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Abstract. Circumscription is a way of using classical logic in order
to modelize rules with exceptions and implicit knowledge. Formula
circumscription is easier to use in order to modelize a given situa-
tion. We describe when two sets of formulas give the same result
when circumscribed, introducing two kinds of equivalence. For or-
dinary equivalence, the two sets give the same circumscription, and
for the strong equivalence, when completed by any arbitrary set, the
two sets give the same circumscription. The strong equivalence cor-
responds simply to having the same closure for logical “and” and
“or”. For the ordinary equivalence, there exists also always a great-
est set. Our answer to these two equivalence problems for the case
of propositional formula circumscription is exhaustive. This gives
rise to various notions of formulas positive with respect to a given
set of formulas. When starting from ordinary propositional circum-
scription, things remain simple enough, and we provide a syntactical
description of all these equivalent sets, even in the infinite case.

1 Introduction

Circumscription uses classical logic for representing rules with ex-
ceptions. It is often better to use the formula version. An impor-
tant aspect of formula circumscription has almost not been studied:
what are exactly the sets of formulas which give rise to the same cir-
cumscription. Answering this question should have important conse-
quences on the automatization of circumscription, and on the knowl-
edge representation side. A possible explanation for the lack of stud-
ies on the subject is the complexity of the predicate versions of cir-
cumscriptions. We answer fully this problem, providing a syntactical
description of most of the sets of formulas concerned, in the propo-
sitional case, including the infinite case in order to help the future
exploration of the predicate case.

Section 2 introduces propositional circumscriptions. Section 3
gives two kinds of equivalence between sets of formulas, and the two
associated notions of “positive formulas”. Section 4 examines the in-
finite case. Section 5 shows that when we start from ordinary circum-
scriptions, things remain simple (even in the infinite case), providing
a syntactical description of all the “equivalent sets” concerned.

2 Propositional circumscription

L being a propositional logic,V (L) is the set of its propositional
symbols. As usual,L denotes also the set of the formulas. We allow
empty sets inpartitions of V (L). Th(T ) = f' 2 L=T j= 'g, the
set of thetheories is T= fTh(T )=T � Lg. Formulas inL are de-
noted by letters';  , subsets ofL by T ;�;	, and interpretations

1 IRISA, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE, tel.: (33)
2 99 84 73 13, e-mail: moinard@irisa.fr

2 IRMAR, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE, (33) 2
99 28 60 19, Raymond.Rolland@univ-rennes1.fr

for L (identified with the subset ofV (L) that they satisfy) by�; �. If
V (L)=fP;Q;Zg and�=fP;Zg, thenTh(�)=Th(P^:Q^Z).
We define the set:� = f:'=' 2 �g. V (') denotes the set of the
propositional symbols appearing in'. M = P(V (L)) denotes the
set of the interpretations. IfM0 � M, we defineTh(M0) = f' 2
L=� j= ' for any� 2 M0g. This ambiguous meaning ofj= andTh
is usual.M(T ) denotes the set of the models ofT andTC the classi-
cal topological closure: ifM0 � M, TC(M0) = M(Th(M0)). Gen-
erally, aformula will be identified with its equivalence class:' =  
iff M(') = M( ).

Definitions 2.1 [14] A preference relation in L is a binary relation
� overM. M�(T ) is the set of the elements� of M(T ) minimal for
�: � 2 M(T ) and no� 2 M(T ) is such that� � �.

Thepreferential entailment f = f� is defined by
f�(T ) = Th(M�(T )), i.e.M(f�(T )) = TC(M�(T )).2

Definition 2.2 � is safely founded (sf) if, for any � 2 M(T ) �
M�(T ), there exists� 2 M�(T ) such that� � �.2

(sf) is also calledstoppered or smooth in the literature.

