [ T 00)�f(T ). (CT)

Cumulative monotony: If T 00 � f(T ); f(T ) � f(T [ T 00). (CM)

Cumulativity: If T 00 � f(T ) then f(T ) = f(T [ T 00). (CUMU)

(LOOPn): If T 2 � f(T 1); � � � ; T n � f(T n�1); T 1 � f(T n),
then f(T 1) = f(T n) (LOOPn)

(LOOP): For any integer n � 2, f satisfies (LOOPn). (LOOP) 2

Definitions 4.2 We also need some weaker versions.
1. Formula versions

(RM1) f(T t ') � f(T ) t '.
(CR1) f(T t') \ f(T t ) � f(T t'_ ).

2. Formula-only versions
(RM0) f( ^ ') � f( ) t '. (CR0) f(') \ f( ) � f('_ ).
(DC0) f('_ )�f(')tf( ).
(CUMU0) If '2f( ) then f( )=f('^ ). 2

Each of these properties has an immediate interpretation in terms
of reasoning. For instance, (CR1) means that if we know that gener-
ally birds fly, formalized as F lyi 2 f(T tBirdi), and that generally
bats fly, formalized as F lyi 2 f(T t Bati), then if all we know a
priori about individual i is that it is a bird or a bat, we conclude that
i flies (F lyi 2 f(T t Birdi _Bati)).

Property 4.3 (folklore, and immediate) For pre-circumscriptions:

1. (RM1) and (CR1) are equivalent, as are (RM0) and (CR0).
2. (RM) implies (CT) and (CR), (CT) implies (Idem).
3. Any full version implies its formula version, any formula version

implies its formula-only version.
4. (LOOP2) is equivalent to (CUMU), (LOOPn+1) is strictly

stronger than (LOOPn) for any n � 2 (see example 5.3 below
which can easily be generalized).

5. (CR) and (CUMU) imply (LOOP). Thus, a multi preferential en-
tailment satisfies (LOOP) iff it satisfies (CUMU) iff it satisfies
(CM) (see property 5.14 below). 2

Here are two important properties that a (multi) preference relation
may posses.

Definition 4.4 In 1, � denotes either a preference relation (denoted
by� in definition 3.2) or a multi preference relation (denoted by�m

in definition 3.3).

1. A (multi) preference relation � satisfies the closure property (or
is (cl)), if for any T 2 T, M�(T ) is a closed set: M�(T ) =
M(f�(T )).

2. A multi preference relation �m is safely founded (sf) if, for any
�i 2 S(T ) � S�m(T ), there exists �j 2 S�m(T ) such that
�j �m �i.
A preference relation � is (sf) if, for any � 2 M(T ) � M�(T ),
there exists � 2 M�(T ) such that � � �. 2

(cl) is definability preserving in [12], close to fullness property in
[4], and faithful in [6]. (Multi) preferential entailments in which the
relation is (cl) are simpler because we get M(f�(T )) = M�(T ). If
V (L) is finite, (cl) is trivially satisfied.

(sf) appears for propositional multi preference relations as smooth
in [5] and stoppered in [6].



5 General preferential entailment

5.1 Definition and first properties

Definitions 5.1 1. For any T � L we define the subset of T:
W(T ) = fT 1 2 T = T � T 1g. We write W(') for W(f'g).

2. S is some set of copies of elements of T, also called states: there
exists a mapping l from S to T. As usual, we define l(S) =
fl(s)gs2S = fT 2 T = l�1(T ) 6= ;g. For any T � L, S(T ) is
the subset of S defined by S(T ) = l�1(W(T )).

3. A general preference relation �g is a binary relation over S. For
any T 2 T, we define the sets S�g (T ) = fs 2 S(T ) = s1 �g s
for no s1 2 S(T )g, and W�g (T ) = l(S�g (T )).

4. The general preferential entailment f�g is defined by
f�g (T ) =

T
T12W�g (T )

T 1 for any T � L.

5. A general preference relation �g is (sf), if for any s 2 S(T ) �
S�g (T ), there exists s1 2 S�g (T ) such that s1 �g s. 2

This notion appears in [5, Definitions 3.11 and 3.13] and [4, Defi-
nition 4.26] (except that there�g must be (sf)), and in [3, Definitions
3.1 and 3.2] (without restriction). In [5, 4], lklm, is a mapping from
S to P(M) (and the relation �klm is among sets of interpretations
instead of theories), but, as noted in [3], this makes no difference: it
suffices to define l(s) = Th(lklm(s)). Our definition is similar to
the formulation in remark 3.4-3 for (multi) preferential entailments.
Here is an alternative formulation for definition 5.1-4:

Remark 5.2 For any ' 2 L, ' 2 f�g (T ) iff W�g (T ) � W('). 2

The following characterization result is known:

Theorem 5.3 [5, Theorem 3.25] [4, Theorems 4.30 and 4.35] A pre-
circumscription f is a general preferential entailment f�g defined
by a relation which is (sf) iff it satisfies (CUMU). 2

We will drop the (sf) condition, studying “pure” general preferen-
tial entailments, and we will show that a similar result exists.

