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Abstract. Intheareaof Default Logic, after many theoretical works,
some operational systems are now able to deal with real world appli-
cations. However, due to the theoretical complexity of the problem,
finding a default logic extensionin apractical way isnot yet possible
in whole generality. Our work presents anew methodol ogy to imple-
ment an automated default reasoning system based on Genetic Algo-
rithms techniques. The aim of this paper is not to exhibit a program
ableto compute extensions of every kind of default theoriesinamin-
imal time, but to present a new promising approach of the problem.
We provide here aformal description of the componentsrequired for
adefault logic extension search, based on Genetic Algorithms prin-
ciples. We give also aformal result to ensure the correctness of our
approach and some very interesting experimental results w.r.t. other
existing systems.

1 INTRODUCTION

Default Logic hasbeenintroduced by Reiter [12] in order toformalize
common sense reasoning from incomplete information, and is now
recognized as one of the most appropriate framework for non mono-
tonic reasoning. In this formalism, knowledge is represented by a
default theory whose sets of plausible conclusions are called exten-
sions. But, dueto the level of theoretical complexity of default logic
(35 — complete [6]), the computation of these extensionsis a great
challenge. Previous works [4, 10, 14] have already investigated this
computational aspect of default logic. Even if the system DeRes [4]
has very good performances on certain classes of default theories,
there is no efficient system for general extension calculus. The pur-
pose of the present work is not to exhibit a system able to compute
extensions of every default theory in a minimal time. But, we show
that techniques issued from Genetic Algorithms can be very useful in
order to build an efficient default reasoning system with the ability
to deal with any propositional finite default theory without restriction
on formulas. Furthermore, our approach can easily be adapted to any
variant of default logic. But, dealing with a semimonotonic default
logic as [8] needs alesser computational effort because we can use a
greedy algorithm, and do not need to do afinal checking of the build
extension that can invalidate all the previous work. In thiscaseit is
not obvious that a genetic algorithm would have good performances
in face of more classical approaches.

Based on the principle of natural selection, genetic algorithms[9,
7] have been quite successfully applied to combinatoria problems
such as scheduling or transportation problems. The fundamental prin-
ciple of this approach states that, species evolve through adaptations
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to a changing environment and that the gained knowledge is embed-
ded in the structure of the population and its members, encoded in
their chromosomes. If individuals are considered as potentia solu-
tions to a given problem, applying a genetic algorithm consists in
generating better and better individuals w.r.t. the problem by select-
ing, crossing and mutating them. This approach seemsvery useful for
problems with huge search spaces and for which no tractable algo-
rithm is available, such as our problem of default theory’s extension
search.

The paper is organized as follows : section 2 isashort preliminary
section where basic definitions and concepts related to default logic
arerecalled. Section 3 provides the formal description of our system
GADEL (Genetic Algorithms for DEfault Logic) and explains how
the key principles of genetic algorithms are used to build an exten-
sion. The section 4 provides the validation of our work by giving a
formal correctness result and some experiments that show that our
new approach is very promising.

2 DEFAULT LOGIC

First, we recall only the materials about Default Logic that is neces-
sary to understand the rest of our paper and we invitethe non familiar
reader to consult [3, 2, 14].

In Default Logic knowledge is represented by means of a default
theory (W, D) where W containsthe“sure” knowledge (in thiswork
itisaset of propositional formulas) and D isaset of default rules (or
defaults). A default § = 2:81-8n jsaninferencerule (o, y and all
(i are propositional formulas) whose meaning is “if the prerequisite
aisproved, and if for all 7+ = 1,...,n each justification 8; isin-
dividually consistent (in other words if nothing proves its negation)
then one concludes the consequent . Given a default theory it is
possibleto infer aset of plausible conclusionscalled an extensionand
defined by Reiter as the fixpoint of a special operator. But, we prefer
to recall here the equivalent following pseudoiterative characteriza-
tion becauseit is closer to our approach of the extension computation
problem.

Theorem 1 [12] Let (W, D) beadefault theoryand E aformula set.
We define Eo = Wand for all & > 0,
a:fB1,..., Bn
v | B e D OEy Fa,and
E =Th(E v
1 = Th( k)u{ EY-g,Yi=1,..n
Then, E isan extension of (W, D) iff E = | J,_, Ex.