Property 2.3 [folklore]
1. If � is irreflexive and f� = f�0 , then � = �0.
2. If� is (sf), then � is transitive and irreflexive. If V (L) is finite,�

is (sf) iff it is transitive and irreflexive. 2

Definition 2.4 [6, 11, 12] (P;Q;Z) is a partition ofV (L). P is
the set of thecircumscribed propositional symbols, Z of the vari-
able ones, the remaining ones, inQ, being fixed. A circumscrip-
tion is a preferential entailmentCIRC(P;Q;Z)=f�

(P, Q, Z)
where

�(P, Q, Z) is defined by:
� �(P, Q, Z) � if P \ � � P \ � andQ \ � = Q \ �. We define
also � �(P, Q, Z) � if P \ � � P \ � andQ \ � = Q \ �.2

It is generally better to use a more general version, formula circum-
scription [6, 11]. Here is the propositional version.

Definition 2.5 �; T are subsets ofL. The formula circumscription
CIRCF of the formulas of�, is as follows: We introduce the set
P = fP'g'2� of new propositional symbols.CIRCF (�)(T ) =
CIRC(P; ;; V (L))(T [ f', P'g'2�) \ L. 2

Property 2.6 [2] CIRC(P;Q;Z) = CIRCF (P [Q [ :Q).
(In CIRCF , P andQ are sets of formulas.)2

Definitions 2.7 For any�, we define the set of formulas�� = f' 2
� = � j= 'g = Th(�) \ �. We define two binary relations inM:
� �� � if �� � �� , and� �� if �� � �� .2

Lemma 2.8 1a.� �� � iff � �� � and� 6�� �.
1b. � �� � iff for any ' 2 �, if � j= ' then� j= '.



2. f'g� � f'g. Thus, for any�; �i; � 2 M, ' 2 L, we have
(� �f'g � or � �f'g �) and not(�1 �f'g �2 and�2 �f'g �3).

3a. � �� � iff � �f'g � for any' 2 �.
3b. � �� � iff � �f'g � for any' 2 �, and

� �f'g � for some' 2 �.
4. �� and�� are transitive,�� is irreflexive (thus,�� is a strict

order) while�� is reflexive (thus,�� is apre-order). 2

This lemma is immediate. Thus, to know the “useful relation” (see
property 2.9-1)��, we need more than each�f'g, we must know
all the�f'g’s, a much more precise information.

Property 2.9 [folklore] 1. CIRCF (�) = f�� .
2. �� (thus also �(P, Q, Z)) is (sf). 2

Point 1 gives an alternative definition of formula circumscription.
Notice that the circumscriptions defined here are the usual propo-
sitional adaptations of the original predicate calculus versions of
[5, 6, 11]. More details, including thepropositional circumscription
axioms, can be found in e.g. [12, 1, 9, 7]. We refer also to these texts
for more details and bibliographical references about the notions re-
minded above.

3 Equivalences between circumscribed sets

We examine when two sets of formulas� and�0 produce the same
formula circumscription. From a knowledge representation perspec-
tive, two kinds of such “equivalences” are to be considered.

Definition 3.1 � and �0 are c-equivalent (� �c �0), if
CIRCF (�) = CIRCF (�0). � and�0 are strongly equivalent
(� �sc �0), if, for any set�00 of formulas,CIRCF (� [ �00) =
CIRCF (�0 [ �00).2

If � �sc �0, then� �c �0. The strong version is useful because,
when another rule, or another “individual”, is added, this corresponds
to an addition of formula(s): e.g., if birds (Bi ’s) generally fly (Fi),
a new birdBk adds a new formulaBk ^ :Fk to be circumscribed.
With standard equivalence, we may then loose this equivalence.

Definitions 3.2 The^-closure of � is the set�^ = f
V

'2	
'= for

any finite	 � �g. The_-closure �_ is defined similarly. Thê _-
closure of � is the set�^_ = (�^)_ = (�_)^. �^ (resp.�_, or
�^_) is called a setclosed for ^ (resp.for _, or for ^ and _). 2

We get always> 2 �^;? 2 �_ (choose	 = ;). For the equality
(�^)_ = (�_)^, use the de Morgan distribution laws, reminding
that we assimilate a formula to its equivalence class.