Any multi-preferential entailment is a general preferential en-
tailment, corresponding to a mapping l from S to C � T (thus
l(S) � C). We will prove (see definition 5.7 and theorem 5.10 be-
low) that definition 5.1 could be simplified: we could take S = T
and l = identity. However, the connexion with multi preferential
entailments is not so immediate with this simplified form.

Lemma 5.4 For any subsets T 1; T 2 of L we have:
1. T 2 � f�g (T 1) iff W�g (T 1) � W(T 2).
2. If W�g (T 1) � W(T 2) then W�g(T 1) � W�g (T 1 [ T 2).

Proof: 1. If T 2 � f�g (T 1), then for any ' 2 T 2 we have
W�g(T 1) � W('), thus W�g (T 1) �

T
'2T2

W(') = W(T 2).
If W�g (T 1) � W(T 2), then for any ' 2 T 2 we get W�g (T 1) �
W('), i.e.,' 2 f�g (T 1). (This result extends remark 5.2 to theories
which are not finitely axiomatizable.)

2. W�g(T 1) � W(T 2) and T 2 W�g(T 1): Then there exists
s 2 S�g(T 1) such that l(s) = T 2 W(T 2) \ W(T 1) = W(T 1 [
T 2). If s0 2 S(T 1 [ T 2) = S(T 1) \ S(T 2) we get s0 6�g s from
s 2 S�g (T 1). Thus, T 2 W�g (T 1 [ T 2). 2

Property 5.5 Any general preferential entailment f = f�g is a pre-
circumscription satisfying (CT).

Remind that (CT) implies (Idem) (property 4.3-2).
Proof: Let us suppose T 2 � f(T 1), i.e. (lemma 5.4-1), W�g (T 1) �

W(T 2). We suppose also ' 2 f(T 1 [ T 2), i.e. from remark
5.2, W�g (T 1 [ T 2) � W('). Then from lemma 5.4-2 we get
W�g (T 1) � W('), i.e.,' 2 f(T 1): this establishes f(T 1[T 2) �
f(T 1). Thus, f satisfies (CT). 2

5.2 A characterization result

Any general preferential entailment satisfies (CT). We will prove the
converse and provide a simple form for general preferential entail-
ments, showing that this notion is “overly defined”, and that it looks
more “cumbersome” [5] than it is.

Definition 5.6 Let us call simplified any general preference relation
�g where S = W and l is the identity. In this case, the set S of states
is useless. 2

Notice that it is immediate to show that if V (L) is finite, then any
simplified general preference relation which is transitive and irreflex-
ive is (sf) (to be compared with [5, Part 4.1]).

Definition 5.7 f being a pre-circumscription in L, we define three
relations on the set T, as follows:
T 1 �1 T 2 if f(T 2) = T 1 and T 1 6= T 2.
T 1 �2 T 2 if T 1 � T 2 and f(T 1) 6� T 2.
T 1 �f T 2 if T 1 �1 T 2 or T 1 �2 T 2. 2

Remarks 5.8 1.�1;�2 and�f are irreflexive. If f satisfies (Idem),
�1 is trivially transitive: we have never T 1 �1 T 2 �1 T 3.
�2 and �f are not necessarily transitive.

2. Let us suppose that we have T 0 �f T for some T 0; T 1 in T:
� We have T 0 �1 T iff T � T 0

(in this case we have T � f(T ) = T 0).
� We have T 0 �2 T iff T 6� T 0. 2

Lemma 5.9 If there exists some T 0 2 T such that T 0 2 W�g (T ) �
W(T 0), then f�g (T ) = T 0.

Proof: From W�g(T ) � W(T 0) we get
T
T12W�g (T )

T 1 � T 0.

From T 0 2 W�g(T ) we get then T 0 =
T
T12W�g (T )

T 1. 2

Theorem 5.10 If f is a pre-circumscription satisfying (CT), then
f = f�f .