For a set of formulas E, Th(E) denotes as usual the set of logical
consequencesof E, and E + ¢ hasits common sense of deductionin

2 1f § isadefault rule, pre(d), jus(8) and cons(§) respectively denotesthe
prerequisite, the set of justifications and the consequent of §. These defini-
tions will be also extended for sets of defaullts.



classical logic. It isimportant to note that a default theory may have
one or multiple extensions and sometimes no extension at al as we
can see below.

Example2.1 o (W1, D1) = ({a,bV ¢}, {272, ¢, 420 }) hasa
unigque extension Th(W1 U {d, g}).

o (W2, Ds) = ({a,bVc}, {&32, 22¢}) hastwo extensions E =
Th(Wa U {-b}) and E' = Th(W> U {~c})

o (W3, Ds) = ({a}, {252 }) hasno extension.

In fact, given a default theory (W, D), to compute its extension
E is equivalent to find its Generating Default Set A since E =
Th(W U cons(A)) [13].

Definition 2.1 Let E be an extension of a default theory (W, D)
a:fB1,.-, Bn
2Pl € D | EF aand
D(W,D,E) = gl
GD(W, D, E) EV-p,Vi=1,...,n
is called the Generating Default Set of E and all defaults in
GD(W, D, E) are said to be applied.

To end this technical part, we recall that every generating default
set is grounded.

Definition 2.2 [15] Given a default theory (W, D), a set of defaults
A C D isgrounded if A can be ordered as a sequence (41, . - ., d,)
satisfying the property:

Vi=1,...,n, WU cons({01,...,0;—1}) F pre(d;)

3 DESCRIPTION OF THE METHOD

Genetic Algorithms[9, 7] are based on the principle of natural selec-
tion. We first consider a population of individuals which are repre-
sented by their chromosomes. Each chromosome represents a poten-
tia solution to the given problem. An evaluation process and genetic
operatorsdeterminetheevolution of the populationin order to get bet-
ter and better individuals. Considering our extension search problem,
potential solutionswill be called candidate extensions represented by
chromosomes and the purpose of our algorithm is to generate a can-
didate which isindeed an extension (i.e. satisfying theorem 1).

We now introduce the different parts of our search mechanism
which consists of the following components, as a genetic algorithm:

1. arepresentation of the potential solutions: in most cases, chromo-
someswill be strings of bits representing its genes,

2. away to generate aninitial population,

3. anevaluation function: it rates each potential solution,

4. genetic operators that define the evolution of the population : two
different operatorswill be considered : Crossover allowsto gener-
ate two new chromosomes (the offsprings) by crossing two chro-
mosomes of the current population (the parents), Mutation arbi-
trarily alters one or more genes of a selected chromosome,

5. parameters : population size psi.. and probabilities of crossover

Pe and mutation p,,,. We choose psize | 3N, Psize = N(";“).

3.1 Representation

A representation scheme consists of the two following elements : a
chromosome language G defined by a chosen size and an interpreta-
tion mapping to translate chromosomes in term of possibly applied
defaults, which provides the semantics of the chromosomes. In our

context, for each default % we encode in the chromosome

the prerequisite a and al justifications 31, ..., 3, conjointly. There-
fore, givenaset of defaults D = {41, - - -, §, } thesize of thechromo-
some will be 2n and the chromosome language G is the regular lan-
guage (0+1)>™ (i.e. stringsof 2n hits). GivenachromosomeG € G,
G|; denotesthevalue of G at occurrence¢. Occurrencesof G areele-
mentsof {1..2n}. Theinterpretation mapping, defining the semantics
of the previous chromosomes, can be formally described as :

Definition 3.1 Given a default set D and chromosome language G,
an interpretation mapping isdefined as ¢: G x D — {true, false}
such that: _
Vé; € D, ¢(G,d;) = { trueif Glai—y = 1and Gls; =0

false in other cases

Our chromosomes are introduced to encode candidate extensions
(i.e. potential solutions to our problem). In fact, building an exten-
sion consistsin finding its Generating Default Set (see definition 2.1).
Thus, the candidate extension C E(W, D, G))associated to each chro-
mosome can also be characterized by its candidate generating default
set CGD(W, D, G). These two sets are easily defined w.r.t. the in-
terpretation mapping.

