Equivalent sets of for mulas for circumscriptions
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Abstract. Circumscription is a way of using classical logic in order for L (identified with the subset df (L) that they satisfy) by, v. If
to modelize rules with exceptions and implicit knowledge. FormulaV (L)={P,Q, Z} andu={P, Z}, thenTh(u) =Th(PA-QAZ).
circumscription is easier to use in order to modelize a given situawe define the set® = {—¢/p € ®}. V() denotes the set of the
tion. We describe when two sets of formulas give the same resultropositional symbols appearing in M = P(V(L)) denotes the
when circumscribed, introducing two kinds of equivalence. For orset of the interpretations. M’ C M, we defineTh(M') = {¢ €
dinary equivalence, the two sets give the same circumscription, and/u = ¢ for anyu € M’}. This ambiguous meaning &f andTh
for the strong equivalence, when completed by any arbitrary set, thig usualM (7") denotes the set of the modelsBandT'C the classi-
two sets give the same circumscription. The strong equivalence coeal topological closure: i’ C M, TC(M') = M(Th(M")). Gen-
responds simply to having the same closure for logical “and” ancerally, aformula will be identified with its equivalence clasg:=
“or”. For the ordinary equivalence, there exists also always a greatff M (¢) = M(2)).

est set. Our answer to these two equivalence problems for the case o . ) .
of propositional formula circumscription is exhaustive. This givesDefinitions2.1 [14] A preference relation in L is a binary relation
rise to various notions of formulas positive with respect to a given< OverM. M (7)) is the set of the elemengsof M (7") minimal for
set of formulas. When starting from ordinary propositional circum-~<: # € M(7T)) and nov € M(7) is such thai < .

scription, things remain simple enough, and we provide a syntactical 1hepreferential entailment f = f< is defined by

description of all these equivalent sets, even in the infinite case. f<(T) =Th(M<(T)),i.e.M(f<(T)) =TCM<(T)).O

Definition 2.2 < is safely founded (sf) if, for any p € M(T) —
1 Introduction M < (T), there exists € M 4(7) such that < p. O

. L . i . ) (sf) is also calledtoppered or smooth in the literature.
Circumscription uses classical logic for representing rules with ex-

ceptions. It is often better to use the formula version. An impor-property 2.3 [folklore]

tant aspect of formula circumscription has almost not been studieq: ¢ _ isirreflexive and fi=fo then< =<

what are exactly the sets of formulas which give rise to the same ci ¢ < is(sf), then < istransitive and irreflexive. 1f V(L)

cumscription. Answering this question should have important conse-

guences on the automatization of circumscription, and on the knowl-

edge representation side. A possible explanation for the lack of stutbefinition 2.4 [6, 11, 12] (P,Q,Z) is a partition of V(L). P is

ies on the subject is the complexity of the predicate versions of cirthe set of thecircumscribed propositional symbols, Z of the vari-

cumscriptions. We answer fully this problem, providing a syntacticalable ones, the remaining ones, @, beingfixed. A circumscrip-

description of most of the sets of formulas concerned, in the propotion is a preferential entailmei/ RC(P, Q, Z) where

sitional case, including the infinite case in order to help the future<(P’ 0.7, is defined by:

exploration of the predicate case. <Paz v if PApcPnrandQnpu=Qnwv. We define

Section 2 introduces propositional circumscriptions. Section 3554 H ﬁ(P oz v if PNpCPNrandQnu=Qnu.O

gives two kinds of equivalence between sets of formulas, and the two e

associated notions of “positive formulas”. Section 4 examines the intt is generally better to use a more general version, formula circum-

finite case. Section 5 shows that when we start from ordinary circumscription [6, 11]. Here is the propositional version.

scriptions, things remain simple (even in the infinite case), providing

a syntactical description of all the “equivalent sets” concerned. ~ Definition 2.5 @, 7 are subsets df. Theformula circumscription

CIRCF of the formulas of®, is as follows: We introduce the set

. . L P = {P,},co Of new propositional symbol<CIRCF(®)(T) =

2 Proposmonal clrcumscription CIRC(P,0, V(L) (TU{p < P,}pce)NL.O

isfinite, <
is(sf) iff itistransitive and irreflexive. O

=l<pa.2)

