
Flexible Graphplan
Ian Miguel1, Peter Jarvis2, Qiang Shen1

Abstract. Traditionally, planning problems are cast in terms of im-
perative constraints that are either wholly satisfied or wholly viol-
ated. It is argued herein that this framework is too rigid to capture the
full subtlety of many real problems. A new flexible planning problem
is defined which supports the soft constraints often found in reality.
A solution strategy using the Graphplan framework is described and
it is shown how flexible plan extraction can be cast as the solution of
a sequence of linked Dynamic Flexible Constraint Satisfaction Prob-
lems (DFCSPs). A recently developed DFCSP algorithm, Flexible
Local Changes, is exploited to solve this sequence. For a given flex-
ible problem, this framework can synthesise a range of plans that
trade the compromises made in a plan versus plan length. The pro-
posed technique is evaluated on a range of flexible problems and
against leading boolean solvers on benchmark problems.

1 Introduction

In the Constraint Satisfaction (CSP) community it has become in-
creasingly clear that the classical CSP definition is insufficient to cap-
ture the full subtlety of many real world problems. In particular, clas-
sical hard constraints (which are imperative and are either fully sat-
isfied or fully violated) prove too restrictive. Recent approaches ex-
tend classical CSP to create flexible constraint satisfaction techniques
[6, 15] that support the soft constraints often found in reality. This pa-
per explores the benefits of applying the same approach to planning
problems, many of which exhibit the need for soft constraints. Con-
sider the UM-Translog domain [2] where a valuable package must be
carried on an armoured truck and loading/unloading must be accom-
panied by a guard. The preconditions of the LOAD-TRUCK action
state that (i) the truck and the package must be co-located, (ii) the
truck must be armoured, and (iii) that a guard must be present. Pre-
condition (i) is imperative, but preconditions (ii) and (iii) are soft
constraints [15] and can be relaxed with an associated damage to the
resultant plan. The flexible planning problem, described herein, is a
framework for reasoning about the relaxation of soft constraints and
the resultant damage to the plan synthesised.

In order to create a solution technique for flexible planning prob-
lems, the recent paradigm of casting planning itself as a classical
CSP in the Graphplan framework [3] is exploited. This framework is
extended to support flexible planning via the utilisation of dynamic-
flexible CSP (DFCSP) [16] methods. The reader is assumed to be
familiar with the basic operation of Graphplan.
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2 Background

The assumption that an agent possesses complete and correct inform-
ation has received much attention in contingent and conformant AI
planning research. In the former, a planner is equipped with sensing
actions that can be used to determine the state of the world during
plan execution [1, 22]. In the latter, a planner is provided with know-
ledge about the possible initial states the world can be and the pos-
sible outcomes of executing each action [13, 4]. These approaches
are complementary and their integration has been explored [5].

The proposed flexible approach is distinct from but complement-
ary to contingent and conformant techniques. With respect to con-
tingent approaches, FGP makes the closed-world assumption and is
not furnished with information gathering actions. However, the flex-
ible propositions used complement the natural imprecision in real-
world sensing actions, as has been exploited in the area of fuzzy con-
trol [21]. Conformant planners model uncertainty as a distribution
over the effects of a given operator yet the propositions themselves
are exclusively true or false. Within the proposed approach, flexible
propositions are assigned subjective truth degrees and operators map
deterministically from the space of flexible preconditions to a set of
flexible effects and a satisfaction degree. Therefore, subjective know-
ledge can be utilised to entail inferences over preferred combinations
of actions.

It might be conjectured that a probabilistic formalism could be
overloaded so that probabilities attached to effects signify operator
satisfaction degrees. Invoking a probabilistic planner on such an
overloaded domain description highlights the different semantics of
satisfaction degrees and probabilities. For example, PGraphplan [4]
produces a contingent plan that recommends repeated application of
an operator in event of it not producing the desired effects on its first
application. This is nonsense in the flexible context as repeating an
action will not affect its satisfaction degree. While a probabilistic
planner will not correctly solve flexible planning problems, the ap-
proaches are complementary and could be combined.

A mixed-initiative paradigm has been explored where the user is
supported in exploring the range of plans that can be used to achieve
a task. In TRIPS [7] and O-Plan [24], the user is expected to interact
extensively with the planner to explore the solution space. However,
a user may not understand the solution space and vital solution areas
may be missed. The present work is in line with that of Myers and
Lee’s [19] development of the SIPE planner [26] where the system
automatically produces a number of courses of action. The important
difference is that FGP can automatically find a range of plans given
a flexible planning problem using a single run, as opposed to the
multiple runs required by SIPE.