Definition 3.2 Given a default theory (W, D), a chromosome G €
G, the candidate generating default set associatedto G is:
CGD(W,D,G) = {4 | #(G, ;) = true}

Definition 3.3 Given a default theory (W, D), a chromosome G €
G, the candidate extension associated to G is:
CE(W,D,G) =Th(W U{cons(d) | d € CGD(W, D,G)})

Intuitively, for a default §;, if G|2;—1 = 1 then its prerequisiteis
considered to be in the candidate extension and if G|2; = 0 no nega-
tion of itsjustificationsis assumed to belong to the candidate exten-
sioninducedby G. CE(W, D, G) and CGD(W, D, G) will besim-
ply denoted CE(G) and CGD(G) whenitisclear from the context.
Remark that sincewe haveto computethe set of logical consequences
of W and of the consequents of the supposed applied defaults, athe-
orem prover will be needed in our system.

Example3.1 Let (W, D) be a default theory where: W = {a},
D = {%b aze die} Weget : CGD(100011) {ezt}
CE(100011) = Th({/a,c}) which is really an extension but also
CGD(101011) = {2t 2:2¢} CE(101011) = Th({a,c, ~b})

which is not an extension.

3.2 Evaluation

Definition 3.4 Givenachromosomelanguageg, an evaluation func-
tion isa mapping eval: G — A, where A is any set such that there
exists an ordering < on it (to achieve the selection process).

Here, the evaluation function is mainly based on two criteria: the
notion of generating default set (definition 2.1) and the notion of
grounded default set (definition 2.2). These two aspects are rated by
two intermediate functions f1 agd f-

For adefault §; = u we defined afunction 7 described
in table 1. Given the two positions G|2;—1 and G|»; associated to
the default §; in the chromosome, the first point is to determinew.r.t.
thesevaluesif thisdefault is supposed to be involved in the construc-
tion of the candidate extension (i.e. its conclusion has to be added to
the candidate extension or not). Then, we check if this application

is relevant. This evalutation is strongly related to the semantics of



Case G‘2i71 G"% CE(G) Fa; | 37, CE(G) F ﬁﬁf 71’
1 1 0 true false n
2 1 0 true true Y
3 1 0 false true Y
4 1 0 false false Y
5 1 1 true false Y
6 1 1 true true n
7 1 1 false true n
8 1 1 false false n
9 0 1 true false y
10 0 1 true true n
11 0 1 false true n
12 0 1 false false n
13 0 0 true false Y
14 0 0 true true n
15 0 0 false true n
16 0 0 false false n

Tablel. Evaluation

the chromosome given by definition 3.1. A y in the penality column
m means that a positive value is assigned to 7(G|2i—1, G|2:). Note
that only cases 1 to 4 correspond to default considered to be applied
(i.e. such that ¢(d;, G) = true). The conditions CE(G) + «; and
35, CE(G) + —|,8{ usestheclassical notion of logical consequencet-
and will be checked by atheorem prover. The global evaluation func-
tion f; isthen defined by

f1(G) = 21 7(G|2i—1, G|2:) where n = card(D)
Justifications of the penalties:

e Cases 2,34 : the consequent «y; isin the candidate extension (be-
causeG|z2;—1 = 1and G|2; = 0) whilethe default should not have
been applied (becauseeither CE(G) t/ ; or 35, CE(G) —|,8{).

e Cases5,9,13: the consequent of the defaultisnot in CE(G) while
it should sincethe prerequisite of the defaultisin the extension and
no negation of justifications is deducible fromit.

e Other cases : even if the chromosome value does not agree with
the generated candidate extension, these cases can beignored since
they do not affect the extension.

The second part of the evaluation is based on the fact that every
generating default set is grounded. From the definition 2.2, we intro-
duce afunction f> to evaluate the “ groundedness’ rate of acandidate
generating default set CGD(G) as:

card(T)
 card(CGD(Q))

whereI isthebiggest set suchthat I' C CGD(G) and I isgrounded.

At last, we have to take into account the logical consistency of
CE(QG) to keep the meaning of the two previous evaluations. Since
if CE(G) isinconsistent then the conditions CE(G) F «; and
3j, CE(G) + =87 will be alwaystrue and moreover the “ grounded-
ness’ rate will be always maximal (check definition 2.2). Therefore,
athird function fo appearsin the evaluation processand is defined by

_ | 0 if CE(G) i L(CE(G)is consistent)
fo(G) = { 1 otherwise

Then, we can give the definition of our global evaluation function.

f2(G)=1

Definition 3.5 ewval is an evaluation function of chromosomes s.t.

eval:G - INx IN xR
eval(G) = {fo(G), f1(G), f2(G))

We can see that a chromosome G such that eval(G) = (0,0, 0)
corresponds to a default set satisfying all properties to be the gener-
ating default set of an extension (see subsection 4.1). Thisfeatureis
the basis of our ordering process described in the next subsection.