Definitions 3.3 1. ' is accessible for f = f� if ' 2 f(T ) � T
for some theoryT . The set of the formulasinaccessible for f is
If = I� = L�

S
T 2T

(f(T )�T ) =
T
T 2T

(L� (f(T )�T )).
2. The set of the formulaspositive for � is the setPos(�) of the

formulas' such that, if� j= ' and� � �, then� j= '. If �=��

of definition 2.7, we writePose(�) for the setPos(��), called
the set of the formulaspositive in �, in the extended acception. If
�=��, we writePosm(�) for the setPos(��) of the formulas
positive in �, in the minimal acception. 2

Inaccessible formulas for circumscriptions are introduced in [8]. We
will show here that in the finite case,If is the greatest (for�) set
	 such thatf = CIRCF (�) = CIRCF (	) (theorem 3.8-1b
below). As we expect for a set of “positive formulas”,Pos(�) is
always closed for̂ and_:

Property 3.4 1. If � is (sf), Pos(�) = I�.
2. For any �, Pos(�) is closed for ^ and _.
3. � � Posm(�) � Pose(�).
4. �^_ = Posm(�). 2

Proof:1. [8, Property 4.9]. 2.and 3.Immediate. The two inclusions in
3 may be strict (see a less trivial example in section 5): IfV (L) 6= ;
and� = ;, �� is always satisfied and�� never, thusPosm(�) =
Pos(��) = f>;?g andPose(�) = Pos(��) = L.

4. � � Posm(�) from 3 andPosm(�) is closed for^ and_
from 2, thus�^_ � Posm(�).

Let us suppose now' 2 Posm(�) = Pos(��). As f>;?g �
�^_, we may suppose that there exist�; � such that� j= '; � j=
:'. Then,�� 6� �� from the definitions of�� and ofPos(��). To
any such couple(�; �) we associate one formula'(�;�) 2 ����� .
For any� such that� j= :', fM('(�;�))g�j=' is an open cover of
M('), closed thus compact: there is a finite subcover. To any such�,
we associate'� , the disjunction of the all formulas'(�;�) involved
in some chosen finite cover. As each'(�;�) is in �, '� 2 �_. Also
M(') � M('�) and� =2 M('�), i.e.' j= '� and� j= :'� .
fM(:'�)g�j=:' is an open cover ofM(:') from which we ex-

tract a finite subcover to which corresponds a disjunction of for-
mulas:'� . As each'� is in �_,  2 (:(�_))_ = :((�_)^) =
:(�^_). Also M(:') � M( ), i.e.:' j=  .  is a disjunction of
:'� ’s which all satisfy' j= '� , i.e.:'� j= :', thus j= :'.
Thus' = : : ' 2 �^_. 2

Let us justify the name “positive formulas”. It is natural to call
the formulas in�^_, positive in �, thus our notationPosm(�). We
think that there are also good reasons to call the formulas in the gen-
erally greater setPose(�), positive in �, in anextended acception
(see definition 3.3-2, property 3.4, and also the following example
and theorem 5.2 below). When considering propositional circum-
scriptionCIRC, we can be more precise. Let(P;Z) be a partition
of V (L). (P [ Z [ :Z)^_ is the set of the formulaspositive in P
(traditional meaning). Let us already detail this important particular
case (proofs given below).

Example 3.5 CIRC(P;Q;Z) = CIRCF (�) = f�, � being the
set of formulas� = P [Q [ :Q, i.e.�=�(P, Q, Z)=��.

We need also the relation�=�(P, Q, Z)=��.
1.�^_ = Pos(�) = Posm(�) is the set of the formulas positive

in P, in the traditional meaning, and without element ofZ.
2. If Z = ; or if P is infinite, thenPos(�) = Posm(�) =

Pose(�). Otherwise, the setPos(�) is more complicated. See the-
orem 5.2-1c and -2 below for the proofs and more details.2

It is convenient to establish now two easy lemmas

Lemma 3.6 If � � 	 � �^_, we have��=�	, thus a fortiori
��=�	, i.e.CIRCF (�) = CIRCF (	).2

Proof:We get� ��^_ � if � �� � (lemma 2.8-1b). From lemma
2.8-3a,� �� � if (� � 	 and� �	 �), thus� �� � if � ��^_ �.
Thus��=��^_ . Thus��=�	 iff ��^_=�	^_ . Now, �^_ =
	^_ if � � 	 � �^_. 2

Lemma 3.7 If V (L) is finite,CIRCF (�) = CIRCF (I��) =
CIRCF (Pose(�)).2

This lemma is contained in [8, Property 5.6] and we refer to [9,
Lemma 5.32] for the (easy) complete proof (one of these equalities
has also independently appeared as [3, Observation 15]). This result
is false in the infinite case (theorem 4.9 below), however it extends
to anyCIRC(P;Q;Z) (theorems 4.9 and 5.2-3a below).