Other recent work [11, 25] has incorporated numerically weighted
constraints into planning to give a quantitative means of differenti-
ating between different potential plans, as opposed to the qualitative
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methods in this paper. However, if there is actual numerical know-
ledge available regarding the truth and/or satisfaction degrees, the
present approach can be readily adapted to make use of such know-
ledge without changing the underlying representation mechanism. It
may be beneficial to investigate the combination of both approaches,
though this remains an important item of future work.

CSP approaches used for plan extraction in the Graphplan frame-
work [9] generally utilise conditional CSP techniques [17] which
consider the plan extraction process as a single problem whose struc-
ture changes based on existing (tentative) assignments. FGP takes
the novel approach of using the dynamic-flexible CSP definition pro-
posed in [16]. DFCSPs support changes to the problem structure
via the addition and/or removal of flexible constraints and are used
herein to exploit the layered structure of the planning graph.

3 A Flexible Planning Problem

A flexible planning problem, 	, consists of a 4-tuple, < �, O, I,
� >, denoting sets of plan objects, flexible operators, initial condi-
tions consisting of flexible propositions, and flexible goal conditions,
respectively.

Boolean propositions are herein replaced by flexible propositions,
�, of the form (� �1; �2; :::�j ki), where �i 2 � and ki is an ele-
ment of a totally ordered set, K, which denotes the subjective degree
of truth of the proposition. K is composed of a finite number of mem-
bership degrees, k?; k1; :::; k>. Boolean propositions are captured at
the end points of K, with k? 2 K and k> 2 K indicating total false-
hood and total truth respectively. When dealing with propositions
which only ever take a truth value of k? or k>, the boolean style of
:(� �1; �2; :::; �j) and (� �1; �2; :::; �j) is adopted respectively. A
flexible proposition is described by a fuzzy relation [21], R, which is
defined by a membership function �R(:) : �1��2� :::��j ! K,
where �1 � �2 � ::: � �j is the cartesian product of the subsets of
� allowable at this place in the proposition.

(operator o
(params param1, param2, ...)

�i: fwhen (preconds �i1 �i2 ...)
(effects �i1 �i2 ...)
(satisfaction li)g etc

(goal 

fwhen �i (satisfaction li)g
fwhen �j (satisfaction lj)g etc

Figure 1. General Formats of Flexible Operators and Goals

A flexible operator, o 2 O, must recognise how well its precondi-
tions are satisfied. Flexible operators are described by fuzzy relations
which map from the precondition space to a totally ordered satisfac-
tion scale, L and a set of flexible effects propositions. L is also com-
posed of a finite number of membership degrees, l?; l1; :::; l>. The
endpoints, l? 2 L and l> 2 L respectively denote a complete lack
of satisfaction (in which case the operator is not added to the plan-
ning graph based on these preconditions) and complete satisfaction.
The Noop action is a special case which has a satisfaction of l>.

A flexible operator (figure 1) consists of a set of disjoint condi-
tional clauses, � (similar to conditional effects [20]). Each � 2 � is
a triple < �; R; ki > respectively denoting a conjunction of flexible
preconditions, a conjunction of flexible effect propositions and the

satisfaction degree of this operator given these preconditions. Each
� 2 � has the form (� �1; �2; :::�j � � ), where � is a precondition
operator with argument set �. The allowed precondition operators
encompass equality, inequality, ranges of truth degrees and sets of
discrete truth degrees. Each �i maps a subset of the space of pre-
conditions to a particular set of effects and a satisfaction degree in
L.

A flexible plan goal 
 2 � maps from the space of flexible pro-
positions to L. Each goal is defined using a number of clauses, as
shown in figure 1. Preconditions are defined exactly as those used
in the flexible operators. More than one set of mutually-consistent
propositions may exist which satisfy the plan goals to some extent.
Hence, the satisfaction degree of the plan as a whole must take into
account the goal satisfaction degrees as well as those of the flexible
operators.