Proof: 1) f(T ) 2 W�f (T ): Let us suppose f(T ) = T . For no T 0

we have T 0 �1 T . As for any T 0 2 W(T ) we have T � T 0, for
no T 0 2 W(T ) we have T 0 �2 T . Thus we get f(T ) = T 2
W�f (T ).

Let us suppose now f(T ) 6= T . Defining T 0 = f(T ), we get
f(T 0) = T 0 from (Idem), a consequence of (CT) (property 4.3-
2). Thus, for no T 0 2 T we have T 0 �1 T 0. Let us suppose that
there exists T 0 2 W(T ) such that T 0 �2 T 0. Then T � T 0 from
T 0 2 W(T ), and T 0 � T 0 and f(T 0) 6� T 0 from T 0 �2 T 0. Thus
T 0 � f(T ), thus, from (CT), f(T [T 0) � f(T ) with T [T 0 = T 0

thus f(T 0) � f(T ), i.e., f(T 0) � T 0 , a contradiction.
2) W�f (T ) � W(f(T )): Let us suppose T 0 2 W�f (T ). Then

we get T 0 2 W(T ), i.e. T � T 0. If T 0 6= T we get f(T ) � T 0,
as otherwise we would get T �2 T 0, a contradiction with T 0 2
W�f (T ). If T 0 = T then, if T 6= f(T ), we get f(T ) �1 T , a
contradiction with T = T 0 2 W�f (T ). Thus we get T = f(T ) �
T 0(= T ). In any case, we get T 0 2 W(f(T )).

3) From 1, 2 and lemma 5.9, we get f(T ) = f�f (T ). 2

Here is an immediate consequence of property 5.5 and theorem 5.10:



Corollary 5.11 For any general preferential entailment f�g , there
exists a simplified general preference relation �gs such that f�g =
f�gs . 2

Thus, the definition of general preferential entailments could have
been simplified. This “elimination of the states” in definition 5.1, was
partially known, but only if the general preferential entailment satis-
fies (CUMU) [1, 2] (more precisely satisfies the formula-only ver-
sion (CUMU0)), or another very strong condition (called “rational
monotony”) [1]. The present method is the only one applying to any
general preferential entailment. Moreover it is much simpler than the
methods given in [1] and even in [2], and it allows to give directly
the result of f from the simplified relation considered here (property
5.13 below).

Here is another immediate consequence of property 5.5 and theo-
rem 5.10, to be compared with property 5.14 (given below).

Theorem 5.12 A pre-circumscription satisfies (CT) iff it is a general
preferential entailment.

Property 5.13 Let f be a general preferential entailment, and �f

be the relation introduced in definition 5.7, then we have, for any
T 2 T, f(T ) = T 0 iff
(T 0 �1 T ) or (T 0 = T and, for no T 0 2 T, we have T 0 �1 T ).

A reminder from remark 5.8-2: It is easy to get �1 when we know
�f . Indeed, T 0 �1 T iff T 0 �f T and T � T 0. Thus it is immedi-
ate to get f(T ) when we know �f .

Proof: This is an immediate consequence of remark 5.8-2. Notice
that �f is such that for any T 2 T, there exists one and only one
T 0 2 T satisfying the conditions given here. 2

So, each time f is a general preferential entailment, we have de-
scribed a general preference relation associated to f , and even a sim-
plified relation, which is such that it is immediate to get the value
of f(T ) directly from T and from this relation, without making the
computations of definition 5.1 or remark 5.2.

Thus, we have exhibited an easy passage, in the two directions,
between the notion of pre-circumscription satisfying (CT) and the
notion of general preferential entailment. Starting from a pre-
circumscription satisfying (CT), we use definition 5.7 and we get
a (simplified) general preference relation. Starting from a general
preferential entailment defined by the simplified general preference
relation introduced in definition 5.7, we have shown how the pre-
circumscription can be obtained directly from the relation.

5.3 About the “simplest” preferential entailments

We have no room for detailing the characterizations of the simplest
preferential entailments (see [9], which translates to the propositional
case the results for the predicate case, from 1994, of the still unpub-
lished [10]). They are more complicated and less friendly than for
general preferential entailments. We only list the main results known
in the literature here. “Friendly” characterization results are known
for multi preferential entailments whose relation is (cl) [12, Theo-
rem 3.1] thus for finite multi preferential entailments (the condition
being (RM) alone), and for multi preferential entailments whose re-
lation is (cl)+(sf) (the condition being (RM)+(CM)) ([5, Theorem
5.18], [4, Theorem 7.27]). It is likely that no characterization of pure
multi preferential entailment exists by properties as natural as (RM)
or (DC). Multi preferential entailment may falsify (RM) [12], how-
ever they satisfy two important consequences of (RM):

