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Abstract. In the area of Default Logic, after many theoretical works,
some operational systems are now able to deal with real world appli-
cations. However, due to the theoretical complexity of the problem,
finding a default logic extension in a practical way is not yet possible
in whole generality. Our work presents a new methodology to imple-
ment an automated default reasoning system based on Genetic Algo-
rithms techniques. The aim of this paper is not to exhibit a program
able to compute extensions of every kind of default theories in a min-
imal time, but to present a new promising approach of the problem.
We provide here a formal description of the components required for
a default logic extension search, based on Genetic Algorithms prin-
ciples. We give also a formal result to ensure the correctness of our
approach and some very interesting experimental results w.r.t. other
existing systems.

1 INTRODUCTION

Default Logic has been introduced by Reiter [12] in order to formalize
common sense reasoning from incomplete information, and is now
recognized as one of the most appropriate framework for non mono-
tonic reasoning. In this formalism, knowledge is represented by a
default theory whose sets of plausible conclusions are called exten-
sions. But, due to the level of theoretical complexity of default logic
( ��� �����
	���
�������� [6]), the computation of these extensions is a great
challenge. Previous works [4, 10, 14] have already investigated this
computational aspect of default logic. Even if the system DeRes [4]
has very good performances on certain classes of default theories,
there is no efficient system for general extension calculus. The pur-
pose of the present work is not to exhibit a system able to compute
extensions of every default theory in a minimal time. But, we show
that techniques issued from Genetic Algorithms can be very useful in
order to build an efficient default reasoning system with the ability
to deal with any propositional finite default theory without restriction
on formulas. Furthermore, our approach can easily be adapted to any
variant of default logic. But, dealing with a semimonotonic default
logic as [8] needs a lesser computational effort because we can use a
greedy algorithm, and do not need to do a final checking of the build
extension that can invalidate all the previous work. In this case it is
not obvious that a genetic algorithm would have good performances
in face of more classical approaches.

Based on the principle of natural selection, genetic algorithms [9,
7] have been quite successfully applied to combinatorial problems
such as scheduling or transportation problems. The fundamental prin-
ciple of this approach states that, species evolve through adaptations�
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to a changing environment and that the gained knowledge is embed-
ded in the structure of the population and its members, encoded in
their chromosomes. If individuals are considered as potential solu-
tions to a given problem, applying a genetic algorithm consists in
generating better and better individuals w.r.t. the problem by select-
ing, crossing and mutating them. This approach seems very useful for
problems with huge search spaces and for which no tractable algo-
rithm is available, such as our problem of default theory’s extension
search.

The paper is organized as follows : section 2 is a short preliminary
section where basic definitions and concepts related to default logic
are recalled. Section 3 provides the formal description of our system
GADEL (Genetic Algorithms for DEfault Logic) and explains how
the key principles of genetic algorithms are used to build an exten-
sion. The section 4 provides the validation of our work by giving a
formal correctness result and some experiments that show that our
new approach is very promising.

2 DEFAULT LOGIC

First, we recall only the materials about Default Logic that is neces-
sary to understand the rest of our paper and we invite the non familiar
reader to consult [3, 2, 14].

In Default Logic knowledge is represented by means of a default
theory ��������� where � contains the “sure” knowledge (in this work
it is a set of propositional formulas) and � is a set of default rules (or
defaults). A default  "!$#&%�')(
* + + + * '-,. is an inference rule ( / , 0 and all132

are propositional formulas) whose meaning is “if the prerequisite/ is proved, and if for all 45!768�:9�9�9
��; each justification
1 2

is in-
dividually consistent (in other words if nothing proves its negation)
then one concludes the consequent 0 2". Given a default theory it is
possible to infer a set of plausible conclusions called an extension and
defined by Reiter as the fixpoint of a special operator. But, we prefer
to recall here the equivalent following pseudoiterative characteriza-
tion because it is closer to our approach of the extension computation
problem.