L being a propositional logicl’ (L) is the set of its propositional Property 2.6 [2] CIRC(P,Q,Z) = CIRCF(PUQU -Q).
symbols. As usual,. denotes also the set of the formulas. We allow (In CIR.CF PandQ ar:a siats of formulas()

empty sets irpartitions of V(L). Th(T)={¢ € L/T E ¢}, the
set of thetheoriesis T = {T'h(7)/7 C L}. Formulas inL are de-  pefinitions2.7 For anyy, we define the set of formulas, = {¢ €
noted by lettersp, ¢, subsets of. by 7, ®, ¥, and interpretations ¢ / 1 ¢} = Th(p) N ®. We define two binary relations ikl
YJ, < vif®, C®,,andy <o if &, C &,.0
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2. {p}u C{p}. Thus, for anyu, pi,v € M, p € L, we have Property 3.4 1. If < is(sf), Pos(<) = I«.

(u =qpr vorv <roy p) and not(pn <3 pe @andus <{o3 p3). 2. For any <, Pos(<) isclosed for A and V.
3a. p Re v it p =Xy vioranyp € @. 3.® C Posm(®) C Pos.(®P).
3b. p<ev iff p=,yvioranyp € @, and 4. 3" = Pos,,(®).O

i =g,y v forsomep € .
4. <5 and=<g are transitive<q is irreflexive (thus<s is astrict
order) while <4 is reflexive (thusxs is apre-order). O

Proof:1.[8, Property 4.9]. 2and_3.Immediate. The two inclusions in
3 may be strict (see a less trivial example in section 5):(E) # (
and® = ), <¢ is always satisfied and s never, thusPos,, (®) =

This lemma is immediate. Thus, to know the “useful relation” (seepos(ﬁ‘b) ={T, L1} andPosc(®) = Pos(<s) = L.

property 2.9-1)<s, we need more than eaeky,,;, we must know 4. & C Posy(2) from 3 andPos(2) is closed forA andv
; ica i ; from 2, thus®"Y C Pos,,(®).
allthe <,;’s, a much more precise information. ' = m
Let us suppose now € Posm, (®) = Pos(<s). As{T, L} C
Property 2.9 [folklore] 1. CIRCF(®) = f«,. ®"V, we may suppose that there existv such thaty = ¢,v |
2. <o (thusalso <p, g, 7)) is(sf). O . Then,®, Z &, from the definitions 0<s and of Pos(<s). To

_ ) _ o _ ~any such coupléu, v) we associate one formula,, ., € &, — ..
Point 1 gives an alternative definition of formula circumscription. For any» such that = —, {M(#(.0))}u=s is an open cover of
Notice that the circumscriptions defined here are the usual propgy (¢), closed thus compact: there is a finite subcover. To any such
sitional adaptations of the original predicate calculus versions ofye associate, , the disjunction of the all formulag,, ., involved
[5, 6, 11]. More details, including theropositional circumscription in some chosen finite cover. As eagly, ,) isin ®, ¢, € 3. Also
axioms, can be found in e.g. [12, 1, 9, 7]. We refer also to these textyi (x) C M(y, ) andv ¢ M(p,),i.e.¢ = ¢, andv = -, .
for more details and bibliographical references about the notions re- f (:qu)}”‘zw is an open cover dfl (—¢) from which we ex-

minded above. tract a finite subcover to which corresponds a disjunctioof for-
mulas—yp,. As eachp, isin @V, ¢ € (~(®Y))Y = =((#¥)") =
3 Equivalences between circumscribed sets =(®"Y). Also M (=) C M(1h), i.e. =g = 9. 1) is a disjunction of

-, 's which all satis v, Le. T, -, thus =,
We examine when two sets of formulésand®’ produce the same T;fus@ =—ipe @RS_OD': 4 P =T Ve

formula circumscription. From a knowledge representation perspec-

tive, two kinds of such “equivalences” are to be considered. Let us justify the name “positive formulas”. It is natural to call