Theorem 3.8 1a. � �c 	 iff �� = �	 .
If � �c 	 , then Pose(�) = Pose(	).

1b. Let us suppose that V (L) is finite here.
� �c 	 iff �� = �	 iff Pose(�) = Pose(	).
�� = �Pose(�) = �Posm(�).
Pose(�) is the greatest (for �) set 	 satisfying 	 �c �.

2a. � �sc 	 iff �� = �	 iff Posm(�) = Posm(	).
Also �� = ��^_ , thus ��=��^_ .

2b. Posm(�) = �^_ is the greatest (for �) set
	 satisfying 	 �sc � (cf lemma 3.6).

3. �[f'g �c � iff �[f'g �sc � iff '2�^_. 2

1 provides a necessary (and sufficient in the finite case) condition
for two sets of formulas to give the same circumscription.

2 provides in any case necessary and sufficient conditions for
two sets of formulas to be strongly equivalent (meaning to have the
same behavior for what concerns circumscription, even when they
are completed by new formulas). One of these conditions is very sim-
ple: having the samê_-closure.

The problem of the greatest setc-equivalent to a given set in the
infinite case is harder (see theorem 4.9 below). For the smallest sets
c-equivalent, or strongly equivalent, to a given set, see [10] (in the
finite case only).

3 shows that if we add the formulas one by one, there is iden-
tity betweenc-equivalence and strong equivalence: informally, this
comes from the fact that when there isc-equivalence and not strong
equivalence between one set and one of its super sets, it is necessary
that the added formulas “oppose each other” (this is a consequence
of lemma 2.8-3 and of point 2, for examples see theorem 5.2 and ex-
ample 5.3 below). Such a mutual cancellation is clearly impossible
when the two sets differ by only one formula.

Proof: 1a. “iff”: Properties 2.3 and 2.9-2. If��=�	, Pos(��) =
Pos(�	), i.e.Pose(�)=Pose(	) (converse false, see theorem 4.9).

1b. First “iff”: 1a. Second “iff”: If ��=�	, thenPos(��) =
Pos(�	), i.e.,Pose(�) = Pose(	). We suppose nowPose(�) =
Pose(	), then from lemma 3.7 we get��=�	. Maximality of
Pose(�) comes from��Pose(�), thus, if	 �c �, asPose(	) =
Pose(�) from 1a, we get	 � Pose(	) = Pose(�).

In the infinite case, we still get��=�Posm(�) =�Pose(�) for
� = P [ Q [ :Q (theorem 5.2-3a below), but��=�Pose(�) can
be false for some sets� (example 4.2 below).

2a.First “iff”. Part “if”: From lemma 2.8-3a, if��=�	, then for
any	0,��[	0=�	[	0.

Part “only if”: We suppose�� 6=�	. Clearly, if�� 6=�	, then
� 6�c 	 thus� 6�sc 	. Let us suppose��=�	 and�� 6=�	.
There exist� and� such that e.g.� �� �, � �� �, and� 6�	 �,
� 6�	 �. Since� 6= �, there is a formula' such that� j= '; � 6j=
'. We get, from lemma 2.8-3b,� ��[f'g �. Since� 6�	 �,
� 6�	[f'g �. This establishes	[f'g 6�c �[f'g, thus	 6�sc �.

Second “iff”. Part “only if”:Pos(��) = Pos(�	) if �� = �	.
Part “if”: It is a consequence of the second sentence, proved be-

low: We suppose��=��^_ . Thus, ifPos(��) = Pos(�	), i.e.,
if �^_ = 	^_, we get��=��^_=�	^_=�	.

Second sentence: From lemma 3.6 and its proof, we know
��=��^_ , thus��=��^_ .

2b.Posm(�) = �^_ from property 3.4-4. If	 �sc �, 	^_ =
�^_ from 2a. As	 � 	^_, we get	 � �^_: �^_ is maximal.