Theorem 1 [12] Let ��������� be a default theory and < a formula set.
We define <>=?!@� and for all A�BDC ,<>E�F � !HG�IJ�K<>E)�ML N 0 #&%�')(
* + + + * ' ,. O �5�P< ERQ /S� and<UTQ5V 132 �XW�4Y!Z6)��9�9:9���;\[
Then, < is an extension of ��������� iff <]!@^5_E�` = <>E .
For a set of formulas < , GaIb�K<c� denotes as usual the set of logical
consequences of < , and < Qed has its common sense of deduction in�

If f is a default rule, gih�j)k�f�l , m�n8o
kpf�l and qXr-sto:kuf�l respectively denotes the
prerequisite, the set of justifications and the consequent of f . These defini-
tions will be also extended for sets of defaults.



classicalv logic. It is important to note that a default theory may have
one or multiple extensions and sometimes no extension at all as we
can see below.

Example 2.1 wx��� � �P� � �y!Z�{z-|���}�~��-���
z�� %K�i�� �t� %��� � � %p�� �)� has a
unique extension G�IJ��� � L5z-�3������� .wx��� � �P� � �y!Z�{z-|���}J~��-����z � %p����i� � � %p� �� � �)� has two extensions <Z!G3IJ��� � L�z V }-�8� and <"��!HG3IJ��� � L�z V �-�8�wx�����)�P���-�y!Z�{z-|����
z�� %���i� �)� has no extension.

In fact, given a default theory ��������� , to compute its extension< is equivalent to find its Generating Default Set � since <�!G�IJ����L��P�)���8������� [13].

Definition 2.1 Let < be an extension of a default theory ���������� �������P�5�P<��y! N #?%u')(�* + + + * ' ,. O � < Q / and<UTQeV 1�2 �XW�4J!x68�:9�9�9
��;\[
is called the Generating Default Set of < and all defaults in� �������P�5�P<�� are said to be applied.

To end this technical part, we recall that every generating default
set is grounded.

Definition 2.2 [15] Given a default theory ��������� , a set of defaults� �D� is grounded if � can be ordered as a sequence �p � ��9�9:9��� :¡��
satisfying the property:W�4J!x68�:9�9�9
��;¢����L��P�)���8�{z- � �
9:9�9��� 2p£ � ��� Q¥¤3¦P§ �p 2 �
3 DESCRIPTION OF THE METHOD

Genetic Algorithms [9, 7] are based on the principle of natural selec-
tion. We first consider a population of individuals which are repre-
sented by their chromosomes. Each chromosome represents a poten-
tial solution to the given problem. An evaluation process and genetic
operators determine the evolution of the population in order to get bet-
ter and better individuals. Considering our extension search problem,
potential solutions will be called candidate extensions represented by
chromosomes and the purpose of our algorithm is to generate a can-
didate which is indeed an extension (i.e. satisfying theorem 1).

We now introduce the different parts of our search mechanism
which consists of the following components, as a genetic algorithm:

1. a representation of the potential solutions : in most cases, chromo-
somes will be strings of bits representing its genes,

2. a way to generate an initial population,
3. an evaluation function: it rates each potential solution,
4. genetic operators that define the evolution of the population : two

different operators will be considered : Crossover allows to gener-
ate two new chromosomes (the offsprings) by crossing two chro-
mosomes of the current population (the parents), Mutation arbi-
trarily alters one or more genes of a selected chromosome,

5. parameters : population size 
3¨ 2ª© � and probabilities of crossover
 � and mutation 
�« . We choose 
 ¨ 2¬© �"­)®°¯ ��
 ¨ 2¬© � !U±?²³± F �{´� .

3.1 Representation

A representation scheme consists of the two following elements : a
chromosome language µ defined by a chosen size and an interpreta-
tion mapping to translate chromosomes in term of possibly applied
defaults, which provides the semantics of the chromosomes. In our
context, for each default #&%�')(
* + + + * ' ,. we encode in the chromosome

the prerequisite / and all justifications
1 � �
9¬9³9³� 1 ¡ conjointly. There-

fore, given a set of defaults �¶!@z- � �
·�·:·��� :¡�� the size of the chromo-
some will be ¸�; and the chromosome language µ is the regular lan-
guage �KC�¹56-� � ¡ (i.e. strings of ¸�; bits). Given a chromosome