3.3 Sdection

The purpose of the selection stage is, starting from an initid
population P, to generate a selected population P,.; containing
chromosomes with the best rates according to the evaluation func-
tion. Genetic operators, which define the evolution of the population,
will be applied on this intermediate population to get the next
population deriving from theinitial P. The selection processis based
on an ordering of the individuals w.r.t. their evaluation. An ordering
<onIN x IN x IR is defined as the natural lexicographic extension
(<, <, <) of theusual ordering < on IN and IR.. Given a population
P of sizepsi.., we built an ordered population

P¢ = (Gi)i>1 suchthat { zz:‘;: z ; j z Za;(%j)_g eval(Gy)
Thefirst condition impliesthat the chromosomesare ordered w.r.t. to
their evaluation and the second condition implies that two identical
chromosomes are represented only once in P.. Note that if two
chromosomes have the same evaluation value, they are ordered
arbitrarily. We choose the ranking selection to generate the se-
lected population. Remind that the population size is such that
AN, psize = Y i e pyie = SR k. The selected population
P,.;, that will be used for crossover and mutation, is a multiset of
chromosomes such that each G;, ¢ < N in P occurs N — i + 1
timesin Ps.;. Thisconstruction isrequired to preserve the maximum
size of the population ps; .-

3.4 Crossover and Mutation

As mentionned before, genetic operators are now applied on the se-
lected population Ps.;. Crossover is performed in the following way:

e select randomly two chromosomesin Ps;
e generate randomly anumber r € [0, 1]
if r < p. then the crossover is possible;

— select arandom positionp € {1,...,2n — 1}

— the two chromosomes (a1, ...,Gp, @Gp+1,...;02,) and
(b1, ..y bp, bpt1, ..., bay) @rereplaced by the two new chromo-
somes(al,...,ap,bp+1,...,bgn)and(bl,...,bp,ap+1,...,agn).

if the crossover does not occur then the two chromosomes are put
back in Pg.;.

Mutationis defined as:

e For each chromosome G € Ps¢; and for each bitb; in G, generate
arandom number r € [0, 1],
e if r < p,, then mutate the bit b; (i.e. flip the bit).

The population obtained after these evolution operations becomes
the current population and will be the new input of the whole process
described in subsection 3.2, 3.3 and 3.4. Thisfull processis repeated
to generate successive populations and one has to define the number
of populationsto be explored. The best chromosome of each popula-
tion w.r.t. the eval uation function represents the current best solution
to the problem. To resume, the architecture of our system GADEL is
showninfigure 1. Remark that theinitial populationisrandomly gen-
erated and, due to the acute definition of our evaluation function, we
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Figurel. GADEL'sarchitecture

get an additionnal stop criterion. Thisisnot thecasein general genetic
algorithms. Here, when the evaluation of a chromosomeis {0, 0, 0)
we can assert that its associated candidate extension is an extension
of the default theory and stop the search. The validity of thiscriterion
isproved in next section.

4 VALIDATION AND EXPERIMENTAL
RESULTS

4.1 Theoretical validation

First, we give the following theoretical result that ensuresthe correct-
ness of our computation methodol ogy.

Theorem 2 Let (W, D) be a default theory, G a chromosome and a
candidate generating default set A = CGD(W, D, G).

(W, D) has an extension E = Th(W U cons(CGD(Q))) if and
onlyif eval(G) = (0,0, 0).

Proof : —: Let E = Th(W U cons(A)) be an extension of
(W, D). Since E is an extension, it is consistent [12], and since A
is its generating default set £ [13], it is obviously grounded. Thus,
eval(G) = (0, ., 0).

Let us suppose that eval(G) > (0,0, 0). Then, according to the
definition of our evaluation function f; (see table 1), it means that
there exists adefault § = 281==Bn ¢ P for which a penalty has
been assigned. L et us examine the two possible cases:

e § € A: pendtiescan arisefrom cases 2, 3 or 4, but no one of them
ispossiblesince E + aand E ¥/ 3;,Vi = 1,...,n by definition
of agenerating default set

e § ¢ A: penalties can arise from cases 5, 9, or 13, but no one of
themispossible sinceit would indicate that § should be agenerat-
ing default of E.

