
Plan Recognition through Goal Graph Analysis
Jun Hong1

Abstract. We present a novel approach to plan recognition based
on a two-stage paradigm of graph construction and analysis. First, a
graph structure called a Goal Graph is constructed to represent the
observed actions, the state of the world, and the achieved goals as
well various connections between these nodes at consecutive time
steps. Then, the Goal Graph is analysed at each time step to recog-
nise those achieved goals consistent with the actions observed so far
and the valid plans for the recognised goals or part of the recognised
goals. We describe two algorithms for Goal Graph construction and
analysis in this paradigm, that are both provably sound, polynomial-
time and polynomial-space. We have tested these algorithms in two
domains with up to 245 goal schemata and 100000 possible goals,
in which excellent performance has been achieved in terms of effi-
ciency, accuracy and scalability.

1 Introduction

Plan recognition involves inferring the goal of an agent from a
set of observed actions and organising the observed actions into a
plan structure for the goal. Most plan recognition systems (e.g., [4])
search a space of possible plans for candidate plans that account
for the observations. To form the search space, some kind of plan
representation is required. For instance, in Kautz’s event hierarchy,
plan decompositions are required that describe how low level actions
make up complex actions. Despite its obvious advantage of express-
ive richness, plan representation has a limitation in its inability to
deal with new plans whose types do not appear in the plan repres-
entation. Hand-coding the plan representation in a large and com-
plex domain presents a tedious or impractical task. In some other
domains, the knowledge about plans might not be readily available.
Some attempts (e.g., [7], [6], [1]) have recently been made to use ma-
chine learning techniques to automate acquisition of plan representa-
tion. Even when leaving aside the plan representation consideration,
searching the plan space can be exponentially expensive because the
number of possible plans can be exponential in the number of ac-
tions [4]. Most plan recognition systems have often been developed
in domains in which there are fewer than 100 plans and goals [6].

We present a novel approach to plan recognition, in which graph
construction and analysis is used as a paradigm. This approach sig-
nificantly differs from most plan recognition systems. Instead of
searching for a plan as in these systems, a graph structure called a
Goal Graph is first constructed to represent the observed actions, the
state of the world as it is changed by these actions, and the fully or
partially achieved goals at consecutive time steps. Connections are
also made between different kinds of nodes in the Goal Graph. The
constructed Goal Graph can then be analysed at each time step to

1 School of Information and Software Engineering, University of Ulster
at Jordanstown, Newtownabbey, Co. Antrim BT37 0QB, UK, email:
j.hong@ulst.ac.uk

recognise those fully or partially achieved goals that are consistent
with the actions observed so far. The Goal Graph analysis also re-
veals causal links over actions and goals so that valid plans for the
recognised goals or part of the recognised goals can be further re-
cognised. We only define what constitutes a valid plan for a goal
eliminating the need for plan representation. Under our formulation,
the plan recogniser must consider how the observed actions can be
composed into plans. Our formation is not limited in its ability to
recognise new plans.

We describe two algorithms, GoalGraphConstructor and Goal-
GraphAnalyser, based on this paradigm. We prove that our al-
gorithms are sound, polynomial-time and polynomial-space. The al-
gorithms have been tested on a 500 MHz Pentium III in two do-
mains. In the extended briefcase domain, we increase the number of
locations and objects to create a series of sets of up to over 100000
possible goals for testing the scalability of our algorithms where the
approximate linear time performance has been achieved. In the Unix
domain, we use a set of data collected in the Unix domain at the Uni-
versity of Washington with over 245 goal schemata and over 10000
possible goals. In this domain, on average it only takes less than a
CPU second to update the Goal Graph when an observed action is
processed and usually only a very small number of consistent goals
remain after a sequence of observed actions has been processed.

2 The Domain Representation

We use an ADL-like representation [9], including actions with con-
ditional and universally quantified effects, and existentially as well
as universally quantified preconditions and goal descriptions. A plan
recognition problem consists of

• A set of action schemata specifying primitive actions.
• A finite, dynamic universe of typed objects.
• A set of propositions called the Initial Conditions.
• A set of goal schemata specifying possible goals.
• A set of observed actions that are partially ordered.
• An explicit notion of discrete time.

The solution to a plan recognition problem consists of a set of re-
cognised goals that are consistent with the observed actions together
with the valid plans consisting of the observed actions for the recog-
nised goals or part of the recognised goals.