� O µ ,� ­ 2 denotes the value of
�

at occurrence 4 . Occurrences of
�

are ele-
ments of zt6)9¬9 ¸-;Y� . The interpretation mapping, defining the semantics
of the previous chromosomes, can be formally described as :

Definition 3.1 Given a default set � and chromosome language µ ,
an interpretation mapping is defined as d¢º µ¼»5�$½�z���¾�¿����ÁÀ�|��pÂ:�)�
such that:W3 2 O �5� d � � �� 2 ��! N ��¾�¿�� if

� ­ � 2p£ � !Z6 and
� ­ � 2 !ÃCÀ�|��pÂ:� in other cases

Our chromosomes are introduced to encode candidate extensions
(i.e. potential solutions to our problem). In fact, building an exten-
sion consists in finding its Generating Default Set (see definition 2.1).
Thus, the candidate extension ÄR<��������5� � � associated to each chro-
mosome can also be characterized by its candidate generating default
set Ä � �������P�5� � � . These two sets are easily defined w.r.t. the in-
terpretation mapping.

Definition 3.2 Given a default theory ��������� , a chromosome
� Oµ , the candidate generating default set associated to

�
is :Ä � �������P�5� � �S!@z- 2 ­ d � � �X 2 �y!H��¾�¿��)�

Definition 3.3 Given a default theory ��������� , a chromosome
� Oµ , the candidate extension associated to

�
is :ÄR<��������5� � �y!HG>IJ����L�zi�P�)���t�u �� ­  O Ä � �������P�5� � �P���

Intuitively, for a default  2 , if
� ­ � 2p£ � !Å6 then its prerequisite is

considered to be in the candidate extension and if
� ­ � 2 !ÃC no nega-

tion of its justifications is assumed to belong to the candidate exten-
sion induced by

�
. ÄR<��������5� � � and Ä � ���������5� � � will be sim-

ply denoted ÄR<�� � � and Ä � ��� � � when it is clear from the context.
Remark that since we have to compute the set of logical consequences
of � and of the consequents of the supposed applied defaults, a the-
orem prover will be needed in our system.

Example 3.1 Let �����P��� be a default theory where : � !Æz:|3� ,� ! z�� %p�� ��� %K� ��i� � � %p�� � . We get : Ä � ����6:C)C8C�6)6-�Ç! z�� %p�� �ÄR<���6�C8C8Ci686:��!\G>IJ�{z:|����-�)� which is really an extension but alsoÄ � ����6�C�6�C�686:��!Èz�� %p�� �t� %p� ���� ��ÄR<���6�C�6:Ci686:��!\G>IJ�{z:|����)� V }:�)�
which is not an extension.

3.2 Evaluation

Definition 3.4 Given a chromosome language µ , an evaluation func-
tion is a mapping �-Ét|�� º µÃ½ÇÊ , where Ê is any set such that there
exists an ordering Ë on it (to achieve the selection process).

Here, the evaluation function is mainly based on two criteria : the
notion of generating default set (definition 2.1) and the notion of
grounded default set (definition 2.2). These two aspects are rated by
two intermediate functions À � and À � .

For a default  2 ! #iÌt%�' (Ì * + + + * '�Í ÌÌ. Ì , we defined a function Î described
in table 1. Given the two positions

� ­ � 2p£ � and
� ­ � 2 associated to

the default  2 in the chromosome, the first point is to determine w.r.t.
these values if this default is supposed to be involved in the construc-
tion of the candidate extension (i.e. its conclusion has to be added to
the candidate extension or not). Then, we check if this application
is relevant. This evalutation is strongly related to the semantics of



Case ÏRÐ � 2p£ � ÏRÐ � 2 ÑÓÒ k�Ï&lMÔ�Õ 2 Ö�×-Ø�ÑÓÒ k�Ï&lbÔcÙ�Ú�Û2 Ü� � Ý Þpß
à°á âtã�äuåÁá æç � Ý Þpß
à°á Þpß�à�á èé � Ý âtã)äªå�á Þpß�à�á èê � Ý âtã)äªå�á âtã�äuåÁá èë � � Þpß
à°á âtã�äuåÁá èì � � Þpß
à°á Þpß�à�á æí � � âtã)äªå�á Þpß�à�á æî � � âtã)äªå�á âtã�äuåÁá æï Ý � Þpß
à°á âtã�äuåÁá è�ÁÝ Ý � Þpß
à°á Þpß�à�á æ�:� Ý � âtã)äªå�á Þpß�à�á æ�Áç Ý � âtã)äªå�á âtã�äuåÁá æ�Áé Ý Ý Þpß
à°á âtã�äuåÁá è� ê Ý Ý Þpß
à°á Þpß�à�á æ�Áë Ý Ý âtã)äªå�á Þpß�à�á æ�Áì Ý Ý âtã)äªå�á âtã�äuåÁá æ
Table 1. Evaluation