3. First “iff”: Let us suppose� [ f'g �c �, i.e.,��[f'g=��,
i.e., from lemma 2.8-3a, (� �f'g � whenever� �� �), and also

��[f'g 6=��. Then, from lemma 2.8-3b, there exist�; � such that
� �� �, � �� �, � 6�f'g �, � 6�f'g �, which contradicts
lemma 2.8-2. This means that if� [ f'g �c �, then we must have
��[f'g=��, thus� [ f'g �sc �.

Second “iff”: As ' 2 �^_ iff (� [ f'g)^_ = �^_, 2a above
gives the result.2

4 The infinite case: a third set is needed

As we need now a characterization result of formula circumscription,
which goes outside our purpose, we list only the main results (see [9]
for details and proofs), describing mainly their consequences on the
roles of the “positive formulas”. Notice that [1, Theorem 7] charac-
terizesCIRCF in the finite case, however [1, Theorem 8] does not
help for finding the set replacingPose(�) in the infinite case.

Definitions 4.1 M�(�) = f� = � � �g andm�(�) = f� = � �
�g. We define the equivalence relation� �� � if M�(�) =M�(�)
andm�(�) = m�(�). We write�� for ��� . 2

We cannot always takePos(�) = I� as our set� (cf theorem
3.8-1) (thus, we must find another set given in definition 4.6 below):

Example 4.2 V (L) = fPigi2N. �i = fP0; P1; � � � ; Pig (i 2 N),
� = V (L), � = fP1g. We define the preference relation� by � �
�n and� � �n for anyn 2 N, and nothing else.limi!1 �i = �.
We get thenf� = CIRCF (�) with � = f' 2 Pos(�) = � j=
' iff � j= 'g.

We have hereM�(�) = M�(�) = f�igi2N andm�(�) =
m�(�) = ;, thus� �� �.

If ' 2 (Pos(�))�, thenM�(�) = M�(�) � M(') thus� 2
M('). Thus(Pos(�))� � (Pos(�))� . As we haveP0 2 Pos(�),
� j= P0 and � 6j= P0, we get(Pos(�))� � (Pos(�))� and
� �Pos(�) �. This shows� 6= �Pos(�), i.e.,
CIRCF (Pos(�)) 6= f� = CIRCF (�).2

Definition 4.3 We define� � � if for any ';  such that� j= '
and� j=  , there exist�0 2 M('), � 0 2 M( ) such that�0 � �0.2

Remarks 4.4 1. If � � �, then� � �.
2. If V (L) is enumerable, then� � � iff there exist two sequences

with limi!1 �i = �; limi!1 �i = � and�i � �i for anyi.
3. If V (L) is finite, we have� =�.2

Property 4.5 1. If � � � then (Pos(�))� � (Pos(�))� .
2. If � �� � then � �� � or � �� (�). 2

Definition 4.6 The set of the formulaspositive for a preference re-
lation�, in therestricted acception, is:Posr(�) = f' 2 Pos(�)=
for any�; �, if � � �; � 6� � and� j= ', then� j= 'g.

We writePosr(�) for Posr(��).2

Property 4.7 Posr(�) � Pos(�). Moreover, if � � � then
(Posr(�))� � (Posr(�))� . 2

Here is a last interesting preliminary result.

Property 4.8 (proof easy)1. � � Posr(�).
Posr(�) is stable for ^ and _. Thus:
Posm(�) � Posr(�) � Pose(�).

2. If V (L) is finite, then Posr(�) = Pos(�),
thus Posr(�) = Pose(�). 2



Theorem 4.9 ([9, Proposition 6.16], we hope that we have given
enough hints here in order to make this result plausible.)
f� is a formula circumscription iff f� = CIRCF (Posr(�)).
Moreover, in this case, Posr(�) is the greatest set (for�) � such

that CIRCF (�) = f�.
CIRCF (�) = CIRCF (	) iff Posr(�) = Posr(	).
We can have Pose(�) = Pose(	) and � 6�c 	. 2

As we clearly always havePose(Pose(�)) = Pose(�), the last
line is proved by example 4.2 wherePose(�) = Pos(�).