The goal schema consists of a set of goal descriptions. The action
schema consists of a set of preconditions and a set of effects. The
set of goal descriptions for a goal must be satisfied in the state of
the world when the goal is fully achieved. If some but not all goal
descriptions are satisfied instead, the goal is partially achieved. The
set of preconditions must be satisfied in the state of the world before
an action can be executed. The set of effects are taken in the state of
the world when an action is executed. In the actual implementation

at D H
at B O

at C H

keep-object-at C H

mov-b O H

at B H
¬ at B O

at D H

at C H

put-in D H

at B H

¬ at B O

at D H

at C H

in D

keep-object-in D*

mov-b H O

¬ at B H

at B O

¬ at D H

at D O

at C H
in D

move-object D H O*

keep-object-in D

keep-object-at D H

Level 1 Level 2 Level 3 Level 4

keep-object-at D H

keep-object-at C H

keep-object-at C H

keep-object-at C H
Goals

Propositions

Actions

keep-object-at D O

Figure 1. A Goal Graph for an example of the extended briefcase domain

of our plan recognition algorithms, universally quantified precondi-
tions and effects, and conditional effects in an action schema as well
as universally quantified goal descriptions in a goal schema are elim-
inated and equivalent schemata are created.

3 Constructing a Goal Graph

3.1 Goal Graphs

A Goal Graph is a directed, levelled graph. The levels alternate
between proposition levels containing proposition nodes (each la-
belled with a proposition or negation of a proposition) represent-
ing the propositions true or explicitly known to be false in the state
of the world at consecutive time steps, goal levels containing goal
nodes (each labelled with a goal) representing goals fully or partially
achieved at consecutive time steps, and action levels containing ac-
tion nodes (each labelled with an action) representing actions ob-
served at consecutive time steps. The levels in a Goal Graph start
with a proposition level at time step 1 that consists of one node for
each proposition true in the Initial Conditions. They end with a goal
level at the last time step that consists of a node for each of the goals
fully or partially achieved so far.

The goal nodes in goal-level i are connected by description edges
to their goal descriptions in proposition-level i. The action node in
action-level i is connected by precondition edges to its preconditions
in proposition-level i, and by effect edges to its effects in proposition-
level i + 1. Those proposition nodes in proposition-level i are con-
nected by persistence edges to the corresponding proposition nodes
in proposition-level i + 1 if their truth values have not been affected
by the effects of the action in action-level i.

Figure 1 shows a Goal Graph for an example of the extended
briefcase domain [8], which involves transportation of two physical
objects, a dictionary and a chequebook, between home and office.
Three actions have been observed at three consecutive time steps:
(mov-b O H), (put-in D H), and (mov-b H O). The Ini-
tial Conditions consist of: (at B O), (at D H) and (at C H).
Action and goal nodes are on the top and bottom parts of the graph re-
spectively. The proposition nodes are in the middle part of the graph.

3.2 Goal Graph Construction Algorithm

The GoalGraphConstructor takes a set of partially ordered actions as
they are observed and constructs a Goal Graph. We use a 4-tuple,
< P, AO, GR, E >, to represent a Goal Graph, where P is a set
of proposition nodes, AO is a set of action nodes, GR is a set of
goal nodes, and E a set of edges. The algorithm starts with a Goal
Graph, < P, {}, {}, {} >, that consists of only proposition-level 1
with nodes representing the Initial Conditions.

Given a Goal Graph ending with proposition-level i, the Goal-
GraphConstructor first extends the Goal Graph to goal-level i with
nodes representing goals fully or partially achieved at time step
i. Meanwhile, if a node in proposition-level i satisfies a goal de-
scription, a description edge connecting the proposition node to
the goal node is added onto the Goal Graph. Figure 2 shows the
goal expansion algorithm. The algorithm takes a Goal Graph <
P, AO, GR, E >, time step i, and a set of goal schemata G as in-
put and returns an updated Goal Graph after the goal expansion.

Goal-Expansion(< P, AO, GR, E >, i, G)
1. For every Gk ∈ G

For every instance g of Gk
a. Get a set of goal descriptions Sg .
b. Get the equivalent set of Sg , Sg′.
c. For every pg ∈ Sg ′, where pg = not(pg′),

If prop(neg(pg′), i) ∈ P , then
Add description-edge(prop(neg(pg′), i), goal(g, i)) to E.

d. For every pg ∈ Sg′, where pg �= not(pg′),
If prop(pg, i) ∈ P , then
Add description-edge(prop(pg, i), goal(g, i)) to E.

e. If one of the goal descriptions of g is satisfied, then
Add goal(g, i) to GR.