Property 5.14 (cf e.g. [6]) Any multi preferential entailment satis-
fies (CT) (cf property 5.5) and (CR), thus (Idem) and (RM1). 2

Thus, the main difference between multi preferential entailments and
general preferential entailments is that the former satisfies (CR) and
(CT) while the latter satisfies only (CT). If V (L) is infinite, a pre-
circumscription satisfying (CT) and (CR) is not necessarily a multi
preferential entailment [10]. Thus, we need another property of pre-
circumscriptions, called (CP):

Definitions 5.15 [8, 9] 1. f satisfies the property of common points,
or (CP) if, for any T [ f'g � L with f(T ) 6j= :', there exists

� 2 M(f(T ) t ') with � 2
\

T 002W(T ); �j=T 00

M(f(T 00)). (CP)

2. Cpf (T )=f�2M(f(T ))=� 2 M(
G

T 002W(T );�j=T 00

f(T 00))g.

Theorem 5.16 ([8, Remark 3.9-1], [9, Property 6.2 and Theo-
rem 6.11]) A pre-circumscription f satisfies (CP) iff M(f(T )) =
TC(Cpf(T )) for any T , iff it is a multi-preferential entailment. 2

We turn now to preferential entailments:

Definition 5.17 1. [9, Definition 7.2] Mf (T ) = f� 2
M(T ) = 8� 2 M(T ); � 2 M(f(Th(f�; �g)))g.

2. (e.g. [8, Proposition 3.8-2]) A pre-circumscription f satisfies
(DCC) if, for any T � L, Mf (T )) � M(f(T )). (DCC)

3. [6, 8, 9] f satisfies (P0) if, for any ' 2 L and any T � L such that
f(T ) 6j= :', we have M(f(T ) t ') \Mf(T ) 6= ;. (P0) 2.

Theorem 5.18 ([8, Proposition 3.8-2], [9, Theorems 7.13 and 7.17])
A pre-circumscription f is a preferential entailment iff f satisfies
(DCC) and (CP), iff f satisfies (DCC) and (P0). 2

Again, it is only in the finite case that an easy characterization
result exists, originating in [11]: If V (L) is finite, then a pre-
circumscription f is a preferential entailment iff it satisfies (RM) and
(DC). In the infinite case, a preferential entailment may falsify (DC).
Any preferential entailment satisfying (RM) (i.e. whose relation is
(cl)) satisfies (DC), however a pre-circumscription may satisfy (RM)
and (DC) without being a preferential entailment [10].

It may seem paradoxical that the apparently most intricate version
of “preferential entailment” possesses in fact, by far, the simplest
characterization in terms of logical properties.

5.4 Three examples of finite general preferential
entailment

As we are in the finite case, we may assimilate as usual T to L and f
to a mapping from L to L (writing Th(f(')) when necessary).

Firstly, we give the simplest example of general preferential en-
tailment which is not a multi preferential entailment, i.e. in the finite
case, of a pre-circumscription satisfying (CT) and falsifying (CR).

Example 5.1 V (L) = fPg,
f(') = ? if ' 2 f?; P;:Pg and f(>) = >.
f falsifies (CR): f(P _ :P ) 6j= f(P ) _ f(:P ). f satisfies (CT):

it satisfies (Idem) and, if T 1 � Th(f(')) then f(') = ?.
Definition 5.7 gives ? �1 P; ? �1 :P , �f=�1 (�2 has an

empty graph here). It is easy to check that f = f�f .
Notice that f satisfies also (LOOP) here, thus (CUMU): Let us

suppose that we have f('2) j= '1, f('3) j= '1, � � �, f('n) j=



'n�1 and f('1) j= 'n. If f('i) = 'i, we get, using addition
and subtraction modulo n, f('i+1) j= 'i, f('i) = 'i j= 'i�1,
thus f('i+1) j= 'i�1: if n � 2 we can thus suppress 'i from
the sequence. Now, as there are only two formulas ' 2 L such that
f(') 6= ', the only possibility remaining is with a sequence of two
elements. This establishes that we are in a case where f satisfies
(LOOP) iff it satisfies (LOOP2), i.e. (CUMU). As we have (CT) al-
ready, we prove (CM). If Th( ) � Th(f(')), we have ' 6= > thus
' ^  6= > and Th(f(')) � Th(f(' ^  )): f satisfies (CM). 2

We give now the simplest general preferential entailment which
falsifies (CM).