Example 4.10 V (L) is infinite, �1 and�2 are distinct interpreta-
tions,� � � iff � = �1 and� = �2.
� =� (immediate), thusPos(�) = Posr(�) = I� andf� =

CIRCF (Pos(�)): f� is a formula circumscription, and even an
easy one, sincePos(�) = Posr(�). It is easy to check that this
is an example of a circumscription falsifyingreverse monotony:
f�(T )[T

00 6j= f�(T [T
00) (see [9, Example 6.24] for details). This

example illustrates the power of theorem 4.9, which detects immedi-
ately that this is indeed a formula circumscription. Notice that this
natural example of falsification of reverse monotony has already ap-
peared in the literature (e.g. in [13, Example 2.2 (1)]), without notic-
ing that this is a formula circumscription.2

5 A syntactical description, for CIRC(P;Q;Z)

For the case ofCIRC(P;Q;Z), we describe syntactically all the sets
of “positive formulas”.

Notations 5.1 Y is some finite consistent set of literals fromY0 �
V (L). We define the formulas

W
(Y) =

W
'2Y ' and

V
(Y) =

V
'2Y '.

W
(;) = ?;

V
(;) = >. If, for anyY 2 Y0, Y containsY

or:Y , Y is complete in Y0.2

Theorem 5.2 The case of CIRC(P;Q;Z):
�;� and �=P[Q[:Q are as in example 3.5.
We get Pos(�) � Pos(�) = I� (property 3.4).
Also, as CIRC(P;Q;Z) = CIRCF (�),
Pos(�) = Pose(�) and Pos(�) = Posm(�) = �^_

(see example 3.5 and property 3.4-4).

1a. If ' 2 Pose(�), then ' is positive in P (traditional meaning).
1b. Posm(�) = �^_ � Pose(�).
1c. If P is infinite or Z = ;, then Pose(�) = Posm(�) = �^_.

2. If P is finite, Pose(�) is the set of the disjunctions of formulas of
the kind

V
(Pa)^

V
(Ql)^(

V
(Zl)_

W
(P�Pa)), for Pa � P, and

for finite sets Ql and Zl made of literals of Q and of Z respectively.
Alternatively, we can describe Pose(�) as the set of the conjunc-
tions of formulas

W
(Pa) _

W
(Ql) _ (

W
(Zl) ^

V
(P� Pa)).

If V (L) is finite, we need only to consider the sets Ql complete in
Q and Zl complete in Z in these descriptions.

3a. Posr(�) = Pose(�). Thus�=��=�Posm(�)=�Pose(�), i.e.
CIRCF (�) = CIRCF (Posm(�)) = CIRCF (Pose(�)).

3b. If P is infinite or Z = ;, then
Posr(�)=Pose(�)=Posm(�)=�^_.2

Point 1a establishes that any formula “positive in�”, following
our terminology, with� = P [ Q [ :Q, is positive inP, in the
traditional meaning. This constitutes part of the justification for our
terminology.

Point 1b adapts already given results, to the particular case of ordi-
nary circumscription: The set of the “formulas positive in�, for the
minimal acception”, is thê_-closure of the set�. This set is always
included in the set of the “formulas positive in�, for the extended
acception”. This inclusion has allowed us to omit the acception in
our comment about 1a, just above.

Point 1c shows that, except when there are variable propositions
with a finite number of circumscribed propositions, there is identity
between the minimal and the extended acceptions of the “sets of for-
mulas positive in�”. This is a particularly interesting result. Indeed,
it provides an important property (identity betweenc-equivalence
and strong equivalence) which is always true for circumscriptions
without variable, and not for the circumscriptions with variables.
Moreover, this provides a simple syntactical description of the set
of the formulas positive in�, even for the extended acception. When
applicable (Z = ; or P infinite), we get, for any	 � L:

CIRC(P;Q;Z) = CIRCF (	) iff 	^_ = �^_:

Point 2 completes point 1c by providing a syntactical description
(and even two descriptions) of the set of the formulas positive in
�, for the extended acception, in the cases not covered by point 1c.
Notice that the caseZ = ; of point 2 is immediate: the difficulty of
this description comes from the eventual occurrences of elements in
Z, which can appear only in some well precised places.