the chromosome given by definition 3.1. A ð in the penality columnÎ means that a positive value is assigned to Î�� � ­ � 2p£ � � � ­ � 2 � . Note
that only cases 1 to 4 correspond to default considered to be applied
(i.e. such that d �p 2 � � �ñ!¶��¾�¿�� ). The conditions ÄR<�� � � Q / 2 and®8ò �ÁÄR<�� � � Q5V 1 Û 2 uses the classical notion of logical consequence Q
and will be checked by a theorem prover. The global evaluation func-
tion À � is then defined byÀ � � � �y!ó� ¡2 ` � Î�� � ­ � 2p£ � � � ­ � 2 �Mô>I3�:¾8�Ó;5!D�
|i¾����K���
Justifications of the penalties:w Cases 2,3,4 : the consequent 0 2 is in the candidate extension (be-

cause
� ­ � 2p£ � !Z6 and

� ­ � 2 !ÃC ) while the default should not have
been applied (because either ÄR<�� � �aTQ / 2 or ®8ò �ÁÄR<�� � � Q5V 1 Û 2 ).w Cases 5,9,13: the consequent of the default is not in ÄR<�� � � while
it should since the prerequisite of the default is in the extension and
no negation of justifications is deducible from it.w Other cases : even if the chromosome value does not agree with
the generated candidate extension, these cases can be ignored since
they do not affect the extension.

The second part of the evaluation is based on the fact that every
generating default set is grounded. From the definition 2.2, we intro-
duce a function À � to evaluate the “groundedness” rate of a candidate
generating default set Ä � ��� � � as :À � � � �y!x6?� �
|i¾����KõY��
|i¾)����Ä � ��� � ���
where õ is the biggest set such that õ��DÄ � ��� � � and õ is grounded.

At last, we have to take into account the logical consistency ofÄR<�� � � to keep the meaning of the two previous evaluations. Since
if ÄR<�� � � is inconsistent then the conditions ÄR<�� � � Q / 2 and®8ò �ÁÄR<�� � � Q5V 1 Û 2 will be always true and moreover the “grounded-
ness” rate will be always maximal (check definition 2.2). Therefore,
a third function À-= appears in the evaluation process and is defined byÀ = � � �y! N Cö4{À�ÄR<�� � �aTQ5÷ (CE(G) is consistent)6ø	-��I��-¾�ô�4XÂ:�
Then, we can give the definition of our global evaluation function.

Definition 3.5 �:Ét|�� is an evaluation function of chromosomes s.t.�:Ét|�� º µ�½úù ûZ»eù ûx»eù ü�:Ét|��X� � �y!Zý�À = � � ���ÁÀ � � � ���ÁÀ � � � ��þ

We can see that a chromosome
�

such that �:Ét|°�{� � �c!ÿýKC��PCi�ÁC�þ
corresponds to a default set satisfying all properties to be the gener-
ating default set of an extension (see subsection 4.1). This feature is
the basis of our ordering process described in the next subsection.