The satisfaction degree of a flexible plan is defined as the conjunct-
ive combination of the satisfaction degrees of each operator and each
goal used in the plan. The conjunctive combination of two fuzzy re-
lations, Ri
Rj , is usually interpreted as the minimum membership
value assigned by either relation. The min operator has the desirable
property of idempotency (8u; u � u = u) which enables classical
CSP k-consistency enforcing techniques to be straightforwardly ex-
tended to support flexible CSP [6] and is central to the computational
efficiency of FGP. The quality of a plan is its satisfaction degree com-
bined with its length, where the shorter of two plans with equivalent
satisfaction degrees is better.

4 Flexible Graph Expansion

Exclusivity is first defined in the context of flexible propositions: two
flexible propositions are labelled as exclusive if either they express a
different truth degree for the same core proposition or (as per Graph-
plan) all ways of creating one are exclusive of all ways of creating
the other. Mutual exclusion constraints between action nodes express
that no valid plan could contain both actions. Two flexible actions are
mutually exclusive if any of the following hold: Inconsistent Effects:
The actions have mutually exclusive effects; Interference: One ac-
tion has an effect proposition which expresses a different truth degree
than for a proposition required as the precondition of the other; Com-
peting Needs: The actions have mutually exclusive preconditions.

Initial conditions are placed in the first proposition layer of the
graph (layer0). A generic action layer is generated as follows. Each
clause of each flexible operator is instantiated in all possible ways to
propositions of the previous layer. Provided that all preconditions are
mutually consistent, an action instance with the associated satisfac-
tion is added to the planning graph for each such instantiation. Noop
actions are added in the same manner as for Graphplan.

4.1 Limited Flexible Graph Expansion

The cost of graph expansion can be reduced as follows. Consider
the case where a plan of satisfaction degree li has been found. If
li < l> FGP searches onwards in order to look for a plan with a
higher satisfaction degree. However, there is no point in instantiating
flexible operator clauses with a satisfaction degree less or equal to li:
a plan with this satisfaction degree has been found already - a longer
plan with the same satisfaction degree is deemed to be of a lower
quality. The conjunctive combination rule implemented via the min
operator ensures that no plan of satisfaction degree lj can contain an
action of satisfaction li, where li < lj . Hence, the completeness of
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the search is not affected by omitting such actions in future flexible
planning graph layers.

4.2 An Example

An illustrative example follows, derived from the logistics domain
(see figure 2). The ci are three cities, r1 and r2 are major roads and
r3 is a very unsafe track through the hills. The single boolean goal of
this problem is to transport pkg1 to c3. The following definitions are
used for K and L: K = fk?; k1; k2; k>g, L = fl?; l1; l2; l>g.

truck1

pkg1
c1 r1 c2

guard1

r2

c3

r3

Figure 2. An Example Flexible Problem

Figure 3 shows the flexible operator Load-Truck which con-
siders the value of the package and the presence of a guard. If the
package is not very valuable (according to the truth degree in K of
the proposition concerning the value of the package), the guard’s
presence makes no difference (a satisfaction degree of l> is as-
signed). If the package is quite valuable, loading it onto the truck
without a guard damages the plan, resulting in a lower satisfaction
degree, l2. Figure 3 also shows an operator which expresses the dam-
age done to a plan by sending a truck across the dangerous dirt track
whilst indicating that using the major roads has no damaging effect
on the plan.

(operator LOAD-TRUCK

fwhen (preconds (at ?t ?l) (at ?p ?l) (valuable ?p <= k1))
(effects (on ?p ?t) (at ?p ?l))
(satisfaction l>)g

fwhen (preconds (at ?t ?l) (at ?p ?l) (on ?g ?t)
(valuable ?p >= k2))

(effects (on ?p ?t) (at ?p ?l))
(satisfaction l>)g

fwhen (preconds (at ?t ?l) (at ?p ?l) (not (on ?g ?t))
(valuable ?p >= k2))

(effects (on ?p ?t) (at ?p ?l))
(satisfaction l2)g)

(operator DRIVE
(params (?v vehicle) (?o location) (?d location)

fwhen (preconds (at ?v ?o) (connects ?r1 ?o ?d))
(effects (not (at ?v ?o)) (at ?v ?d))
(satisfaction l>)g

fwhen (preconds (at ?v ?o) (connects ?r2 ?o ?d))
(effects (not (at ?v ?o)) (at ?v ?d))
(satisfaction l1)g)

(params (?t truck) (?p package) (?l location)
(?g guard))

(?r1 major-road) (?r2 track))

Figure 3. The Flexible Operators Load-Truck and Drive

Although in this simple case all sets of effects within the two flex-
ible operators described are the same this is not a requirement and in
general they may be different. Other inflexible operators are defined
(i.e. using inflexible preconditions and assigning a satisfaction of l>)
which allow the guard to get on the truck and for packages to be
unloaded.