Point 3a shows that the complication of the “restricted acception”
for the sets of positive formulas, whenV (L) is infinite, is useless
for ordinary circumscription. Indeed, the “restricted” and “extended”
acceptions are always identical in this case, and the complications
seen in section 4 are not needed for ordinary circumscription.

Point 3b comes directly from points 1c and 3a.

Proof:1a.' 2 Pos(�) = I� and'1_� � �_'n is areduced disjunc-
tive normal form of ': each'i is distinct and, if'0 is a conjunction
of literals such that'i j= '0; 'i 6= '0, then'0 6j= '.

We suppose:P appears in'i, forP 2 P. We call'0i the conjunc-
tion of the other literals of'i. � is a model of'0i. If � 6j= P , then
� j= 'i thus� j= '. Otherwise, with� = �� fPg, we have� � �
and� j= 'i thus� j= ' and, as' 2 Pos(�), again� j= '. Thus
M('0i) � M('), a contradiction with the reduced form.

1b.Property 3.4-3 and -4.
1c. If Z = ;, V (') � P [Q: cf 1a and 1b.
P infinite andZ 6= ;. From 1a and 1b we know that ifV (') �

P[Q, then' 2 Pos(�) iff ' is positive inP. We supposeV (') 6�
P [ Q, and'1 _ � � � _ 'n is a reduced normal disjunctive form of
' 2 Pos(�). Z is an element inZ \ V ('i). '0i is the conjunction
of the literals of'i without element ofZ. Let P be in P � V (').
Let � be a model of'0i, then there is a model�0 of 'i such that
�0 \ (P[Q) = �\ (P[Q). We define� = �[fPg. Then,�0 � �
thus� j= '. P =2 V (') and(�[ �)� (�\ �) = fPg, thus� j= '.
Thus,M('0i) � M('), which contradicts the reduced form of'.

2. See [8] or [9,Proposition 6.32-2] (not enough room here).
3a.From property 4.7, it suffices to provePos(�) � Posr(�).
Let ' be inPos(�), and two interpretations be such that�� �,

� 6� �, and� j= '. As (�) � Pos(�), from property 4.5-1 we get
(P[Q[:Q)� � (P[Q[:Q)� : �\P � �\P and�\Q = �\Q.
As � 6� �, we get� \ P = � \ P. We split the proof in two cases.

Case 1:P finite. For  =
V
(� \ P) ^

V
(:(P � �)), � 2

M( ); � 2 M( ) and, as�� �, there exist�0; �0 in M( ) with
�0 � �0. Thus,�0 \ P � �0 \ P, a contradiction with�0 j=  and
�0 j=  which forces�0 \ P = �0 \ P. Thus we cannot have our



hypothesis ifP is finite.
Case 2:P is infinite. From 1c we getPos(�) = Pos(�) = (P [

Q [ :Q)^_, thus� j= '.
Cases 1 and 2: Thus, from definition 4.6,' 2 Posr(�). This

provesPos(�)=Posr(�).
We get �=��=�Posm(�)=�Pose(�). Indeed, we know

�=��=�Posm(�) from property 3.4-4 and theorem 3.8-2a and
�=�Posr(�) from theorem 4.9.

3b. If P is infinite or Z = ;, we getPos(�) = Pos(�) =
(P [Q [ :Q)^_ from 1c. We getPosr(�) =Pos(�) from 3a.2

Example 5.3 �1 = P = fP1; P2g;�2 = fP1 ^ P2; P1 _ P2g,
(P;Q;Z) is a partition ofV (L) and�=�(P, Q, Z).

If Q = ;, we havef� = CIRC(P;Q;Z) = CIRCF (�1) from
property 2.6. In any case we have��1=��2 , i.e.CIRCF (�1) =
CIRCF (�2) (lemma 2.8-3b). Thus,�1 �c �2.

However, notice that�1 6�sc �2. Here are two proofs of this fact:
1) Directly:�1 [ fP1g = �1, �2 [ fP1g = �02.
CIRCF (�1)(P1 _ P2) = Th(P1 , :P2) while
CIRCF (�02)(P1 _P2) = Th(:P1 ^P2): indeed from lemma 2.8-
3b we getfP2g 6��1 fP1g andfP2g ��0

2
fP1g.