3.3 Selection

The purpose of the selection stage is, starting from an initial
population � , to generate a selected population � ¨ � � containing
chromosomes with the best rates according to the evaluation func-
tion. Genetic operators, which define the evolution of the population,
will be applied on this intermediate population to get the next
population deriving from the initial � . The selection process is based
on an ordering of the individuals w.r.t. their evaluation. An orderingË on ù û »�ù ûZ»�ù ü is defined as the natural lexicographic extension��Ë"��Ë"��Ë>� of the usual ordering Ë on ù û and ù ü . Given a population
� of size 
�¨ 2¬© � , we built an ordered population

��� !Z� �R2 � 2�� � Â�¿3��I&��I°|i� N W�4�� ò �Y4�Ë ò � �:Ét|��X� �R2 ��� �-Ét|��X� � Û �W�4�� ò �Y4�T! ò � �R2 T! � Û 9
The first condition implies that the chromosomes are ordered w.r.t. to
their evaluation and the second condition implies that two identical
chromosomes are represented only once in � � . Note that if two
chromosomes have the same evaluation value, they are ordered
arbitrarily. We choose the ranking selection to generate the se-
lected population. Remind that the population size is such that®�¯ �p
�¨ 2¬© � ! ±?²³± F �{´� , i.e. 
�¨ 2¬© � ! � ±E
` � A . The selected population
� ¨ � � , that will be used for crossover and mutation, is a multiset of
chromosomes such that each

�R2 ��4�Ë ¯ in �	� occurs ¯ � 4y¹Z6
times in � ¨ � � . This construction is required to preserve the maximum
size of the population 
�¨ 2¬© � .
3.4 Crossover and Mutation

As mentionned before, genetic operators are now applied on the se-
lected population � ¨ � � . Crossover is performed in the following way:w select randomly two chromosomes in � ¨ � �w generate randomly a number ¾ O�
 Ci�:6
�w if ¾cË�
 � then the crossover is possible;

– select a random position 
 O z�68�:9�9
9:�Á¸�;5�¼6-�
– the two chromosomes �p| � ��9³9³9¬�Á| � �P| � F � �:9³9³9³�P| � ¡�� and�p} � ��9³9³9¬�P} � �P} � F � �
9¬9³9³�P} � ¡�� are replaced by the two new chromo-

somes �p| � �:9³9³9³�P| � �P} � F � �
9¬9³9³�P} � ¡ � and �p} � ��9³9³9¬�Á} � ��| � F � ��9³9³9¬�P| � ¡ � .w if the crossover does not occur then the two chromosomes are put
back in � ¨ � � .

Mutation is defined as :w For each chromosome
� O � ¨ � � and for each bit } Û in

�
, generate

a random number ¾ O�
 Ci�:6
� ,w if ¾cË�
�« then mutate the bit } Û (i.e. flip the bit).

The population obtained after these evolution operations becomes
the current population and will be the new input of the whole process
described in subsection 3.2, 3.3 and 3.4. This full process is repeated
to generate successive populations and one has to define the number
of populations to be explored. The best chromosome of each popula-
tion w.r.t. the evaluation function represents the current best solution
to the problem. To resume, the architecture of our system GADEL is
shown in figure 1. Remark that the initial population is randomly gen-
erated and, due to the acute definition of our evaluation function, we



Population

Evaluation

Theorem Prover

Selection
Crossover
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Figure 1. GADEL’s architecture

get an additionnal stop criterion. This is not the case in general genetic
algorithms. Here, when the evaluation of a chromosome is ýKC���C��ÁC�þ
we can assert that its associated candidate extension is an extension
of the default theory and stop the search. The validity of this criterion
is proved in next section.

4 VALIDATION AND EXPERIMENTAL
RESULTS

4.1 Theoretical validation

First, we give the following theoretical result that ensures the correct-
ness of our computation methodology.

Theorem 2 Let �����P��� be a default theory,
�

a chromosome and a
candidate generating default set � !óÄ � �������P�5� � � .��������� has an extension < ! G�IJ���7L��Á��������Ä � ��� � ����� if and
only if �:Ét|��X� � �¢!ZýKC��ÁCi�PC�þ .
Proof : ��½ : Let < ! G�Ib����L��P�)���8������� be an extension of��������� . Since < is an extension, it is consistent [12], and since �
is its generating default set < [13], it is obviously grounded. Thus,�:Ét|°�{� � ��!ZýKCi� ��C�þ .