Thuseval(G) = (0,0, 0).

Proof : <+—: Let A = CGD(W,D,G) such that
eval(G) = (0,0,0) and E =  Th(W U cons(A)).
Since fo(G) = 0, it means that A is grounded. So, we
can order it like A = (d1,...,0p) and we have Vi =
1,...,p,W U cons({d1,...,0i—1) + pre(d;) that is equiva-
lenttoVi = 1,...,p,pre(d;) € Th(W U cons({d1,...,0;-1))
from which we can build the sequence
E, = W
Eiy1 = Th(E;)U{cons(d:)},Vi=0,...,p—1

Because of the groundedness of A, we obtain
Ey = W
Ei1 Th(E;) U {cons(8;)|E; F pre(d;)}
Vi=0,...,p—1

Since f2(G) = 0, we candeduce: V3 € jus(d;), E I/ = and then

Eo = w
B ’ cons(8:) | Ei & pre(:)
EBipn = Th(EﬂU{ ‘ EIf =B,V € jus(8;) }(*)
Vi = 07 P — 1

From f2(G) = 0, we can aso deduce that for al other defaults
aifBa ¢ D\ A, wehaveeither E I/ o, éither 35, E + =3;. So,
in (x) we can delete the explicit reference to 4 in the defaults and we
can extend the sequence for al positive integer. So we have

Eo = w
Ext1 = Th(Eg)U{cons(0)|Er F pre(d), B € jus(d), E i B}
Vk >0

Finally, let us remark that by construction E is exactly the set
U=, Ex- Thuswehave obtain herethe pseudoiterative characteriza-
tion of an extension givenin Reiter’stheorem 1, and we can conclude
that E isan extension of (W, D). |

4.2 Experimental results

The GADEL system isimplemented in Sicstus Prolog 7.3.1. Due to
the lack of space we give only few computation times in table 4.2
where problems are of two kinds. The first lines are about a taxo-
nomic default theory “people’ described in example 4.1. Each line
corresponds to the common part of W augmented with one of the
specified formula (boy or girl or ...). Thelast lines are about the well
known Hamiltonian cycle problem as it has been described and en-
codedin[4].

GADEL DeRes
problem Dsize | M-P- time time
boy 325 3 16 | >7200
girl 325 3 16 | >7200
man 325 5 26 | >7200
woman 325 3 15 >7200
man A student 1275 91 1349 >7200
woman A student 1275 65 1202 | >7200
ham.board-3,2,0,0,1,0,0._ 465 2 4 0.56
ham.board-4,2,0,0,1,0,0._ 1275 74 444 19.48
ham.board_5,2,0,0,1,0,0_ 2485 - | >7200 | 566.45

Table2. Experimental results

Example4.1 W = {—boy V —girl, —boy V kid, —girl V kid, ~human V
male V female,—kid V human,—-student V human,-adult V
human, ~adult V —kid, ~adult V —male V man, ~adult V - female V
woman, —~academic V adult,—academic V diploma,—doctor V
academic, —bishop V

academic, —priest V academic,—prof V

priest,—cardinal VvV  bishop,—-redsuit V  suit, - whitesuit V

suit, —blacksuit Vv —whitesuit, ~whitesuit V
=blacksuit, ~redsuit V —blacksuit} U{boy}or U {girl}or U {man}or U

{woman}or U {man, student}or U {woman, student}

suit, ~redsuit V



— human :name kid:toys student:adult student:-employed
D = { , . ,
name toys adult —employed ’
student : ~married student:sports adult:-student
—married sports ’ employed ’
adult : nstudent,priest adult:car adult:—academic man:-prof
married ’ car ’ —toys ’ beer ’
man : ~vegetarian man:coffee manVwoman:wine woman :tea
steak ’ coffee ’ wine ’ tea ’
academic: ~prof academic:-priest academic:books academic:glasses
—employed  * toys ) books glasses
academic: npriest doctor:medicine doctor:whitesuit prof:employed
late ’ medicine whitesuit ’ employed ’
prof :grey prof:tie prof:water prof:conservative priest:male
ey ? tie  ? water  ? conservalive male >
priest :conservative priest:-cardinal cardinal:redsuit car:mobile
conservative ’ blacksuit redsuit ’ mobile ’
tie:suit wineAsteakAcoffee:asports sports :man
suit heartdisease ’ footballVrugbyVtennis *
sports:woman toysA(footballVrugby) :ball toys:boy toys :girl
SwimVjoggingVtennis’ Ball » Tweapon T}

Column ps;.. givestheinitial number of chromosomesin the popu-
lation, n.p. is the average number of populations needed to find an
extension. Thelast two columns give CPU timein secondson a SUN
E3000 (2 x 250M hz).