Definition3.1 & and ® are cequivalent (® =, &), if theformulas in@"V, positivein @, thus our notatiorPos, (). We
CIRCF(®) = CIRCF(®'). ® and®' are strongly equivalent think that there are also good_r_eas_ons tq call the formulas in the gen-
(@ =.. &), if, for any setd” of formulas, CIRCF(® U &") = erally greater sePos.(®), positive in ®, in anextended acception
CIRCF(®' U®").O (see definition 3.3-2, property 3.4, and also the following example

and theorem 5.2 below). When considering propositional circum-
If & =, @', then® =. ®'. The strong version is useful because, scriptionCIRC, we can be more precise. LE®, Z) be a partition
when another rule, or another “individual”, is added, this correspondsf V/(L). (P U Z U ~Z)"V is the set of the formulapositive in P
to an addition of formula(s): e.qg., if bird€3(’s) generally fly ), (traditional meaning). Let us already detail this important particular
a new birdB;, adds a new formuld;, A —F} to be circumscribed. case (proofs given below).

With standard equivalence, we may then loose this equivalence. )
Example3.5 CIRC(P,Q,Z) = CIRCF(®) = f«, ® being the

Definitions 3.2 The A-closure of @ is the setb” = {/\wew @/ for  setofformulagb = PUQU —-Q, i.e. <=<p 0, z)=<a-

any finite® C ®}. TheV-closure &V is defined similarly. The\v- We need also the relatioR==p, g, z)==e-
closure of ® is the setd"Y = (&)Y = (&V)". " (resp.®", or 1.8"Y = Pos(=) = Pos,,(®) is the set of the formulas positive

2.1f Z = Q orif P is infinite, thenPos(<) = Posn,(®) =
We get alwaysT € ", L € " (choose¥ = ). For the equality ~ Pos.(®). Otherwise, the sePos(<) is more complicated. See the-
(@)Y = (®Y)", use the de Morgan distribution laws, reminding orem 5.2-1c and -2 below for the proofs and more details.

that we assimilate a formula to its equivalence class. . ) )
It is convenient to establish now two easy lemmas

Definitions3.3 1. ¢ is accessible for f = f<xif p € f(T) —T
for some theory7. The set of the formulasiaccessible for f is
Ip=Ic=L=Urex(F(T)=T) =Nyer(L = (F(T)=T)).

2. The set of the formulapositive for < is the setPos(<) of the Proof: We gety <eonv v if p <o v (lemma 2.8-1b). From lemma
formulasy such that, ifu |= ¢ andp < v, thenv | . If <=<s 2.8-3ap Xp vif (® C ¥andy Xv v), thusy 2 vif p Zpav v.
of definition 2.7, we writePos. (®) for the setPos(<a), called  Thus<e==grv. Thus<e==y iff <gav==gav. Now, &V =
the set of the formulagositivein ®, in the extended acception. If ¥V if  C ¥ C oV, O
<==s, we write Pos, (®) for the setPos(=<s) of the formulas
positivein @, in the minimal acception. O

Lemma3.6 If ® C ¥ C "V, we have<s==<y, thus a fortiori
<e=<u, i.e. CIRCF(®) = CIRCF(¥).0

Lemma3.7 If V(L) is finite, CIRCF(®) = CIRCF(I<,) =
CIRCF (Pos.(®)).0

Inaccessible formulas for circumscriptions are introduced in [8]. We This lemma is contained in [8, Property 5.6] and we refer to [9,
will show here that in the finite casé; is the greatest (fo€) set  Lemma 5.32] for the (easy) complete proof (one of these equalities
¥ such thatf = CIRCF(®) = CIRCF(¥) (theorem 3.8-1b  has also independently appeared as [3, Observation 15]). This result
below). As we expect for a set of “positive formulasps(<) is is false in the infinite case (theorem 4.9 below), however it extends
always closed fon andV: to anyCIRC(P, Q, Z) (theorems 4.9 and 5.2-3a below).