Let us suppose that �:Ét|°�{� � ��� ýKC��ÁCi�PC�þ . Then, according to the
definition of our evaluation function À � (see table 1), it means that
there exists a default  �!ú#?%u')(�* + + + * ' ,. O � for which a penalty has
been assigned. Let us examine the two possible cases:wH O � : penalties can arise from cases 2, 3 or 4, but no one of them

is possible since < Q / and < TQ 132 �XW34S!¶68�:9�9�9
��; by definition
of a generating default setwH óTO � : penalties can arise from cases 5, 9, or 13, but no one of
them is possible since it would indicate that  should be a generat-
ing default of < .

Thus �:Ét|��X� � �y!ZýKC��PCi�ÁC�þ .
Proof : ��� : Let � ! Ä � �������P�5� � � such that�:Ét|°�{� � � ! ýKC��ÁCi�PC�þ and < ! G�Ib�K�7L��P�)���8������� .
Since À � � � � ! C , it means that � is grounded. So, we
can order it like � ! �p � �:9�9�9��� � � and we have W34 !68��9:9
9��p
J�Á� L �P�)���8�{z- � ��9
9�9��� 2p£ � � Q ¤3¦�§ �u 2 � that is equiva-
lent to W34 ! 68��9
9�9��K
J� ¤3¦P§ �p 2 � O G�IJ����L��P�)���8�{z- � ��9
9�9:�� 2p£ � ���
from which we can build the sequence< = ! �< 2 F � ! G�IJ�K< 2 �ML z��P�)�°���p 2 �P�t��W34Y!ÃCi�:9�9�9��p
�� 6

Because of the groundedness of � , we obtain<>=ø! �< 2 F � ! G3IJ�K< 2 �ML�zi�Á�������p 2 � ­ < 2 Q�¤3¦P§ �p 2 �P�W34Y!ÃC��:9
9�9��p
�� 6
Since À � � � �y!óC , we can deduce : W 1 O��
� �)�p 2 ���P< TQ�V 1 and then< = ! �< 2 F � ! G3IJ�K< 2 �ML N �Á�������p 2 � < 2 Q¥¤3¦�§ �p 2 �<UTQ5V 1 �XW 1 O���� �)�p 2 � [ ���)�W34¢!ÃC��
9�9�9:�p
�� 6
From À � � � �]! C , we can also deduce that for all other defaults#Ó%u')(:* + + + * '-,. O ���Y� , we have either < TQ / , either ®8ò �P< Q5V 1 Û . So,
in ����� we can delete the explicit reference to 4 in the defaults and we
can extend the sequence for all positive integer. So we have< = ! �<>E�F � ! G�Ib�K<aE)�ML�z��P�)���8�p �� ­ <>E Q�¤�¦P§ �p ���� 1 O��
� �)�p ��P�Á<UTQ 1 �W�A�� C
Finally, let us remark that by construction < is exactly the set^ _E�` = <>E . Thus we have obtain here the pseudoiterative characteriza-
tion of an extension given in Reiter’s theorem 1, and we can conclude
that < is an extension of ��������� . �

4.2 Experimental results

The GADEL system is implemented in Sicstus Prolog 7.3.1. Due to
the lack of space we give only few computation times in table 4.2
where problems are of two kinds. The first lines are about a taxo-
nomic default theory “people” described in example 4.1. Each line
corresponds to the common part of � augmented with one of the
specified formula ( }�	)ð or �i4K¾)� or ...). The last lines are about the well
known Hamiltonian cycle problem as it has been described and en-
coded in [4].

GADEL DeRes
problem � ¨ 2ª© � æ�� � � time time�! è

325 3 16 >7200"$# ß�ä 325 3 16 >7200% ã-æ 325 5 26 >7200&  % ã�æ 325 3 15 >7200% ã-æ('�åPÞpà*)-áÁæ�Þ 1275 91 1349 >7200&  % ã�æ('�åÁÞpà+)-á�æ°Þ 1275 65 1202 >7200, ã % � �! ã�ß-) é Ø ç Ø Ý Ø Ý Ø � Ø Ý Ø Ý 465 2 4 0.56, ã % � �! ã�ß-) ê Ø ç Ø Ý Ø Ý Ø � Ø Ý Ø Ý 1275 74 444 19.48, ã % � �! ã�ß-) ë Ø ç Ø Ý Ø Ý Ø � Ø Ý Ø Ý 2485 - >7200 566.45
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Column 
 ¨ 2¬© � gives the initial number of chromosomes in the popu-
lation, ;¢9 
J9 is the average number of populations needed to find an
extension. The last two columns give CPU time in seconds on a SUN
E3000 ��¸c»�¸[�)C[�@I=�t� .