Figure 4 shows the initial conditions and first three layers of the
flexible planning graph generated from this problem definition. Only
propositions and actions (annotated with truth and satisfaction de-
grees respectively) sufficient to synthesise a short plan with a low
satisfaction degree (l1) are shown: the truck is loaded with the quite
valuable package without the presence of a guard and used to carry it
to the destination city via the unsafe track. By using the main roads
to avoid the unsafe track, the package may be carried to c3 in 4 steps -
but still the plan is not regarded as having the highest satisfaction de-
gree because the guard was not present when the package was loaded.
The ‘no compromise’ plan uses the truck to fetch the guard from c2
before returning to load the package. The package is then transported
to c3 via the major roads, resulting in a plan length of 7 steps.

5 Flexible Plan Extraction

Plan extraction from a flexible planning graph may be viewed as
solving a CSP. Propositions are regarded as CSP variables whose
domain elements are the actions which produce the associated pro-
position as an effect, as per Graphplan [3]. In addition, unary pref-
erence constraints [15] are constructed from the satisfaction degrees
associated with each action, specifying a preference degree for each
potential assignment. Boolean binary constraints are generated from
the mutual exclusion relations in the planning graph.

Each variable instantiation represents the choice of an action node
to support the proposition node represented by the variable. The pre-
conditions of each chosen action must then also be supported, and so
on. If solution extraction is viewed as solving a single large problem,
the fact that every variable instantiation causes a change to the prob-
lem structure makes it very unstable. An alternative method is pro-
posed where each layer is treated as a single (dynamic) sub-problem
to be solved. Solving a sub-problem instance at layeri defines a sub-
problem instance at layeri�1 (figure 5). Multiple solutions define a
problem sequence at layeri�1 which can be seen as a DFCSP that
can be efficiently solved using the Flexible Local Changes (FLC) al-
gorithm [16].

Search Path
Memoset Propagation

Dynamic Prob.
SequenceInstance

Single Prob.

Top Quality
Solutions

Lower
Quality
Solutions

Direction of
Banded
Solution
Extraction

sequence at
sub-problem

the next level

A set of
solutions
defines a

l? discarded

Layeri�1 Layeri Sub-problem

Figure 5. Partitioning of the Flexible Planning Graph.

If a sub-problem instance is completely insoluble, even taking
flexibility into account, backtracking is necessary to the layer above
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Actions2

(connects r3 c1 c3) (connects r3 c1 c3) :(at truck1 c1) :(on pkg1 t1)
(at truck1 c1)
(at pkg1 c1)
(valuable pkg1 k2)
:(on guard1 truck1)

(at truck1 c1) (at truck1 c3) (at pkg1 c3)
(on pkg1 truck1) (on pkg1 truck1)
:(at pkg1 c1)

l1 l>

Actions1 Propositions1 Propositions2 Actions3 Propositions3

l2

Initial Conditions

LOAD-TRUCK
DRIVE UNLOAD-TRUCK

Figure 4. Partial Flexible Planning Graph for the Problem of Figure 2. Note that r3 is the unsafe track.

in order to find the next solution. A branch and bound technique
is used to control the search for the set of problems which may be
optimally solved conjunctively. Plan extraction starts when a set of
mutually-consistent flexible propositions exist in the current layer
which, to some extent, satisfy the flexible plan goals. All goal com-
binations that might lead to a better plan than is currently known
must be tested. Since it is desirable to find plans with a higher sat-
isfaction degree first, a ‘banded’ solution extraction procedure has
been adopted (figure 5). The FLC algorithm concentrates on a par-
ticular band of solutions to a sub-problem instance, starting with the
highest. The satisfaction degree of the plans found increases along
with the plan length, providing a mechanism for trading plan length
versus the compromises made in the plan.

Solution extraction can be ameliorated using a similar basis to that
for limiting graph expansion. Once a plan of satisfaction degree li has
been found, all search paths which necessarily lead to a plan of lower
or equal satisfaction can be pruned. Hence, the banded extraction of
solutions need only extend to lj such that lj > li, guaranteed by the
use of the min operator.