At thistime, we have only compared GADEL with DeRes [4] be-
cause both systems accept any kind of closed default theories. Fur-
thermore, we have focused on non stratified default theories since
they are more difficult to handle. GADEL has very good perfor-
mances on our taxonomic exampl e whereasDeResdoes not solveit,
even if weuseitslocal prover. We can see an increase of the number
of generated populations when student is added to the set W (fifth
and sixthlinesvsabovelinesintable4.2). In al casesthe default the-
ory has only one extension, but when student is present the gener-
ating default contains fourteen defaults and two others are grounded.
Whereas, when student isnot in W, the generating default set con-
tains only five defaults and there is no other grounded defaults and
that iswhy itiseasier for our methodol ogy to find a sol ution. We need
also note that GADEL has poor average performances on Hamilto-
nian problems*. We think that it is because we take into account the
groundedness into our evaluation function, only in a second timein
the evaluation of the chromosomes that are sorted firstly acording to
f1 and secondly to f> (see 3.2). In the Hamiltonian problem, a solu-
tion is exactly one“chain”® of defaults, but, thereisalot of potential
solutions (with f1 (G) = 0) based ontwo, or more, chainsof defaults.
The only criterion to discard these candidate generating default sets
is the groundedness property that they do not satisfy (f2(G) > 0).
Conversely, in people example, a solution is a set of non conflicting
defaults, but at most four defaults are chained together, and so the
groundedness property is less important to reach a solution. These
two kinds of resultsillustrate the twofold difficulty in default reason-
ing : to respect justifications of each applied default and to find a set of
defaultsthat arewell “chained”. A futureimprovement of GADEL is
to better take into account these two aspects by defining anew global
evaluation function merging fo, f1 and f» in a more efficient way,
maybe in an evolutive manner during the search.

We have also in mind that in the area of logic programming and
non monotonic reasoning there exist others systems (Smodels [11],
DLV [5]) able to compute stable models of extended logic program.
Sincethistask isequivalent to compute an extension of adefault the-
ory it seems interesting to compare GADEL to these systems. But,
even if DLV has the advantage to accept formulas with variables
which are instanciated before computation, this system does not ac-
cept theories like our people example. On its part, Smodels does not
deal with this default theory because it can not be represented by a
normal logic program without digjunction. Because we have the ob-

3 Evenif thetimeis not so good: all the implementation iswritten in Prolog,
the number of generation is encouraging.

4 The average CPU time is more than 7200 seconds for the
ham.board_5,2,0,0,1,0,0_ problem but we get some solutions in
lesstime.

5 We say that § is chained to ¢’ if cons(8) - pre(d').

jective to deal with every kind of propositional formulas, GADEL
spends alot of time in theorem proving and it seems not redlistic to
compare it with those two systems. But it will be very interresting to
work on GADEL's architecture in order to improve its performances
on particular classes of default theories.

5 CONCLUSION

The basic problem we wanted to address in this paper wasto find an
extension of agiven default theory. The GADEL system we have de-
signed showsthat genetic algorithms provides an efficient framework
for thisparticular search. Asan immediate side effect, this system can
be used as a complementary part of a default logic theorem prover
to check if a proof scheme generated by the prover can be valid in
an extension. The defaults necessary to achieve the proof would de-
fine a persistent characteristic of the chromosomesin every popula
tion (i.e. positions protected from mutation and crossover). GADEL
would then be used to generate an extension w.r.t. these restrictions.
Global improvement of the system could be explored in two differ-
ent ways. On one hand, one can improve the performance of the ge-
netic algorithm by introducing parallelism in the management of the
population: evaluation, sel ection and genetic operations. Onthe other
hand, one could introduce other heuristics in our search issued from
local optimization methods [1] (simulated annealing, tabu search ...)
to get an hybrid algorithm combining evolution and local search.
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