Theorem 38 la. ® =. ¥ iff <o = <y .
If & =, T ,then Posc(®) = Pos.(P).
1b. Let us suppose that V'(L ) isfinite here.
@ =,V iff <¢ =<g iff Posc(®) = Pos.(¥).
<& = <Posc (@) = <Pos, (D)
Pos.(®) isthe greatest (for C) set ¥ satisfying ¥ =. .

=su{,}#=e. Then, from lemma 2.8-3b, there exjstv such that
e v, v 2o p, p Lier Y,V Asr M Which contradicts
lemma 2.8-2. This means that®# U {¢} =. ®, then we must have
j@u{w}:jtp, thus® U {(,O} = D.
Second “iff: As ¢ € &V iff (& U {p})"Y = @"V, 2a above
gives the resultd
2a. ® =, ¥ iff <p =<y iff Posy(®) = Posn(¥).
Also < = <gav, thus <e=<gav.
2b. Posy, (®) = "V isthe greatest (for C) set
¥ gatisfying ¥ =,. & (cf lemma 3.6).

3.dU{p} = @iff U{p} = @ iff pe @Y. O

4 Theinfinite case: athird set is needed

As we need now a characterization result of formula circumscription,
which goes outside our purpose, we list only the main results (see [9]
for details and proofs), describing mainly their consequences on the
roles of the “positive formulas”. Notice that [1, Theorem 7] charac-
1 provides a necessary (and sufficient in the finite case) conditioferizesCIRCF in the finite case, however [1, Theorem 8] does not
for two sets of formulas to give the same circumscription. help for finding the set replacingos. (®) in the infinite case.
2 provides in any case necessary and sufficient conditions for
two sets of formulas to be strongly equivalent (meaning to have th@€finitions4.1 M- (u) = {v / p < v} andm<(p) ={v / v <
same behavior for what concerns circumscription, even when the‘j}- We define the equivalenc_e relatipre< v if M (p) = M<(v)
are completed by new formulas). One of these conditions is very sin@Ndm< (1) = m<(v). We write=4 for =-,. O

ple: having the samaV-closure.
The problem of the greatest seequivalent to a given set in the

We cannot always tak&os(<) = I« as our set (cf theorem

infinite case is harder (see theorem 4.9 below). For the smallest sets3-1) (thus, we must find another set given in definition 4.6 below):

c-equivalent, or strongly equivalent, to a given set, see [10] (in th

finite case only).

3 shows that if we add the formulas one by one, there is iden? ~
tity betweenc-equivalence and strong equivalence: informally, this

comes from the fact that when thereciequivalence and not strong

equivalence between one set and one of its super sets, it is necess&r
that the added formulas “oppose each other” (this is a consequence
of lemma 2.8-3 and of point 2, for examples see theorem 5.2 and ex™ <
ample 5.3 below). Such a mutual cancellation is clearly impossiblt?w

when the two sets differ by only one formula.

Proof: 1a. “iff”: Properties 2.3 and 2.9-2. IKe=<w, Pos(<3) =
Pos(<y), i.e. Pos.(®) = Pos. (¥) (converse false, see theorem 4.9).
1b. First “iff”: 1a. Second “iff”: If <e=<w, then Pos(<s) =
Pos(<w),1.€.,Pose(®) = Posc(¥). We suppose nowos. (P)
Pos.(¥), then from lemma 3.7 we geke=<y. Maximality of
Pos(®) comes from® C Pos, (®), thus, if & =. ®, asPos.(¥) =

Pos.(®) from 1a, we getl C Pose(¥) = Pos.(®).

In the infinite case, we still geke==<pos,, (@) ==<Pos. (o) fOr
® = PUQU —Q (theorem 5.2-3a below), bie=~p,s,. () CaN
be false for some sets (example 4.2 below).

2a.First “iff”. Part “if”: From lemma 2.8-3a, if<e==y, then for
any¥', g, ==wpuw-

Part “only if”: We suppose<s#=w. Clearly, if <s7#<w, then
® £, U thus® #,. P. Let us supposeke=<yv and <¢#=<w.
There existu andv such that e.gu < v, v <s p, andy Aw v,
v Aw p. Sinceu # v, there is a formulg such thaiy | ¢, v
. We get, from lemma 2.8-3by <gug,; p. Sincerv Awv p,
v Awugey 1o This establishe® U {p} #. @ U {¢}, thus¥ #,. .