Example 5.2 V (L) = fPg,
f(') = ? if ' 2 f?; P;>g and f(:P ) = :P .
It is easy to check that f satisfies (CR) or equivalently in the finite

case (RM), thus f satisfies (CT). However, f falsifies (CM): f(>) 6j=
:P while f(:P ^ >) = f(:P ) 6j= f(>).

Definition 5.7 gives ? �1 P; ? �1 >, > �2 :P and '1 �f

'2 if '1 �1 '2 or '1 �2 '2. It is easy to check that f = f�f .
Notice however that we get f 6= f�f where�f denotes the transitive

closure of �f : indeed f�f (:P ) = ?.
Notice that f satisfies also (DC) here, thus (see subsection 5.3),

f is in fact a preferential entailment. And indeed, if we define the
preference relation � in M = f;; fPgg by fPg � fPg and fPg �
;, we get f = f�.

Here is an example showing that (CUMU) does not imply (LOOP)
for general preferential entailments, contrarily to what happens with
multi preferential entailments.

Example 5.3 V (L) = fA;Bg. f is defined as follows:
f(A_B) = A, f(:A_B) = B, f(A_:B) = A, B, f(') = '
for all the thirteen other formulas ' 2 L.
f satisfies (CUMU)=(LOOP2): Let us suppose that we have

f(') j=  and  j= '. Then, either ' =  or we are in one of the
three following cases: (';  ) 2 f(A;A_B); (B;:A_B); (A,
B; A _ :B). In each case we get f(') = f( ).
f falsifies (LOOP3): f(A_B) j= A_:B, f(A_:B) j= :A_B,

f(:A _B) j= A _B, while f(A _B) 6= f(:A _B).
As (CUMU) implies (CT), we know that f is a general preferential

entailment and that we have f = f�f where �f is as in definition
5.7. The graph of �f is the union of the following two graphs:
1. graph of �1: f(A;A _B); (B;:A _B); (A, B;A _ :B)g.
2. graph of �2: f(A _ B;B); (A _ B;A 6, B); (A _ B;:A ^
B); (:A_B;A, B); (:A_B;:A); (:A_B;:A^:B); (A_
:B;A); (A _ :B;:B); (A _ :B;A ^ :B)g.
As in example 5.2, f 6= f�f : for instance f�f (A) = A ^B. 2

5.5 The first order case

Theorems 5.10 and 5.12 apply to predicate general preferential en-
tailments: the states are useless here also and theorem 5.12 applies. If
we define predicate general preference relations as relations among
copies of classes of interpretations as done in [5] or among copies of
theories as in definition 5.1 (in the propositional case), then we can
obtain an equivalent (simplified) general preference relation defined
in T. As in the propositional case, but this may be found more impor-
tant in this case, any (ordinary) predicate preferential entailment is a
predicate general preferential entailment. Notice that predicate pref-
erential entailments defined as in definition 3.2 (such as predicate
circumscriptions) behave like propositional multi preferential entail-
ments because now a complete theory has more than one model [9].

6 Conclusion

We have characterized the apparently most complicated kind of
“preferential entailment” known in the literature, in terms of a very
simple purely syntactical property. We have compared this result with
the corresponding results for the “simplest” preferential entailments.
We have also shown that an apparently yet more general version ap-
pearing in the literature is in fact overly general, as it can be reduced
to a simpler version. Indeed, we do not need to use “states”, which
are copies of theories, we can define directly a simplified general
preference relation directly among theories (or equivalently sets of
interpretations). We have provided an easy way to define such a rela-
tion, each time it is possible, that is each time the property of cumu-
lative transitivity is satisfied. It was already known that the states are
useless for some particular cases of general preferential entailments.
We have shown that there does not exist any situation in which this
apparent additional flexibility is really significative. This simplifies
the study of this notion.

A lot of work still remains. A by-product of our results is that any
predicate preferential entailment (such as any classical circumscrip-
tion) can be described as a general preferential entailment, that is by
a relation among theories. It remains to investigate this point and to
give direct translations from the original relation between interpreta-
tions to a relation between theories. Various possible relations should
be studied, in order to find an interesting one which could possibly
help our understanding of the notion studied, or the automatic com-
putation. Also, we could try to find some more precise results: when
we have a general preferential entailment, are there “natural” condi-
tions, but not too strong, which make that it is in fact a simpler kind
of preferential entailment? Again, the impact of such a study could
be on the knowledge representation side, helping to get a better un-
derstanding of complex notions, and on the computational side.
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