2. Return with < P, AO, GR ,E >.

Figure 2. The goal expansion algorithm

When an action is observed at time step i, the GoalGraphCon-
structor then extends the Goal Graph ending with goal-level i, to
action-level i with a node representing the observed action. At the
same time, the algorithm also extends the Goal Graph to proposition-
level i + 1 with nodes representing propositions true or explicitly
known to be false after the action has been observed. Meanwhile, if

a node in proposition-level i satisfies a precondition of the action,
a precondition edge connecting the proposition node to the action
node is added onto the Goal Graph. For every effect of the action, the
GoalGraphConstructor simply adds a proposition node representing
the effect to proposition-level i + 1. The effect edge from the action
node to the proposition node is also added onto the Goal Graph. All
the propositions nodes at proposition-level i are brought forward to
proposition-level i + 1 by maintenance actions if their truth values
have not been changed by the effects of the action observed at time
step i. Persistence edges connecting the proposition nodes at the two
proposition levels are added onto the Goal Graph. Figure 3 shows
the action expansion algorithm. The algorithm takes a Goal Graph
< P,AO, GR, E >, the observed action ai , time step i, and a set of
action schemata A as input and returns an updated Goal Graph after
the action expansion.

Action-Expansion(< P, AO , GR, E >, ai, i, A)
1. Add action(ai, i) to AO .
2. Instantiate an action schema in A with a i to get a set of

preconditions SP , and a set of effects SE .
3. Get the equivalent sets of SP and SE , SP ′ and SE ′.
4. For every pp ∈ SP ′, where pp = not(pp′),

If prop(neg(pp′, i) ∈ P , then
Add precondition-edge(prop(neg(pp′, i), action(ai, i)) to E.

5. For every pp ∈ SP ′, where pp �= not(pp′),
If prop(pp, i) ∈ P , then
Add precondition-edge(prop(pp, i), action(ai, i)) to E.

6. For every pe ∈ SE
a. Add prop(pe, i + 1) to P .
b. Add effect-edge(action(ai, prop(pe, i + 1)) to E.

7. For every prop(p, i) ∈ P
If prop(¬p, i + 1) /∈ P , then
If prop(p, i + 1) /∈ P , then Add prop(p, i + 1) to P ;
Add persistence-edge(prop(p,i), prop(p, i + 1)) to E.

8. Return with < P, AO ,GR , E >.

Figure 3. The action expansion algorithm

Theorem 1 (Polynomial Size and Time) Consider a plan recogni-
tion problem with t observed actions in t time steps, a finite number
of objects at each time step, p propositions in the Initial Conditions,
and m goal schemata each having a constant number of paramet-
ers. Let l1 be the largest number of the effects of any of the action
schemata, l2 be the largest number of the goal descriptions of any
of goal schemata. Let n be the largest number of objects at all time
steps. Then, the size of the Goal Graph of t + 1 levels created by the
GoalGraphConstructor, and the time needed to create the graph, are
polynomial in n, m, p, l1, l2 and t.

The maximum number of nodes in any proposition level is O(p +
l1t). Let k be the largest number of parameters in any goal schema.
Since any goal schema can be instantiated in at most n k distinct
ways, the maximum numbers of nodes and edges in any goal level
are O(mnk) and O(l2mnk) respectively. It is obvious that the time
needed to create both nodes and edges in any level is polynomial in
the number of nodes and edges in the level.

Theorem 2 The GoalGraphConstructor is sound: Any goal it adds
to the Goal Graph at time step i is one either fully or partially
achieved at time step i in the state of the world. The algorithm is
complete: If a goal has been either fully or partially achieved by the
observed actions up to time step i − 1, then the algorithm will add

it to the Goal Graph at time step i under the assumption that all
possible goals are restricted to the categories of goal schemata.

Proposition-level i of the Goal Graph represents the state of the
world at time step i that has been changed from the Initial Conditions
after the actions have been observed at time step 1, ..., i −1. On the
other hand, goal-level i of the Goal Graph consists of all possible
instances of the goal schemata that are fully or partially achieved in
the state of the world at time step i .

4 Recognising Consistent Goals and Valid Plans

4.1 Valid Plans

We now define what mean when we say a set of partially ordered
actions forms a valid plan for a goal given the Initial Conditions.

Definition 1 (Causal Link) Let a1 and a2 be two actions. There ex-
ists a causal link between a1 and a2, written as a1 → a2, if and only
if one of the effects of a1 satisfies one of the preconditions of a 2.