Second “iff". Part “only if": Pos(<s) = Pos(Xw) if <6 = <w.

Example4.2 V(L) = {P},.N-vi = {Po, Pi,--, P} (i € N),

V(L), p = {P1}. We define the preference relatienby v <
v, andyu < v, for anyn € IN, and nothing elsdim; o v; = v.
We get thenfx = CIRCF(®) with ® = {p € Pos(<) / n |E
iff v = o}

e have hereM < (n) = M<(v) = {vi}, N andm<(u)
(v) =0, thuspy =< v.

If ¢ € (Pos(<))u, thenMy(pn) = M (v) C M(yp) thusv €
(¢). Thus(Pos(<)). C (Pos(<)).. As we havePy € Pos(<),
v E Py andp £ Py, we get(Pos(<)), C (Pos(<)), and
1t < pos(<) V- This Shows< # < pos (<), i.€.,

CIRCF(Pos(<)) # f< = CIRCF(®).0

Definition 4.3 We definep < v if for any ¢, ¢ such thaty = ¢
andv = ), there exisp' € M(p), v’ € M(2)) such thap' < v'. O

Remarks4.4 1.1f uy < v,thenpy < v.

2.1f V(L) is enumerable, them < v iff there exist two sequences
with lim; oo pti = g, lim;— 00 v; = v andu; < v; for anyi.

3. If V(L) is finite, we have< =<.0

Property 45 1.If u < v then (Pos(<)), C (Pos(<))..
2 1fp <o vthenpy <o vorp=e (v).O

Definition 4.6 The set of the formulapositive for a preference re-
lation <, in therestricted acception, is: Pos, (<) = {¢ € Pos(<)/

foranyu,v,if u <v, p Avandv | ¢, theny = ¢}.
We write Pos, (®) for Pos,(<s). 0

Property 4.7 Pos,(<) C Pos(<). Moreover, if p < v then

Part “if": It is a consequence of the second sentence, proved bQ'PosrR))u C (Pos,(<)),.0

low: We suppose<s==<gnav. Thus, if Pos(Xs) = Pos(<v), i.e.,
if @MY =¥, we get<e=<gprv==ygrv==y.

Here is a last interesting preliminary result.

Second sentence: From lemma 3.6 and its proof, we know

<e==<gprv, thus<e=~<gav.

2b. Pos,, (®) = "V from property 3.4-4. If¥ =,. &, ¥V =
®"V from 2a. As¥ C ¥V, we get¥ C &"V: &V is maximal.

3. First “iff": Let us suppose® U {p} =; @, i.e.,<ou{,1 =<3,
i.e., from lemma 2.8-3ayu( <(,; v Whenevery < v), and also

Property 4.8 (proof easy)ll. ® C Pos,(®).
Pos, (®) isstablefor A and V. Thus:
Posp (®) C Posy(®) C Pose(®).

2. 1f V(L) isfinite, then Pos, (<) = Pos(<),
thus Pos, (®) = Pos.(®). 0



Theorem 4.9 ([9, Proposition 6.16], we hope that we have given
enough hints here in order to make this result plausible.)

f< isaformula circumscription iff fx = CIRCF (Pos,(<)).

Moreover, inthiscase, Pos, (<) isthe greatest set (for C) ¢ such
that CIRCF(®) = f«.

CIRCF @) = CIRCF(9)iff Pos,(®) = Pos,(¥).

We can have Pos.(®) = Pos.(¥) and ® #. ¥.O

As we clearly always hav@os. (Pos.(®)) = Pos.(®), the last
line is proved by example 4.2 whefes, () = Pos(<).

Example4.10 V(L) is infinite, u1 and u» are distinct interpreta-
tions,u < viff p = py andv = po.