At this time, we have only compared GADEL with DeRes [4] be-
cause both systems accept any kind of closed default theories. Fur-
thermore, we have focused on non stratified default theories since
they are more difficult to handle. GADEL has very good perfor-
mances on our taxonomic example 3 whereas DeRes does not solve it,
even if we use its local prover. We can see an increase of the number
of generated populations when Â��X¿3�i�:;�� is added to the set � (fifth
and sixth lines vs above lines in table 4.2). In all cases the default the-
ory has only one extension, but when Â
��¿��i�-;�� is present the gener-
ating default contains fourteen defaults and two others are grounded.
Whereas, when Â
��¿3�i�:;�� is not in � , the generating default set con-
tains only five defaults and there is no other grounded defaults and
that is why it is easier for our methodology to find a solution. We need
also note that GADEL has poor average performances on Hamilto-
nian problems4. We think that it is because we take into account the
groundedness into our evaluation function, only in a second time in
the evaluation of the chromosomes that are sorted firstly acording toÀ � and secondly to À � (see 3.2). In the Hamiltonian problem, a solu-
tion is exactly one “chain”5 of defaults, but, there is a lot of potential
solutions (with À � � � �y!ÃC ) based on two, or more, chains of defaults.
The only criterion to discard these candidate generating default sets
is the groundedness property that they do not satisfy ( À � � � ���UC ).
Conversely, in people example, a solution is a set of non conflicting
defaults, but at most four defaults are chained together, and so the
groundedness property is less important to reach a solution. These
two kinds of results illustrate the twofold difficulty in default reason-
ing : to respect justifications of each applied default and to find a set of
defaults that are well “chained”. A future improvement of GADEL is
to better take into account these two aspects by defining a new global
evaluation function merging À�= , À � and À � in a more efficient way,
maybe in an evolutive manner during the search.

We have also in mind that in the area of logic programming and
non monotonic reasoning there exist others systems (Smodels [11],
DLV [5]) able to compute stable models of extended logic program.
Since this task is equivalent to compute an extension of a default the-
ory it seems interesting to compare GADEL to these systems. But,
even if DLV has the advantage to accept formulas with variables
which are instanciated before computation, this system does not ac-
cept theories like our people example. On its part, Smodels does not
deal with this default theory because it can not be represented by a
normal logic program without disjunction. Because we have the ob-� Even if the time is not so good: all the implementation is written in Prolog,

the number of generation is encouraging. 
The average CPU time is more than 7200 seconds for the, ã % � �! ã-ß-) ë Ø ç Ø Ý Ø Ý Ø � Ø Ý Ø Ý problem but we get some solutions in

less time.¡
We say that f is chained to f � if q�r:sto:kuf�lJÔ"gih{j�kpf � l .

jective to deal with every kind of propositional formulas, GADEL
spends a lot of time in theorem proving and it seems not realistic to
compare it with those two systems. But it will be very interresting to
work on GADEL’s architecture in order to improve its performances
on particular classes of default theories.

5 CONCLUSION

The basic problem we wanted to address in this paper was to find an
extension of a given default theory. The GADEL system we have de-
signed shows that genetic algorithms provides an efficient framework
for this particular search. As an immediate side effect, this system can
be used as a complementary part of a default logic theorem prover
to check if a proof scheme generated by the prover can be valid in
an extension. The defaults necessary to achieve the proof would de-
fine a persistent characteristic of the chromosomes in every popula-
tion (i.e. positions protected from mutation and crossover). GADEL
would then be used to generate an extension w.r.t. these restrictions.
Global improvement of the system could be explored in two differ-
ent ways. On one hand, one can improve the performance of the ge-
netic algorithm by introducing parallelism in the management of the
population : evaluation, selection and genetic operations. On the other
hand, one could introduce other heuristics in our search issued from
local optimization methods [1] (simulated annealing, tabu search ...)
to get an hybrid algorithm combining evolution and local search.
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