A goal can be treated as an action with goal descriptions as its
preconditions and an empty set of effects. Therefore causal links can
also be established from actions to goals.

Definition 2 (Valid Plan) Let g be a goal, and P =< A, O, L >
where A is a set of actions, O is a set of temporal ordering con-
straints, {ai < aj}, over A, and L is a set of causal links, {a i →
aj}, over A. Let I be the Initial Conditions. P is a valid plan for g,
given I , if and only if

1. the actions in A can be executed in I in any order consistent with
O;

2. the goal g is fully achieved after the actions in A are executed in
I in that order.

4.2 Consistent Goals

We finally define what we mean when we say a goal is consistent
with a set of partially ordered actions.

Definition 3 (Relevant Action) Given a goal g and a set of partially
ordered actions, < A, O >, where A is a set of actions, O is a set of
temporal ordering constraints, {a i < aj}, over A, an action a ∈ A
is said to be relevant to g in the context of < A, O >, if and only if

1. there exists a causal link, a → g; or
2. there exists a causal link, a → b, where b ∈ A is relevant to g and

a < b is consistent with O.

Definition 4 (Consistent Goal) A goal g is consistent with a set of
partially ordered actions, < A,O >, if and only if every a ∈ A is
relevant to g in the context of < A, O >.

Proposition 1 (Valid Plan for Consistent Goal) Let < A, O > be
a set of partially ordered actions, I be the Initial Conditions before
< A, O >, g be a goal consistent with < A, O >. Given I , P =<
A, O, L >, where L is a set of causal links {a i → aj} over A, is a
valid plan for either g when g is fully achieved after < A, O > or
the achieved part of g when g is partially achieved after < A, O >.

Proposition 1 follows Definition 2, 3 and 4. Especially when g
is partially achieved, let g′ be the achieved part of g. So g′ is fully
achieved and P =< A, O, L > is a valid plan for g′.

4.3 Goal Graph Analysis Algorithm

The GoalGraphAnalyser analyses the constructed Goal Graph to re-
cognise consistent goals and valid plans. We assume that every ob-
served action is relevant to the goal intended by the agent in the con-
text of the agent’s actions. Therefore, the goal intended by the agent
is consistent with the observed actions and a goal may be the intended
goal if it is consistent with the set of the observed actions. Theorem 3
and Theorem 4 state how the recognition of the consistent goals can
be achieved by the analysis of a constructed Goal Graph.

Theorem 3 Given a Goal Graph, there exists a causal link, a i → gj

between an action ai at time step i and a goal gj at time step j, where
i < j, if ai is connected to gj via a path of an effect edge, zero or
more persistence edges and a description edge. We call such a path
a causal link path between a i and gj .

Theorem 4 Given a Goal Graph, there exists a causal link, a i →
aj , and a temporal ordering constraint, a i < aj , between an action
ai at time step i and another action aj at time step j, where i < j,
if ai is connected to aj via a path of an effect-edge, a zero or more
persistence-edges and a precondition-edge. We call such a path a
causal link path between ai and aj .

Based on the structure of the Goal Graph, we can prove the ex-
istence of the causal link, ai → gj , in Theorem 3 and ai → aj , in
Theorem 4. It is obvious that a causal link path between a i and aj

guarantees the temporal ordering constraint, ai < aj .
Given a constructed Goal Graph < P, AO, GR, E > of k levels,

the GoalGraphAnalyser shown in Figure 4 recognises every consist-
ent goal from the goals in goal-level k by deciding whether every
observed action is relevant to it. This is done by first finding those
relevant actions from the observed actions, that are connected to the
goal by causal link paths. For each of the already-known relevant
actions, the algorithm tries to find more relevant actions from the
observed actions, that are connected to it by causal link paths. This
continues until no more relevant action is found. The consistent goal
recognised and the valid plan for the goal or part of it are repres-
ented by a 3-tuple, < gk, < AO, O, La >, Lg >, where gk is the
goal, La is a set of causal links over the observed actions, and L g is
a set of causal links between some of the observed actions and the
goal. < AO, O, La > represents a valid plan for gk and Lg further
explains the purposes of some of the observed actions.

Theorem 5 The GoalGraphAnalyser is sound: Any goal g it recog-
nises at time step t is consistent with the observed actions so far, and
the plan it organises for g or part of g is valid.

In the example shown in Figure 1, the goal nodes in bold represent
three consistent goals among which the goal node in italics repres-
ents a partially achieved goal while the other two represent two fully
achieved goals. The edges in bold show causal link paths.