< =< (immediate), thusPos(<) = Pos, (<) = I and f4x =
CIRCF(Pos(<)): f< is a formula circumscription, and even an
easy one, sinc®os(<) = Pos,(<). It is easy to check that this
is an example of a circumscription falsifyingeverse monotony:
F<(MUT" B f<(TUT") (see [9, Example 6.24] for details). This
example illustrates the power of theorem 4.9, which detects immed

ately that this is indeed a formula circumscription. Notice that this e S
d_and even two descriptions) of the set of the formulas positive in

natural example of falsification of reverse monotony has already a|
peared in the literature (e.g. in [13, Example 2.2 (1)]), without notic-
ing that this is a formula circumscriptionl

5 A syntactical description, for CTRC(P,Q,Z)

Forthe case o' TRC (P, Q, Z), we describe syntactically all the sets
of “positive formulas”.

Notations 5.1 Y is some finite consistent set of literals from C
V(L). We define the formula§/(Y) = \/WeY pand \(Y) =
/\goeY 0. /(@) = L,A(®) = T.If foranyY € Y’, Y containsY’
or—Y,Y iscompletein Y'. O

Theorem 5.2 Thecaseof CIRC(P,Q, Z):
<, <and ®=PUQU-Q areasin example 3.5
We get Pos(=) C Pos(<) = I (property 3.4)
Also, asCIRC(P,Q,Z) = CIRCF(9®),
Pos(<) = Pos.(®) and Pos(=) = Posy, (®) = "V
(see example 3.5 and property 3.4-4)

la.
1b.
1c.

If o € Pos.(®), then ¢ ispositivein P (traditional meaning).
P05y, (@) = &Y C Pos.(®).
If Pisinfinite or Z = (), then Pos.(®) = Pos,,(®) = &"V.

. If Pisfinite, Pos.(®) isthe set of the disjunctions of formulas of
thekind A (Pa) A A(Q)A(A(Z) VY (P—P.)), for P, C P,and
for finite sets Q, and Z; made of literalsof Q and of Z respectively.
Alternatively, we can describe Pos. (®) asthe set of the conjunc-
tions of formulas \/ (Pa) V \/(Q;) V (\V(Z1) A A(P — Pa)).

If V(L) isfinite, we need only to consider the sets Q, completein
Q and Z; completein Z in these descriptions.

3a. Pos;(®) = Posc(®). ThUS <=<&= < pos,, (3) == Pos.(®): |-€
CIRCF(®) = CIRCF(Posm(®)) = CIRCF(Pos.(®)).
If Pisinfiniteor Z = 0, then

Pos,(®) = Pos.(®) = Pos,, (®) =&"".O

3b.

Point 1a establishes that any formula “positivedity following
our terminology, with® = P U Q U —Q, is positive inP, in the
traditional meaning. This constitutes part of the justification for our
terminology.

Point 1b adapts already given results, to the particular case of ordi-
nary circumscription: The set of the “formulas positivedinfor the
minimal acception”, is thaV-closure of the seb. This set is always
included in the set of the “formulas positive ik for the extended
acception”. This inclusion has allowed us to omit the acception in
our comment about 1a, just above.

Point 1c shows that, except when there are variable propositions
with a finite number of circumscribed propositions, there is identity
between the minimal and the extended acceptions of the “sets of for-
mulas positive ind”. This is a particularly interesting result. Indeed,
it provides an important property (identity betweermquivalence
and strong equivalence) which is always true for circumscriptions
without variable, and not for the circumscriptions with variables.
Moreover, this provides a simple syntactical description of the set
of the formulas positive i®, even for the extended acception. When
applicable Z = 0 or P infinite), we get, for any? C L:

CIRC(P,Q,Z) = CIRCF(%) iff "V = &"V.
i-
Point 2 completes point 1c by providing a syntactical description

®, for the extended acception, in the cases not covered by point 1c.
Notice that the casg& = ) of point 2 is immediate: the difficulty of

this description comes from the eventual occurrences of elements in
Z, which can appear only in some well precised places.

Point 3a shows that the complication of the “restricted acception”
for the sets of positive formulas, whan(L) is infinite, is useless
for ordinary circumscription. Indeed, the “restricted” and “extended”
acceptions are always identical in this case, and the complications
seen in section 4 are not needed for ordinary circumscription.