2) From theorem 3.8-2a:Posm(�1)=�1
^_=f?; P1^P2; P1; P2;

P1_P2;>g while Posm(�2)=�2
^_=f?; P1^P2; P1_P2;>g.

To keep things simple, let us consider only one variable propo-
sition (Z = fZg) and at most one fixed proposition. We examine
successively the cases without and with a fixed proposition:

a) (No fixed proposition)f� = CIRC(P; ;; Z) (Q = ;):
�3 = fP1 ^ P2 ^ Z; P1 ^ P2 ^ :Z; P1 _ (P2 ^ Z); P1 _ (P2 ^

:Z); P2 _ (P1 ^Z); P2 _ (P1 ^:Z); P1 _P2 _Z; P1 _P2 _:Zg.
Then we havef� = CIRC(fP1; P2g; ;; Z) = CIRCF (�3) =

CIRCF (�1) = CIRCF (�2). This can be checked directly
(from lemma 2.8-3b) or by using theorem 5.2-2 from which we
get Pos(�) = �3

^ = �3
^_. Thusf� = CIRCF (Pos(�)) =

CIRCF (�3) from theorem 5.2-3. From theorem 3.8-1b (a par-
ticular case of theorem 4.9), the set	 = I� = Pos(�) =
Posr(�) = �3

^ is the greatest one such thatf� = CIRF (	).
In particular, asCIRCF (�1) = CIRCF (�1

^_), we get�1
^_ �

�3
^ (easy to check directly).
Thus,Pose(�1)=Pose(�2)=Pose(�3)=�3

^.

b) (One fixed proposition)f� = CIRC(P; Q; Z) (Q = fQg):
With 	i = �i [ fQ;:Qg (i 2 f1; 2g), we get f� =

CIRC(P;Q;Z) = CIRCF (	1) = CIRCF (	2). The set	3 re-
placing�3 above is made from all the'’s in �3 duplicated into
the pair'_Q;'_:Q, and we get:I� = Pos(�) = Pose(	1) =
Pose(	2)=Pose(	3)= 	3

^=	3
^_.

There is always a greatest	=Pos(�) such that
CIRC(P;Q;Z) = CIRCF (	). However, this example shows
that it does not generally exist a smallest set	0 such that
CIRC(P;Q;Z) = CIRCF (	0): here�1 and�2 (case a) or	1

and	2 (case b) are minimal for�.2

6 Conclusion and future work

We have described all the sets of formulas� which, when circum-
scribed, give rise to the same result as a given set	. Also, we have
described all the sets� which, when completed by any arbitrary set
�0, give rise to the same result as a given set	, when completed by

�0. Our description is always syntactical in the second case (“strong
equivalence”). In the first case (“standard equivalence”), we have
given a syntactical description when we start from an ordinary cir-
cumscription (i.e. from a set	 made of atoms and of pairs of oppo-
site literals). In the general case (infinite set� of arbitrary formulas),
it does not seem that such an easy syntactical description exists.

These results should help the automatization of circumscription,
because once we know all the equivalent sets, we may start from the
best one. It remains to determine which is “the best one”, but we have
given the first necessary step.

These results should also help the real use of circumscriptions. It
is clearly good to know when two sets of formulas give the same
circumscription, and also when this equivalence is preserved by the
addition of any set of formulas. We would like to describe another
interest for modeling complex situations, involving various sets of
rules. One way to do this is to associate with each rule a set of for-
mulas to be circumscribed. Then, in order to combine two rules, we
could try to make some combinations of the two sets, in order to get
a third set, associated with the combination of the individual rules.
Various kinds of combinations should be designed, in order to con-
sider cases when e.g. some priority is given to one rule. In order to
define precisely such combinations of “sets”, it is important to know
precisely what are the objects (“sets of formulas”) that we want to
combine. Our notion(s) of equivalence between sets gives (give) the
answer(s). What remains to do is to design such combinations in var-
ious configurations (rules with various priorities between them).

Another work is to examine the predicate case. We have developed
the infinite propositional case as a first small, but not negligible, step
towards the full predicate case.
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