Theorem 6 (Polynomial Space and Time) Consider a t-level Goal
Graph. Let l1 be the number of fully or partially achieved goals at
time step t, m1 be the largest number of goal descriptions in any
of these goals, l2 be the number of the observed actions, and m 2

be the largest number of preconditions in any of these actions. The
space size of possible causal link paths that connect the goals to
the observed actions and that connect the observed actions to other
observed actions, and the time needed to recognise all the consistent
goals are polynomial in l1, l2, m1 and m2.

GoalGraphAnalyser(< P, AO, GR ,E >, k)
1. For every gk ∈ GR in goal-level k

a. AO ′ ← {}, A← {}, Lg ← {}, La ← {}.
b. For every ai ∈ AO connected to gk by a causal link path

Add ai → gk to Lg .
Add ai to AO ′.
Add ai to A.

c. If A = {} and AO = AO′, then
Get a set of all temporal ordering constraints over AO , O.
Add < gk, < AO , O,La >, Lg > to GoalPlan, else

d. Remove an action aj from A.
e. For every ai ∈ AO connected to aj by a causal link path

Add ai → aj to La.
If ai /∈ AO ′, then
Add ai to AO′.
Add ai to A.
Go to 1c.

2. Return with GoalPlan.

Figure 4. The Goal Graph analysis algorithm

Persistence edges do not branch in a Goal Graph. For each of the
goals in goal-level t, the maximum number of paths searched for
those observed actions, that are connected to it by causal link paths
and hence relevant to it, is O(m1). For each of the relevant actions to
the goal, the maximum number of paths searched for those observed
actions, that are connected to it by causal link paths and hence also
relevant to the goal, is O(m2). There are only at maximum l1 goals
in goal-level t and l2 relevant actions to any of these goals. So the
space size of possible causal link paths is O(l 1(m1 + l2m2)). The
time needed to recognise all the consistent goals is polynomial in the
space size.

5 Experimental Results

Our algorithms have been implemented in Prolog and tested on a 500
MHz Pentium III in two domains in terms of efficiency, accuracy
and scalability. In the extended briefcase domain, we increase the
number of locations to 50 and the number of objects up to 40 to
create a series of spaces of 10,000, 20,000, up to 100,000 possible
goals respectively. The same sequences of observed actions with the
same Initial Conditions are used in the experiments in conjunction
with these spaces of possible goals. Figure 5 shows that the average
CPU time taken to process an observed action is approximately linear
in the number of goals.

0

10

20

30

40

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Number of Goals

C
PU

 S
ec

s
pe

r
U

pd
at

e

Figure 5. Experimental results of the extended briefcase domain

In the Unix domain, we tested our algorithms on a set of data col-

lected at the University of Washington with regard to efficiency and
accuracy. To collect the data, the subjects are given goals described
in English first and they then try to solve each goal by executing
Unix commands. The executed Unix commands are recorded in the
data set. We have 29 action schemata for the Unix commands, 245
goal schemata and an estimate of 10000 possible goals. The results
show that on average it only takes less than a CPU second to process
an observed action and usually only a very small number of con-
sistent goals remain after a sequence of observed actions have been
processed.

Table 1. Experimental results of the Unix domain

goal cpu sec length of fully partially remaining
per observation achieved achieved goals

update goals goals
G1 1.202 2.25 7 12 4
G2 0.352 16 10 9 1
G3 0.027 3.0 3 10 1
G4 1.255 20.5 33 0 1

Table 1 gives a summary of the experimental results. We tested
our algorithms on four goals that were originally tested in [5]. The
CPU second per update is the average time it takes to process an
observed action. The length of observation is the average number of
observed actions executed by the subjects to achieve the given goal.
The fully achieved goals are the goals fully achieved after the last
action has been observed. The partially achieved goals are the goals
partially achieved. The remaining goals are the goals recognised after
the last observed goal has been processed. These results show that
our algorithms perform extremely well with regard to efficiency and
accuracy. They also demonstrate a significant improvement on the
performance of the goal recogniser [5] where 155, 37 and 15 goals
remain on G1, G2 and G4 respectively.