Point 3b comes directly from points 1c and 3a.

Proof:1a.¢ € Pos(<) = Ic andp1V- - -V, is areduced digunc-
tive normal form of ¢: eachy; is distinct and, ify’ is a conjunction
of literals such thap; = ¢, ¢i # ¢', theny’ [~ .

We suppose-P appears inp;, for P € P. We cally the conjunc-
tion of the other literals ofp;. u1 is a model ofy}. If u [~ P, then
u £ ¢i thusp = . Otherwise, withv = u — {P}, we haver < p
andv | ¢; thusv |= ¢ and, asp € Pos(<), againu |= ¢. Thus
M (p}) C M(¢), a contradiction with the reduced form.

1b.Property 3.4-3 and -4.

lc.if Z=0,V () CPUQ:cflaand 1b.

P infinite andZ # (. From 1a and 1b we know that ¥f(¢) C
PUQ, thenp € Pos(<) iff o is positive inP. We supposé’ (¢) &
PUQ, andp:1 V -+ V ¢, is a reduced normal disjunctive form of
¢ € Pos(<). Z is an element irZ NV (y;). ¢} is the conjunction
of the literals ofy; without element ofZ. Let P be inP — V(¢).
Let u be a model ofy}, then there is a model’ of ¢; such that
' N(PUQ) =pun(PUQ). We definer = pU{P}. Theny' < v
thusv = . P ¢ V(p)and(pUv) — (uNv) = {P}, thuspy = ¢.
Thus,M(¢};) C M(¢p), which contradicts the reduced form @f

2. See [8] or [9,Proposition 6.32-2] (not enough room here).

3a.From property 4.7, it suffices to proveos(<) C Pos,(<).

Let ¢ be in Pos(<), and two interpretations be such thaX v,
u A v,andv = p. As (®) C Pos(<), from property 4.5-1 we get
(PUQU-Q), C (PUQU-Q),: pNP CvNPanduNQ =rvNQ.
Asp A v, we gety N P = v N P. We split the proof in two cases.

Case 1:P finite. Foryy = A(pNP) A AP — p), p €
M(¢),v € M(¢) and, asu <v, there existy', v’ in M(¢)) with
' < v'. Thus,u’ NP C v/ NP, a contradiction withy' = + and
V' |= ¢ which forcesy’ N P = »' N P. Thus we cannot have our



hypothesis ifP is finite.

Case 2P is infinite. From 1c we gePos(<) = Pos(X) = (PU
QU-Q)"Y, thusy = ¢.

Cases 1 and 2: Thus, from definition 46,€ Pos,(<). This
provesPos(<)=Pos.(<).

We get <=<o==<pos,,(®)==Pos.(3)- INdeed, we know

®’. Our description is always syntactical in the second case (“strong
equivalence”). In the first case (“standard equivalence”), we have
given a syntactical description when we start from an ordinary cir-
cumscription (i.e. from a seF made of atoms and of pairs of oppo-
site literals). In the general case (infinite €eof arbitrary formulas),

it does not seem that such an easy syntactical description exists.

<==<2o==pos,, (®) from property 3.4-4 and theorem 3.8-2a and These results should help the automatization of circumscription,

<==pos, (<) from theorem 4.9.
3b. If P is infinite orZ = @, we getPos(<) = Pos(X) =
(PUQU-Q)"Y from 1c. We getPos, (<) =Pos(<) from 3a.0

EX&I’T’Ip|65.3 P, =P = {Pl,PQ},CI)Q = {Pl NPy, PV P2},
(P, Q,Z) is a partition oft’ (L) and<==p,q, 7)-

If Q =0, we havefx = CIRC(P,Q,Z) = CIRCF(®,) from
property 2.6. In any case we hav¥g, =<s,, i.e. CIRCF(®:) =
CIRCF(®2) (lemma 2.8-3b). Thusp; =. ®».