5.1 Memoisation

A fundamental aspect of Graphplan’s search is the use of memoisa-
tion to store sets of subgoals determined to be unsupportable at a
particular graph layer. This technique is also adopted by FGP. Un-
supportable subgoal sets (memosets, composed of CSP variables) are
identified when a problem instance is over-constrained via value-
based learning [8], which enables the removal of irrelevant variables
from a candidate memoset at minimal cost. Memosets are stored so
that no further attempt is made to solve problems involving these
subgoals (or a superset) at this layer. Memoset information is also
propagated up the layer hierarchy such that memosets for each prob-
lem at layeri�1 resulting from a solution to a problem instance at
layeri are combined to produce a memoset for the problem instance
at layeri (figure 5).

6 Experimental Results

FGP is first evaluated against leading boolean solvers to establish the
efficacy of the novel DFCSP approach used. Table 1 shows the res-
ults obtained when running FGP, Graphplan, STAN v4 [14], IPP v4
[12] and BLACKBOX 3.6b (SATZ-RAND) [10] on benchmark prob-
lems from the logistics domain. FGP is implemented in Java and the
other solvers in C. FGP performs strongly across this range of bench-
marks, especially on more difficult problems. STAN and IPP contain
enhancements to the Graphplan framework not included in FGP. It
can be assumed that adding such enhancements FGP would provide
similar performance improvements. The results from BLACKBOX
suggest the exploration of the compilation of the flexible planning
graph to a propositional satisfiability problem in future work. The

flexible machinery does not appear to cause performance degrada-
tion on boolean problems.

Problem Length FGP GP STAN IPP BBOX
Rocketa 7 14 75 33 47 5
Rocketb 7 21 154 2 76 8
Log-a 11 8 1955 1 1513 7
Log-b 13 99 862 2 633 24
Log-c 13 123 - 704 - 46
Log-d 14 171 - 7096 - 108

Table 1. Boolean problem comparison (in seconds) between FGP and
leading solvers. A dash indicates no solution found in 24 hours. Hardware

used: Sun Ultra 5.

In the second series of experiments, the overhead of looking
for a range of solutions is evaluated by comparing the search pro-
cess on a flexible planning problem against a boolean version of
the same problem constructed using the endpoints in the scales K

and L. K and L are defined as follows: K = fk?; k1; k2; k>g,
L = fl?; l1; l2; l>g. The domain used was a variant of the flexible
logistics domain introduced in section 4.2. The test suite contained
12 problems, with plan lengths at the satisfaction bands as shown
in figure 6, which also shows the resultant run-times. As expected, it
always takes longer to find a compromise-free plan when also search-
ing for shorter ‘compromise’ plans than it does to simply solve the
boolean problem. However, the time taken to produce shorter com-
promise plans is significantly lower than to solve the boolean prob-
lem, providing an attractive ‘anytime’ behaviour. This advantage is
only reduced when the lengths of compromise plans and the plan
with satisfaction degree l> are similar, reducing the effects of limited
graph expansion. However, the user still has the luxury of choosing
from three alternative plans given slightly more run-time.

7 Conclusion

This paper introduced the flexible planning problem, a representa-
tion designed to capture the inherent ‘softness’ found in many real
problems. This is achieved by assigning subjective truth degrees to
propositions which are exploited by flexible operators that express
one of a range of satisfaction degrees depending on how well their
preconditions are satisfied. This general representation is independ-
ent of the technique used to synthesise flexible plans. A solution
strategy which extends the Graphplan framework was introduced and
a method was described for limiting graph expansion to those oper-
ator clauses which can lead to a better plan than the best one currently
known. Solution extraction consists of solving a linked sequence
of dynamic flexible constraint satisfaction problems (DFCSP). The
DFCSP algorithm Flexible Local Changes (FLC) was employed to
solve this sequence. Experimental results demonstrate that FGP ef-
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Figure 6. Flexible Problems: Composition and Run-times.

ficiently produces a range of solutions to a given flexible planning
problem.

The disadvantage of using an idempotent operator is the so-called
drowning effect [23], where a low satisfaction degree resulting from
one assignment ‘drowns’ several others whose satisfaction degrees,
whether optimal or sub-optimal, are not reflected in the overall satis-
faction degree. Leximin CSP [18] combines additive and possibilistic
approaches to avoid this problem, although at a significantly higher
computational cost. Making use of such an approach in the context
of the flexible planning problem is an active research topic.
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