6 Related Work

Blum and Furst [2], [3] introduced a new graph-based approach to
planning in STRIPS domains, in which a graph structure called a
Planning Graph is first constructed explicitly rather than searching
immediately for a plan as in standard planning methods. The Plan-
ning Graph is then analysed to generate possible plans. Our Goal
Graph-based approach to plan recognition can be seen as a counter-
part of planning with Planning Graph. Though graph structures are
used in both approaches, they consist of different kinds of nodes and
edges, take different inputs and aim at producing different outputs.
The domain representation can be the same for both planning with
Planning Graph and plan recognition with Goal Graph. In this re-
gard, the previous efforts on handling more expressive representation
languages (see [10] for details) are still useful for plan recognition.

Lesh and Etzioni tried to use a graph representation of actions and
goals for the goal recognition problem [5]. Their graph representa-
tion only consists of action and goal nodes that are fully connected
to each other first and then inconsistent goals are repeatedly pruned
from this graph representation. This will lead to a set of candid-
ate goals that explain the observed actions. Their graph represent-
ation does not explicitly represent temporal ordering constraints and
causal links over actions and goals. So their system can only recog-
nise goals rather than plans because it cannot organise the observed
actions into plan structures for the recognised goals. Their system is
sound and polynomial-time. They have however sacrificed express-
iveness of plan representation for tractability. This is not the case in

our system that recognises both goals as well as plans and performs
in polynomial time and space. As we indicated in the previous sec-
tion the number of remaining goals after pruning in their system is
usually large.

7 Conclusion

In this paper, we introduced a new approach to plan recognition in
which a graph structure called a Goal Graph is constructed and ana-
lysed for plan recognition. We described two algorithms for con-
structing and analysing a Goal Graph. Our algorithms recognise both
goals and plans. They allow redundant and partially ordered actions.
They are sound, polynomial-time and polynomial-space.

Our empirical experiments show that our algorithms are computa-
tionally efficient and they can be scaled up and applied to domains
where there are tens of thousands of goals and plans. They recog-
nise goals and plans with great accuracy. Our approach has there-
fore accommodated both expressiveness and tractability without the
use of plan representation. Since our new graph-based approach to
plan recognition is fundamentally different from the existing meth-
ods for plan recognition, it provides an alternative to these methods
and shows a new perspective of research into plan recognition.

Our plan recognition system is limited in its ability to recognise
every type of erroneous plans, e.g., an erroneous plan involving an
observed action completely irrelevant to the intended goal. The Goal-
GraphAnalyser is not complete: it may not immediately recognise the
intended goal as a consistent one when the action currently observed
has a causal link with a relevant action that has not yet been observed.
So it may temporarily miss the intended goal if it is not yet in the set
of consistent goals. This is inevitable to the human observer: when
an observed action is not yet found relevant to a goal in a consistent
way, we can either make an unsound guess that it could be relev-
ant to some of the consistent goals we have at moment, or delay the
decision for a little while until more actions are observed and this
currently observed action is found relevant to a goal in a consistent
way. Despite these limitations, our system performs extremely well
in our two test domains.

REFERENCES
[1] M. Bauer, ‘Acquisition of abstract plan descriptions for plan recogni-

tion’, in Proceedings of AAAI-98, pp. 936–941, Madison, Wisconsin,
(1998).

[2] A.L. Blum and M.L. Furst, ‘Fast planning through planning graph ana-
lysis’, in Proc. of IJCAI-95, pp. 1636–1642, Montreal, (1995).

[3] A.L. Blum and M.L. Furst, ‘Fast planning through planning graph ana-
lysis’, Artificial Intelligence, 90, 281–300, (1997).

[4] H.A. Kautz, A Formal Theory of Plan Recognition, PhD Thesis, Uni-
versity of Rochester, 1987.

[5] N. Lesh and O. Etzioni, ‘A sound and fast goal recognizer’, in Proc.
15th Int. Joint Conf. on AI, pp. 1704–1710, (1995).

[6] N. Lesh and O. Etzioni, ‘Scaling up goal recognition’, in Proc. of
Int. Conf. on Principles of Knowledge Representation and Reasoning,
(1996).

[7] R.J. Mooney, ‘Learning plan schemata from observation: explanation-
based learning for plan recognition’, Cognitive Science, 483–509,
(1990).

[8] E. Pednault, ‘Synthesizing plans that contain actions with context-
dependent effects’, Computational Intelligence, 4(4), 356–372, (1988).

[9] E. Pednault, ‘Adl: Exploring the middle ground between strips and the
situation calculus’, in Proc. of KR-89, pp. 324–332. Morgan Kaufman,
(1989).

[10] Daniel S. Weld, ‘Recent advances in ai planning’, AI Magazine, 20(2),
93–123, (Summer, 1999).