However, notice thab, #,. ®». Here are two proofs of this fact:

l) Directly:<I>1 @] {Pl} =&, P U {Pl} = CI),Q

CIRCF(‘I)l)(Pl \Y Pz) = Th(P1 =4 —|P2) while
CIRCF(®%)(P1V P;) = Th(=P1 A P»): indeed from lemma 2.8-
3b we get{Pz} 7<<1>1 {Pl} and{P2} <<I>’2 {Pl}

2) From theorem 3.8-2?087”(@1):@1/\\/ :{J_,Pl/\PQ, Py, Py,
P, VPQ,T} while POSm(¢2):¢2Av:{L7P1AP2,P1 VPQ,T}.

because once we know all the equivalent sets, we may start from the
best one. It remains to determine which is “the best one”, but we have
given the first necessary step.

These results should also help the real use of circumscriptions. It
is clearly good to know when two sets of formulas give the same
circumscription, and also when this equivalence is preserved by the
addition of any set of formulas. We would like to describe another
interest for modeling complex situations, involving various sets of
rules. One way to do this is to associate with each rule a set of for-
mulas to be circumscribed. Then, in order to combine two rules, we
could try to make some combinations of the two sets, in order to get
a third set, associated with the combination of the individual rules.
Various kinds of combinations should be designed, in order to con-
sider cases when e.g. some priority is given to one rule. In order to
define precisely such combinations of “sets”, it is important to know
precisely what are the objects (“sets of formulas”) that we want to
combine. Our notion(s) of equivalence between sets gives (give) the

To keep things simple, let us consider only one variable propo@nswer(s). What remains to do is to design such combinations in var-
sition @ = {Z}) and at most one fixed proposition. We examine ious configurations (rules with various priorities between them).

successively the cases without and with a fixed proposition:

a) (No fixed propositiony< = CIRC(P, 0, Z) (Q = 0):

$3 = {Pl A Ps /\Z,P1 /\Pz/\‘!Z,Pl V(P2 /\Z),Pl \Y (P2/\
~Z),PyV (PLAZ), PyV (PL A—Z), PLN P,V Z, PV Py V -2}

Then we havefx = CIRC({P1, P»},0,Z) = CIRCF(®3) =

CIRCF(®,) = CIRCF(®,). This can be checked directly
(from lemma 2.8-3b) or by using theorem 5.2-2 from which weJ[2]

get Pos(<) = ®3" = ®3"V. Thusfx = CIRCF(Pos(<) =

CIRCF(®3) from theorem 5.2-3. From theorem 3.8-1b (a par-[3!

ticular case of theorem 4.9), the sét = I = Pos(<) =
Pos.(<) = &3 is the greatest one such that = CIRF(¥).
In particular, aCIRCF(®1) = CIRCF(®:""), we getd,"¥ C
@3 (easy to check directly).
ThUS,POSe(¢1):POSe(¢2):P056(<I>3):<I>3A.

b) (One fixed propositionfx = CIRC(P,Q, 2) (Q = {Q}):

With ¥; = @, U{Q,-Q} (¢ € {1,2}), we get fx =
CIRC(P,Q,Z) = CIRCF(¥,) = CIRCF(¥;). The set¥; re-
placing ®; above is made from all the's in ®3 duplicated into
the pairpVQ, ¢V —Q, and we getl; = Pos(<) = Pos.(¥1) =
POSe(‘Ilz) :POSe (\I/?,) = \I/3A = ‘113/\\/.

There is always a greate$t= Pos(<) such that
CIRC(P,Q,Z) =
that it does not generally exist a smallest skt such that
CIRC(P,Q,Z) = CIRCF(¥'): here®;, and®, (case a) o,
and¥, (case b) are minimal foE. O

6 Conclusion and futurework

We have described all the sets of formufasvhich, when circum-
scribed, give rise to the same result as a givenlseilso, we have

described all the set® which, when completed by any arbitrary set[14]

@', give rise to the same result as a given®etvhen completed by

CIRCF(¥). However, this example shows

(10]

(11]

(12]

Another work is to examine the predicate case. We have developed
the infinite propositional case as a first small, but not negligible, step
towards the full predicate case.
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